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Abstract

We study the minimum vertex-covering problem under two on-line models corresponding to two
different ways vertices are revealed. The former one implies that the input-graph is revealed vertex-
by-vertex. The second model implies that the input-graph is revealed per clusters, i.e. per induced
subgraphs of the final graph. Under the cluster-model, we then relax the constraint that the choice of
the part of the final solution dealing with each cluster has to be irrevocable, by allowing backtracking.
We assume that one can change decisions upon a vertex membership of the final solution, this change
implying, however, some cost depending on the number of the vertices changed.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

On-line computation is very natural in real world applications since it represents natural
situations where the final data-set is not a priori known; in other words, data are revealed
step-by-step. Frequently, when one tries to solve problems issued from such situations,
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many types of constraints (for example, deadlines on the final solution delivery, deadlines
on the implementation of the computed solution) force her/him to start solving the problem
before the whole set of data is completely revealed. On the other hand, these constraints
may be strict enough forcing so the problem solver to irrevocably decide on the part of the
final solution dealing with each part of data revealed, or may be relatively weak, allowing
her/him to go back over decisions previously taken about the partial solution computed at
each step.

Let � be anNP optimization graph-problem. Theon-line version of�, denoted by
ON-LINE �, is the pair(�,R) whereR is a set of rules dealing with
1. information on the value of some parameters of the final graph,
2. how the final graph is revealed.
An on-linealgorithmA decides at each step which of the data (vertices or edges) revealed
during this step will belong to the final solution. Its performance is measured in terms of
the so-called competitive ratiocA defined, for an instanceG and a setR, as the ratio of
the worst (over all the waysG is revealed according toR) value of the solution computed
by it when running onG to the value of a solution computed off-line, i.e. by an algorithm
running once the final graph is completely known. In this paper we deal with deterministic
on-line algorithms. The notion of competitive ratio has been originally introduced in[13],
in order to study a fundamental computer science problem, the paging problem. Since
then, intensive research has been conducted on on-line versions of several combinatorial
optimization problems. The interested reader can be referred to[6,10] for more details on
theoretical and computational aspects of on-line computation.Also, an interesting financial
application of on-line computing is solved in[5]. On-line graph problems studied until
now are, to our knowledge, the traveling salesman[1], the graph-coloring[7,9,11]and the
independent set[4]. Finally, another on-line model for independent set is studied in[8].
There, a kind of revocability on the construction of the solution is allowed by maintaining
a number of alternative solutions and by choosing the best among them at the end of the
game. However, no penalty is considered for such revocability.

Let us consider a company receiving manufacturing orders from its clients. These orders
have to be accepted or rejected as soon as they arrive. Acceptance or rejection of the orders
can be provided either immediately, i.e. as soon as any order arrives (alternative1), or at the
end, say of each month (alternative2.1), or after a fixed number of orders (say 100 orders)
has arrived (alternative2.2). Incompatibilities between orders (due to the production time,
the materials required, etc.) are pairwise conflicts; so a set of globally compatible orders is
an independent set in the order–conflict graph (where orders are its vertices). If the objective
of the company is to maximize the number of the compatible orders accepted during, say
one year’s period (or the global profit implied by them), then the problem to be solved is
theon-line maximum independent set problem. However, assume a public company or even
a company operating with privileged clients. In both situations, the company is constrained
to accept any order emanating from its clients and has either to manufacture orders by itself,
or to use sub-contractors. Then, its objective is not to maximize the profit, but to minimize
the subcontracting cost during, for example, one year’s period. So, with respect to the
conflict graph mentioned just above, one has to minimize the complement of a maximum
independent set, i.e. a vertex-cover, and the problem to solve is theon-line minimum vertex-
covering. This is the problem we deal with in this paper.
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The minimum vertex-covering problem, denoted by VC in the sequel, is defined as fol-
lows: given a graphG(V,E), compute the minimum-cardinality setV ′ ⊆ V such that,
∀vivj ∈ E, at least one of thevi, vj belongs toV ′. We consider thatG (we setn = |V |
and supposen known at the beginning of the game) is revealed per non-empty clusters, i.e.
per induced vertex–disjoint subgraphsG1(V1, E1),G2(V2, E2), . . . of G (we denote byni
the size ofVi , i = 1,2, . . .). Every time a new clusterGi is revealed, the edges linking the
vertices ofGi with the vertices ofGj , j < i are also revealed. We denote byt the number
of clusters needed so that the whole graph is completely revealed.

We first focus ourselves on the case where the graph is revealed by means of its vertices
and considert = n, i.e., thatG is revealed vertex-by-vertex. This is what we have called
alternative1 in our companymodel describedpreviously.Weestablish ageneral result about
the performance of every minimal VC-algorithm (i.e., an algorithm computing a minimal
vertex-cover) in comparison with the maximum matching algorithm for VC, informally,
the ratio of any minimal vertex-cover against the vertex-cover computed by the maximum
matching algorithm is bounded above by�/2, where� is the maximum degree of the final
graph. Using this result, we establish the competitive ratio of a very simple but very natural
on-line algorithm entering a newly presented vertexv in the coveringCunder construction,
if there exists an edge incident tov (hence revealed together withv) the already revealed
endpointu of which does not belong toC (following our assumption about the wayG is
revealed,u has arrived beforev).

Next, we generalize our study assumingt < n and study the competitive ratio of (more
complicated) on-line algorithms forON-LINE VERTEX COVER against an optimal off-line
algorithm. Here we distinguish two cases: 2< t < n and t = 2. With respect to our
company model, the former representsalternative2.1; alternative2.2, not studied here,
could represent a situation where all the clusters are of the same order. Then, we analyze the
caset = 2. This case has, as we shall see, its own mathematical interest. Furthermore, even
in the framework of our company model it is very natural. Revisit this model and suppose
that in order that the products start to be manufactured, say at the instantt+15, orders have
to be arrived at instantt. But for some reasons (e.g., organizational or promotional ones),
clients have been granted some extra delay, for examplet + 10, in order to send orders to
be manufactured att + 15. Here, company has to answer in two times: first, for the orders
arrived up to instantt and second, for the orders arrived fromt + 1 to t + 10. The conflict
graphs of these two sets of orders are the two clusters.

We continue the paper by assuming non-irrevocability in the construction of the on-line
solution, i.e., by allowing backtracking. This means that the algorithm can interchange a
number of vertices in the solution computed by a number of vertices not included in it. But
we consider that changes performed imply a cost. This, in our company example, becomes
in deciding, at the last moment, to give some additional manufacturing work in its sub-
contractors. But since it does not meet the deadline for these orders, it has to pay some extra
cost.We study the competitiveness (against an optimal off-line algorithm) of two algorithms
under a general cost-model. This assumes that the cost paid for the change of the status of
x vertices isf (x) for a positive non-decreasing functionf.

Finally, we study a slightly different on-line model, where we assume that the input-
graph is revealed edge-by-edge. Together with the arrival of a new edge, are revealed
the links of its endpoints with the ones of the edges already revealed. Here also we
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Table 1
Summary of the results of Sections3–5

t Upper bounds Lower bounds

t = n � �a

2< t < n �b � − 2c

t = 2 (� + 5)/2d (� + 1)/2e

G is revealed edge-by-edge 2f

aThe bound holds even if a graph isomorphic ofG is known in advance; this bound becomes� − 2 if G is a
tree andn is known in advance (Section3).

bThis ratio becomes(� + 1)/2 when assuming that clusters arrive without isolated vertices (Section4).
cAssuming thatt = �(

√
n log n); this bound holds even if the input graph is a tree, any cluster is non-empty

andn is known in advance; for any other value oft, question is open (Section4).
dAssuming that the final graph has no isolated vertices; assuming, furthermore, that clusters arrive without such

vertices, the ratio becomes asymptotically�/2.62 (Section4).
eThe bound holds even if the final graph is bipartite, has no isolated vertices, both clusters have the same size

and a graph isomorphic to the input graph is known in advance (Section4).
f This bound is tight (Section5).

devise an on-line algorithm and study its competitive ratio against an optimal off-line
one.

The overall purpose of the paper is of course to study several on-line models, but also to
exhibit links between polynomial approximation and on-line computation forON-LINEVER-

TEX COVER. It is well known that VC belongs toAPX (the class of problems approximable
within constant approximation ratio) since the maximum matching algorithm achieves ap-
proximation ratio 2 for it. Our way to process here is to study competitive ratios of natural
and simple on-line algorithms using maximum matching computations as basic operations.
As we will see, use of such computations in our models does not lead to “good” competitive
ratios since they are all of order of the maximum degree of the final graph and, moreover, for
any upper bound proved, we simultaneously provide lower bounds of the same order. This
is fairly strange since it exhibits a dissymmetry with respect to the problems studied in[4].
There, under very similar models, it is shown that when a non-trivial off-line approximation
algorithm is used as basic part of an on-line independent set algorithm, the competitive
ratios achieved are only by a logarithmic factor inferior to the off-line approximation ratio.

Finally, let us note that some of the hypotheses adopted in order to derive some of the
results of the paper do not seem very natural. We speak about Corollary3of Section4.1and
Theorem4of Section4.2.2, where the basic assumption made is that clusters arrive without
isolated vertices. Despite this drawback concerning these two results, we have decided to
analyze the corresponding cases in order to show how additional hypotheses on the structure
of the instances influence on competitive results.

Table1 summarizes the main results of Sections3–5. Due to several hypotheses on the
cost-model considered in Section6 dealing with backtracking, it is quite complicated to
summarize the results of this section; therefore, they are omitted from Table1.

2. Basic definitions and notations

The following definitions will be frequently used throughout the paper. For reasons of
readability they are grouped here, before entering the purely technical part.
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Matching: A matching is a set of mutually disjoint edges ofG.
Exposed vertices: A vertex is called exposed with respect to a matchingM, if it is not

endpoint of any edge ofM, in other words, if it is not saturated byM.
Augmenting path: A path vi1, vi2, . . . , vik is augmenting with respect to a maximal

matchingM if k is even,vi1, vik are exposed with respect toM and if vil vil+1 ∈ M,
l = 2q, q = 1, . . . , (k − 2)/2; in other words, the setM \ {vil vil+1 : l = 2q, q =
1, . . . , (k − 2)/2} ∪ {vil+1vil+2 : l = 2q, q = 0, . . . , (k − 2)/2} is also a matching with
cardinality equal to|M| + 1.
Independent set: An independent set is a subset ofV ′ ⊆ V such that, for any(vi, vj ) ∈

V ′ × V ′, vivj /∈ E.
Minimal (resp., maximal) set: A set will be called minimal (resp., maximal) with respect

to a property�, if it satisfies�, while deletion (resp., insertion) of an element from (resp.,
in) Sresults in a set not satisfying�.

Fact 1 (Berge[3] ). Any (maximal) independent set is the complement, with respect to V,
of a (minimal) vertex-cover.

In what follows, forv ∈ V , we denote by�(v) the set of neighbors ofv, i.e.,�(v) =
{u : uv ∈ E}; we denote by� the maximum degree ofG, i.e.,� = max{|�(v)| : v ∈ V }.
By �(G) we denote the cardinality of a minimum vertex cover ofG and byM (resp.Mi) a
maximum matching ofG (resp.,Gi) and byP (resp.Pi) the exposed vertices ofG (resp.,
Gi) with respect toM (resp.,Mi), i.e., the vertices ofG (resp.,Gi) not saturated byM (resp.,
Mi). We will also denote byX(M) (resp.,X(Mi)) the set of the endpoints ofM (resp.,Mi).

Fact 2 (Berge[3] ). Consider a graphG, fix amaximal matchingM and set|M| = m.Then
1. V \X(M) is independent for G;
2. X(M) is a vertex-cover of G with|X(M)| = 2m.

3. On-line vertex-covering with t = n

We first consider thatG is revealed intot = n clusters, i.e., vertex-by-vertex. Before
specifying an on-line algorithm for this case, we establish a general result for any algorithm
(on-line or off-line) computing a minimal vertex-cover, i.e., a vertex-cover that cannot be
reduced by elimination of some of its vertices.

3.1. On the approximation ratio of any minimal vertex-covering algorithm against
maximum matching

We denote byMAX_MATCHINGan algorithm computing a maximum matchingM of G
(the problem of finding a maximum matching of a graph is polynomial[12]). By Item 2 of
Fact2, X(M) is a vertex-cover of size 2|M| for G. Setm = |M| andp = |P |. The items
of the following easy lemma will be frequently used in the sequel.
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Lemma 1. Consider a graphG(V,E)with n vertices and denote by M amaximummatch-
ing of G, byX(M) the set of the endpoints of the elements of M, by m the cardinality of M
and by p the cardinality of the setP = V \X(M). Then,
1. for any graph without isolated vertices,p�m(�−1); if, in addition, the graph contains

� isolated vertices, thenp − ��m(� − 1);
2. in any graphwith no isolated vertices,m�n/(�+1); if the graph has� isolated vertices,

thenm�(n− �)/(� + 1);
3. for any graph G, the ratio of the size of any minimal vertex-cover to the size of the

vertex-cover induced byMAX_MATCHING(G) is bounded above by�/2.

Proof of Item 1. Fix an edgevivj ∈ M such that at least one ofvi , vj has neighbors
in V \ X(M). If both of them have such neighbors, then observe that there cannot exist
two distinct exposed verticesx andy such thatvi is linked to one of them, sayx, andvj
to y. Otherwise, there would be an augmenting path with respect toM contradicting the
maximality ofM. Consequently,|(�(vi)∪�(vj ))∩ (V \X(M))|��− 1, sincevivj is an
edge ofE and contributes by one unit to the degrees ofvi andvj . Iterating this argument
for any edge ofM we get the result claimed.

If G contains a setI of � isolated vertices, then the argument developed above remains
valid on the graphG′(V \ I, E), q.e.d.

Proof of Item 2. Sincen = 2m+p and, by Item 1,p�m(�−1) (resp.,p−��m(�−1)),
one easily getsn�m(� + 1) (resp.,n− ��m(� + 1)) and reaches the result.

Proof of Item 3. The claim clearly holds for� = 1. Suppose��2. Consider a minimal
vertex-coverC and denote byM ′ the subset ofM for any edge of which both endpoints
belong toC. Remark first thatV \ C is a maximal independent set. Remark also that, by
Item 1 of Fact2, the setK = C \X(M) is independent. We claim that vertices inK receive
edges from saturated vertices inV \ C. In fact, existence of an edge between a vertex in
K and a vertex inV \ X(M) contradicts the maximality ofM. Next, existence of an edge
between a vertex inK and a vertex inX(M) ∩ C contradicts the minimality ofC. Note
finally that the number of saturated vertices inV \ C is equal tom − |M ′|. Henceforth,
|K|�(m− |M ′|)(� − 1). We so have,|C| = 2|M ′| +m− |M ′| + |K|��m = (�/2)2m
since��2 and the claim follows. �

It is well-known[3] that, for any graphGand for any maximal matchingM (of cardinality
m) of G

�(G)�m. (1)

Consequently, by Item 3 of Lemma1, the following corollary holds immediately.

Corollary 1. For any graph, the ratio of the size of any minimal vertex-cover to the size of
the optimal one is bounded above by�.
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3.2. An on-line algorithm for the caset = n

We analyze here a very simple but very natural on-line algorithm, calledOLVCin what
follows, entering a newly presented vertexv in the coveringCunder construction, whenever
there exists an edge incident tov (hence revealed together withv) the already revealed
endpointu of which does not belong toC (following our assumption about the wayG is
revealed,u has arrived beforev).

Proposition 1. The competitive ratio ofOLVC against an optimal off-line algorithm for VC
is bounded above by�. This bound is tight.

Proof. FollowingOLVC, ∀v ∈ C, ∃uv ∈ E such thatu /∈ C. Hence, the vertex-coverC
computed is minimal. Then, application of Corollary1 concludes the ratio claimed.

Fix now a� ∈ N, consider a starS�+1 on � + 1 vertices. Obviously,�(S�+1) = 1.
Suppose that its center is the first vertex revealed; the rest of vertices can be revealed in
any order. Then,OLVCwill not include the star-center inC, while it will include all the
remaining vertices ofS�+1. Therefore, the competitive ratio achieved in this case is equal
to �. �

Let us note that Proposition1 can be proved by the following straightforward arguments.
SinceC is minimal, for any connected component ofG, there exists at least one edge covered
by only one element ofC; hence,|C|� |E|. On the other hand, since any vertex can cover
at most� edges, the size of any cover, even of an optimal one, is at least�|E|/��. The
competitive ratio follows.

3.3. Lower bounds on the competitiveness of any algorithm for the caset = n

Suppose that vertices are numbered in the order they arrive; in stepi, vertexvi is re-
vealed. Also consider that, in stepi, {v1, . . . , vi} = Ci ∪ Si , whereCi draws the vertex-
set included in the vertex cover under construction andSi = {v1, . . . , vi} \ Ci . The fi-
nal graph is denoted, as usual, byG(V,E) and its maximum degree by�. The purpose
of this section is to provide limits for the competitiveness (against an optimal off-line
algorithm) of any on-line algorithm solvingON-LINE VERTEX COVER with t = n (over
all the ways the input-graph is revealed). Let us consider the solution ofON-LINE VER-

TEX COVER as a two-players game, where the first one (Player 1) reveals the instance
and the second one (Player 2) constructs the solution. Then, we prove the following
theorem.

Theorem 1. 1. No algorithm can achieve competitive ratio strictly better than�, even if
a graphG′ isomorphic to G is known in advance.

2. No algorithm can achieve competitive ratio strictly better than� − 2, even if G is a
tree and n is known in advance.

Proof of Item 1. The graphG′, isomorphic ofG, revealed in advance consists of a dis-
joint collection ofp stars, each of order� + 1 and of� − 1 isolated vertices, where�
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andp are fixed integers. Obviously, the maximum degree ofG is � and its ordern =
p(� + 1) + � − 1. Assume that Player 1 reveals the graph with respect to the following
rules:
i if Ci contains� isolated vertices (for the graph already revealed), thenvi+1 is linked to

all these vertices;
ii if vi ∈ Si (in other words,vi has not been taken in the solution) andvi is not linked to

any vertexvj , j < i, and ifi�n−�, then verticesvi, vi+1, . . . , vi+� form a star rooted
in vi ;

iii if p stars have been revealed, the rest of the vertices revealed are isolated;
iv if Rulesi andii cannot be applied andi�n−1, then vertexvi+1 is isolated with respect

to the graph already revealed.
Application of Rulesi–iv above implies that Player 2 cannot do better than covering

edges of any star by its leaves, while optimal off-line solution consists of the star-centers.
Therefore, a ratio of� is achieved at best and this completes the proof of Item1 of the
theorem.

Proof of Item 2. Let� be an integer greater than, or equal to, 3 and setn = �(�+1)+1.
Consider that Player 1 reveals the graph following the rules below:
(i) if Ci contains� isolated vertices (with respect to the graph already revealed) and

i�n− 2, thenvi+1 is linked to all these isolated vertices;
(ii) if vi ∈ Si (in other words,vi has not been taken in the solution) andvi is not linked to

any vertexvj , j < i, and if i�n−�− 1, then verticesvi, vi+1, . . . , vi+� form a star
rooted invi ;

(iii) consider vi ∈ Si , vi isolated with respect to the graph already revealed, andn −
2� i�n− �; setA = {vj : j < i, vj ∈ Ci,∀k� i, vj vk /∈ E} (i.e.,A is the set of the
isolated vertices, at instanti, taken inCi) andB = {vi+2, . . . , vn−1}; then:

(a) vi+1 is linked tovi and to any element of setA;
(b) the elements ofB form an independent set and are linked tovi

(iv) if Rules (i) and(ii) do not apply and ifi�n− �, then vertexvi+1 is isolated with the
graph already revealed;

(v) vn is linked to� vertices of degree 1 picked in the several connected components of
the graph revealed until stepn− 1.

If Rule (iii) is not applied, then in stepn− 1, the graph contains� stars, whose vertices
of degree 1 make part of the solution constructed by Player 2. In this case,�(G) = � + 1
(the roots of the stars plus vertexvn), while the solution constructed is of size�2. The
competitive ratio is in this case at least� − 1.

Suppose now that Rule(iii) is applied (recall that this is the case for vertex 27 in
Fig. 1). Then in stepi, the graph consists ofk stars (their leaves making part of the so-
lution constructed by Player 2) plus the vertices ofA ∪ {i}. In this case, the total number
of vertices verifiesn = �(� + 1) + 1 = k(� + 1) + |A| + |B| + 3, with |A| < � (if
not, Rule(i) would be applied one more time) and|B|�� − 2 (becausei�n − �). We
deducek = � − 1. In this case,�(G) = � − 1 + 3 = � + 2, while the solution fi-
nally constructed by Player 2 has at least(� − 1)� + � = �2 vertices (the leaves of the
� − 1 stars plus setA plus setB plusvi+1). The competitive ratio implied is then at least
� − 2.
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Fig. 1. A graph fitting Rules(i)–(v) with n = 31 and� = 5.

In order to conclude, let us note that the graph at stepn−1 consists of� acyclic connected
components, each of them containing at least one vertex of degree 1. This makes that Rule
(v) is feasible and guarantees that the final graph is a tree. So, the proofs of Item 2 and of
the theorem are complete.�

Remark 1. With respect to Item1 of Theorem1, if we suppose that the final graph is a
collection ofp disjoint stars each of degree� (without isolated vertices), application of
Rulesi andii yields a lower bound of�− ((�− 2)/k). This bound is asymptotically equal
to �.

In Fig. 1 a graphG fitting Rules(i)–(v) is shown forn = 31 and� = 5. Vertices are
numbered in the order they have been revealed. Here, Rule(iii) is applied for vertex 27.
Then,A = {19,20} andB = {29,30}. The circle vertices represent theON-LINE VERTEX

COVER-solution, while the square ones represent the independent set associated with it. A
graph fitting Item1of the theorem could be as the one of Fig.1 induced by the set of vertices
{1, . . . ,27} plus one isolated square vertex. In this example,�(G) = 7. The optimal solution
is the set{1,10,18,21,27,28,31}, while the solution constructed by Player 2 (the set of
the circle vertices of Fig.1) is of cardinality 25.

4. On-line vertex covering withn > t�2

We assume in this section thatG is revealed by non-empty clustersGi , i = 1, . . . , t ,
with 2� t < n. We first study the caset > 2. The caset = 2, being interesting by itself,
is examined separately in Section4.2. We suppose thatt is known at the beginning of the
game.
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4.1. On-line vertex covering withn > t > 2

For the case we deal with in this section, we propose the following algorithm, denoted
by t_OLVC:
• arrival ofG1: setC = X(MAX_MATCHING(G1));
• arrival ofGi , i = 2, . . . , t :

(a) setC = C ∪X(MAX_MATCHING(Gi ));
(b) for anyu ∈ Vi \ X(MAX_MATCHING(Gi )), if ∃v ∈ (∪1� j� i−1Vj ) \ C such that

uv ∈ E, then setC = C ∪ {u};
• outputC.
Obviously, the setCfinally computedbyt_OLVC is a vertex-cover, althoughnot necessarily
minimal. So, Proposition1 does not represent the worst case for its competitive ratio. Note
that for the case where clusters are assumed without any restriction, setting|C|�n − |I |
(whereI denotes theset of isolated vertices, if any) andusing Item2of Lemma1, competitive
ratio� + 1 is immediately deduced.

Theorem 2. Let �i be the number of the isolated vertices ofGi introduced in C and set
� = ∑t

i=1 �i . Denote byAi , i = 2, . . . , t , the vertex-sets introduced in C during the
execution of Step(b) of t_OLVC, setA = ∪ti=2Ai , 	 = �/|A|. Then, the competitive ratio
of t_OLVC against an optimal VC algorithm is bounded above by2+ (� − 2)/(2− 	).

Proof. Denote byMi , i = 1, . . . , t , a maximum matching ofGi and setmi = |Mi |,
i = 2, . . . , t . Observe that vertex-setA is exposed with respect to the (non-maximum)
matching∪ti=1Mi ; moreover, it does not contain any isolated vertex. Observe also that any
isolated vertex is exposed with respect to any matching ofG; hence

�� |A| ⇐⇒ 	�1. (2)

The cardinality of the on-line solutionC computed byt_OLVC can be written as
follows:

|C| = 2
t∑
i=1

mi + |A|. (3)

LetE′ be the set of edges that have entailed introduction of the vertices ofA inCand denote
byB(X(E′), E′) the partial subgraph ofGdefined on vertex-setX(E′) and on edge-setE′.
Also, denote byMB a maximum matching ofB and bymB the cardinality ofMB . Remark
also thatMB ∪ti=1Mi is a matching ofG, not necessarily maximum but maximal, and that
the graphB is bipartite with color-classesA andX(E′) \ A. Expression (1) can, for the
purposes of our proof, be rewritten as

�(G)�
(

t∑
i=1

mi

)
+mB (4)
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and, using (3) and (4), the competitive ratio oft_OLVC becomes

ct _OLVC= |C|
�(G)

� |C|(∑t
i=1mi

) +mB
= 2

∑t
i=1mi + |A|(∑t
i=1mi

) +mB

= 2+ |A| − 2mB(∑t
i=1mi

) +mB
. (5)

SetA′ = X(E′) \ A. Then, any vertex inX(MB) ∩ A′ is linked to at most� vertices of
A. On the other hand, no vertex inA \X(MB) is linked to a vertex ofA′ \X(MB); if not,
MB would not be maximum. Consequently, since any vertex ofA has at least one
neighbor inA′

|A|��mB. (6)

On the other hand, leti ∈ {1, . . . , t} and letIi be the set of the isolated vertices of clusterGi .
For i = 1, . . . , t , denote byPi the exposed vertices ofMi with respect toVi . We then have
|Ii | = �i+(|Ii |−|Ai∩Ii |), or|Ai |−�i = |Ai |+(|Ii |−|Ai∩Ii |)−|Ii |�pi−|Ii |�mi(�−1),
where the first inequality holds becauseAi ⊆ Pi and, as we have already mentioned in the
beginning of the proof, the setIi \ (Ai ∩ Ii), being isolated inGi , is exposed with respect
to any matching ofGi ; the second inequality holds thanks to Item 1 of Lemma1. Summing
inequalities|Ai | − �i�mi(� − 1) for i = 1, . . . , t , we obtain

t∑
i=1

mi�
|A| − �
� − 1

. (7)

Using (2), (6) and (7), expression (5) becomes

ct _OLVC� 2+ |A| − 2mB(∑t
i=1mi

) +mB
�2+ |A| − 2|A|

�
|A|−�
�−1 + |A|

�

= 2+
�−2
�

�(1−	)+�−1
�(�−1)

= 2+ (� − 2)(� − 1)

�(2− 	)− 1
�2+ � − 2

2− 	
(8)

and the proof of the theorem is complete.�
Recall that	�1 (see (2)). Furthermore, (8) is increasing with	; hence, setting	 = 1

the following result is immediately obtained.

Corollary 2. The competitive ratio oft_OLVC against an optimalVC algorithm is bounded
above by�.

Note that the solutionCcomputed byt_OLVC is not necessarily minimal. Consequently,
the result of Corollary2 cannot be derived by direct application of Corollary1. The bound
of Theorem2 can be slightly improved in the case where clusters arrive without isolated
vertices by the following way. Since, fori = 1, . . . , t , the vertices ofAi are exposed with
respect toMi , using Item 1 of Lemma1 (Ai ∩ I = ∅), we get

|Ai |�mi(� − 1). (9)
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On the other hand, since no cluster contains isolated vertices, the bipartite graphB(X(E′),
E′) considered in the proof of Theorem2has maximum degree bounded above by�−1 (at
least one edgeper vertex inX(E′) links it to vertices ofX(Mi), i = 1, . . . , t). Consequently,
taking also into account that there exist no edges among setsA \X(MB) andA′ \X(MB),
we get

|A|�(� − 1)mB. (10)

Combining (9) and (10), expression (5) becomes

ct _OLVC�2+ |A| − 2mB(∑t
i=1 mi

) +mB
�2+ |A| − 2 |A|

�−1
2|A|
�−1

= 2+ � − 3

2
= � + 1

2
(11)

and (11) leads immediately to the following final corollary.

Corollary 3. Whenever clusters arrive without isolated vertices, the competitive ratio of
t_OLVC against an optimal VC algorithm is bounded above by(� + 1)/2.

4.2. On-line vertex-covering witht = 2

Suppose now that the input graph is revealed in just two clustersG1(V1, E1) andG2(V2,

E2). Assume also thatn, the order of the final graph, is known at the beginning of the game.
We recall that, following our assumptions, one has to decide which vertices of the first
cluster will belong to the final solution before the arrival of the second cluster.

4.2.1. G has no isolated vertices
In this section we suppose that no additional hypotheses are admitted on the forms of the

clusters and analyze the competitive ratio of the following algorithm, denoted by2_OLVC:
• arrival ofG1:

(i) if |V1|�n/2, then setC = V1 and go to Step (1);
(ii) if |V1| > n/2, then setC = X(MAX_MATCHING(G1)) and go to Step (2);

• arrival ofG2:
(1) outputC = C ∪X(MAX_MATCHING(G2));
(2) outputC = C ∪ V2.

Theorem 3. If G has no isolated vertices, then the competitive ratio of2_OLVC against an
optimal VC algorithm verifiesc2_OLVC�(� + 5)/2.This ratio is tight.

Proof. Denote, fori = 1,2, byMi the matchings computed byMAX_MATCHINGonGi
at steps (ii) and (1) and bymi their sizes.

Suppose Step (i) of2_OLVCis executed. Then, the solution returned isC = V1∪X(M2)

with |C|�n/2+ 2m2. Combining expression forC with (1) and taking into account Item
2 of Lemma1 and the fact thatm2�m, the following holds:

c2_OLVC= |C|
�(G)

�
n
2 + 2m2

m
� n

2m
+ 2� � + 1

2
+ 2 = � + 5

2
. (12)
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Suppose now that Step (ii) of2_OLVCis executed instead. Then,|V2|�n/2 and the solution
returned is the one of Step (2), i.e.C = X(M1) ∪ V2. In this case also the arguments
previously developed hold. Hence, (12) always gives the competitive ratio achieved.

Let usnowshow that theanalysis above is asymptotically tight.Consider agraphG(V,E)

collection ofRstars, each of maximum degree�. Consider the subgraphG1 ofGconsisting
of a set ofn/2 exposed vertices with respect to a maximum matchingM of G. Remark that
M contains one edge per star and thatV (G1) is a set of isolated vertices of size not larger
thann/2. SetG2 = G[V \ V (G1)] and assume thatG is revealed per clustersG1 andG2.
Then

|C| = n

2
+ 2R = n

2
+ 2n

� + 1
, (13)

�(G) = n

� + 1
= R, (14)

|C|
�(G)

= � + 5

2
. (15)

This completes the proof of the theorem.�

4.2.2. Clusters have no isolated vertices
Suppose now that clustersGi arrive with no isolated vertices. Letni be the order ofGi .

Denote byMi , i = 1,2, a maximum matching ofGi , byPi the set of the exposed vertices
with respect toMi , by pi its cardinality and consider the following on-line algorithm,
denoted byC2_OLVCand called with parametersn and a fixed constant
 > 1:
• arrival ofG1: if n1�n/
, then setC = V1; else setC = X(MAX_MATCHING(G1));
• arrival ofG2:

(a) setC = C ∪X(MAX_MATCHING(G2));
(b) setA2 = {v ∈ V2 \X(MAX_MATCHING(G2)) : ∃u ∈ V1 \ C, uv ∈ E};
(c) outputC = C ∪ A2.

Theorem 4. Under the hypothesis that clusters arrive with no isolated vertices, there exists

0, the largest among the roots of the polynomial
2−3
+1,such that the competitive ratio
ofC2_OLVC (n, 
0) against an optimal VC algorithm is bounded above by2+ ((�+1)/
0).

Proof. Set, fori = 1,2,mi = |Mi | and note the following fact that can be immediately
deduced fromC2_OLVC.

Fact 3. Whenever then-consequence of the first item is executed, then Step(b) computes
A2 = ∅; therefore the final covering C computed in Step(c) satisfiesC = V1 ∪X(M2).

Suppose that execution of the first item is as stated in Fact3. Then, by (1) and Item 2 of
Lemma1, we get

|C|
�(G)

� n1 + 2m2

m
�

n

 + 2m2

m
�

n



m
+ 2�

n


n

�+1

+ 2 = � + 1



+ 2. (16)
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Suppose now that the else instruction of the first item is executed instead. Then, the setC
finally computed in Step (c) byC2_OLVCverifies

|C| = |X(M1)| + |X(M2)| + |A2| = 2(m1 +m2)+ |A2|. (17)

Denote byQ1 ⊆ V1 \X(M1) the set of vertices ofV1 that has entailed the introduction of
setA2 in C, and byB(Q1, A2, EB), the subgraph ofG induced byQ1∪A2. Since they are
both independent (subsets ofP1 andP2, respectively),B is bipartite. Denote also byMB a
maximum matching ofBand setmB = |MB |. SinceM1∪M2∪MB is a maximal matching
for G

�(G)�m1 +m2 +mB. (18)

Consider setX(MB)∩Q1; obviously,|X(MB)∩Q1| = mB . SinceG1 is supposed without
isolated vertices, any vertex ofX(MB) ∩ Q1 has at most� − 1 neighbors inA2. On the
other hand,MB being maximum forB, any vertex ofA2 receives edges from at least one
vertex ofX(MB) ∩Q1. So

|A2|�mB(� − 1). (19)

Also, sinceG1 andG2 are both assumed without isolated vertices, application of Item 2 of
Lemma1 gives

m1 � n1
�+1,

m2 � n2
�+1.

(20)

Combining (17)–(20), performing some little and easy algebra and taking into account
n1 + n2 = n, one gets

|C|
�(G)

� 2(m1 +m2)+ |A2|
m1 +m2 +mB

= 2+ |A2| − 2mB
m1 +m2 +mB

�2+
�−3
�−1|A2|
n

�+1 + |A2|
�−1

. (21)

Recall that we are currently considering casen1 > n/
, i.e.

n2 < n− n



= n


 − 1



. (22)

Using (20) form2, denoting byp2 the number of the exposed vertices ofV2 with respect to
M2, and using (22), we obtain

|A2|�p2 = n2 − 2m2�n2 − 2n2

� + 1
= � − 1

� + 1
n2� (� − 1)(
 − 1)

(� + 1)

n. (23)

Remark also that (21) is increasing with|A2|. So, combining (21) and (23), we get

|C|
�(G)

�2+
(�−3)(
−1)
(�+1)
 n

n
�+1 + (
−1)n


(�+1)

= 2+ (� − 3)(
 − 1)

2
 − 1
. (24)
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Note that, for a fixed
, (�− 3)(
− 1)/(2
− 1)�(�+ 1)(
− 1)/(2
− 1) and that (16) is
decreasing with
, while (24) is increasing. These two expressions asymptotically coincide
when

� + 1



+ 2 = 2+ (� + 1)(
 − 1)

2
 − 1
⇐⇒ 
2 − 3
 + 1 = 0


>1�⇒ 
0 �2.62. (25)

Setting
0 = 2.62, we getcC2_OLVC�(� + 6.24)/2.62. This, for large values of�, is
asymptotically equal to�/2.62. �

4.3. Lower bounds for the competitive ratio

4.3.1. Caset > 2
The ideas in the proof of Theorem1 can be used even when the input-graph is revealed

in t clusters (witht = o(n)). The main difficulty for such a generalization consists of
controlling the growth of the number of vertices (due to Ruleii of Item 1 of Theorem1)
when the number of clusters is fixed (assuming that clusters are non-empty). We exhibit
a value oft (1>t>n) for which such difficulty can be overcome. In all, we prove the
following theorem (the proof of which being quite technical, it is given in appendix).

Theorem 5.Whent = c
√
n log n, for some constant c, no on-line algorithm forON-LINE

VERTEX COVERcan achieve competitive ratio smaller than� − 2, against an optimal off-
line algorithm, even if the input-graph is a tree, any cluster is non-empty and n is known in
advance.

Similar results should be possible for other values oft also. But it seems difficult to
produce a global result working for any value oft.

4.3.2. Limits on the competitiveness fort = 2
As previously in Section3.3, we present a graph and a strategy for revealing it in two

steps such that every on-line VC-algorithm cannot achieve competitive ratio better than the
bound provided.

Theorem 6. For t = 2and for all��2,no algorithm can achieve competitive ratio strictly
better than(� + 1)/2 for a graph of maximum degree�, even if it is bipartite(denoted by
H(V1 ∪ V2, E)) with no isolated vertices, |V1| = |V2|, V1 is the first cluster(andV2 is the
second one), both clusters have the same size and a graph G isomorphic of H is known in
advance.

Proof. Given an integerk and two setsA = {1, . . . , |A|} andB = {1, . . . , |B|} such that
|B| = k|A|, we setA×k B = {(aib(i−1)k+j ) ∈ A× B, i ∈ {1, . . . , |A|}, j ∈ {1, . . . , k}}.
In other words, ifA andB are vertex-sets, the graph(A ∪ B,A×k B) consists of|A| stars
of sizek + 1 rooted in the vertices ofA.
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Let ��2 be a fixed integer and set

n = 2�(� + 1). (26)

We defineH(V1 ∪ V2, E) where
• V1 = N1

1 ∪ N2
1 (setsN1

1 andN2
1 are mutually disjoint) with|N1

1 | = �, |N2
1 | = �2,

N1
1 ∩N2

1 = ∅;
• V2 = N1

2 ∪ N2
2 (setsN1

2 andN2
2 are mutually disjoint) with|N1

2 | = �2, |N2
2 | = �,

N1
2 ∩N2

2 = ∅;
• E = (N1

1 ×� N
1
2) ∪ (N2

2 ×� N
2
1).

The so-constructed graphH is bipartite, without isolated vertices and a minimum cardinality
vertex covering ofH is of size�(H) = n/(� + 1) = 2� (by (26)).

Consider any on-line algorithm and denote it byOLVC. We will show that Player 1 can
revealH in such a way thatOLVCwill include at least�2+� vertices in the cover (inducing
so a competitive ratio(� + 1)/2).

First cluster isV1 (an independent set of size�(� + 1)). LetN1 be the set of vertices of
V1 introduced in the solution byOLVCand setn1 = |N1|. We consider the two following
cases:
1. n1��2;
2. n1 > �2.
For Case 1, Player 1 can reveal the second cluster in such a way thatN1 ⊆ N2

1 and�n1/��
vertices ofN2

2 are each one linked with� vertices ofN1 (satisfying the shape ofH). Then,
OLVCnecessarily includesN1

2 in the cover together with� − �n1/�� vertices ofN2
2 . So,

the constructed solution has size at least�2 + n1 + � − �n1/����2 + � vertices.
For Case 2, Player 1 reveals the second cluster in such a way thatN1 = N2

1 ∪R1, where
R1 ⊆ N1

1 (satisfying the shape ofH). Then, sinceOLVChas to take in the solution the
�(� − |R1|) vertices ofN1

2 non-adjacent to vertices ofR1, and|R1|��, the constructed
cover is of size at least�2 + |R1| + (� − |R1|)���2 + �. �

Note that if we allow isolated vertices inG, one can easily show that one cannot guarantee
competitive ratio strictly better than�.

5. A model based on-line arrival of edges

Let us note that one can consider other on-line models more or less complicated than the
ones just considered. In this section, we consider a simple model assuming that the input-
graph is revealedbymeansof its edges rather thanof its vertices.Theyarriveoneat a timeand
for any new edge, the links of its endpoints with the endpoints of the edges already present
are also revealed. We suppose that|E| is known in advance, we setE = {e1, . . . , e|E|},
whereei are numbered in order of their arrival. For anyei just arrived, ifX(ei) ∩ C = ∅,
thenX(ei) is included inC (the vertex cover under construction).

In this case, the irrevocability in the construction of the on-line solution deals with the
endpoints of an edge as a whole. With respect to a model based upon arrival of vertices it
is as one allows, for every edge arriving, a kind of backtracking of level one.
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Proposition 2. The competitive ratio of the algorithmagainst an optimal off-line algorithm
is bounded above by2 and that this bound is tight.

Proof. Assume that the endpoints ofqedges have enteredC. It is easy to see that these edges
form a maximal matching ofG (of sizeq). The setC finally computed by the algorithm
verifies |C| = 2q. On the other hand, by (1), �(G)�q. The competitive bound 2 is then
immediately deduced.

For tightness, consider a star revealed edge-by-edge. The algorithm will introduce inC
the endpoints of the first edge revealed and no new vertex will be introduced inC later. The
optimal vertex-cover for any star consists of its center. So here, the bound 2 is attained.�

The on-line model just described is equivalent to the one where all vertices are present
from the beginning of the game and edges are presented one-by-one. Here, whenever an
edge arrives none of the endpoints of which are inC, then both of its endpoints enterC.

6. Allowing backtracking

In this section we somewhat change the working hypotheses adopted and suppose that
one can go back over the solution constructed during previous steps. We assume that one
can change this solution but she/he has to pay some cost for doing it. Let us note that
the backtracking model dealt here allows only adding vertices when the whole graph is
revealed.

Our on-line algorithm for the case of the backtracking is basicallyt_OLVC. The spirit of
our thought process can be outlined as follows. The best approximation ratio known forVC
is bounded above by 2 (this ratio is equal to 2− (log log n/ log n) [2]). On the other hand,
ON-LINE VERTEX COVER being computationally harder, it is a priori worse approximated
than VC. So, one can “restrain” her/himself in searching for competitive ratios as near as
possible to2.Themaximummatchingperformedoneachcluster ofGby t_OLVC obviously
guarantees approximation ratio 2 on any cluster. The fact that the whole competitive ratio is
finally “deteriorated” is due to the vertices of the graphB that have to be taken into account
in order to cover cross-edges, i.e. edges between clusters. So the algorithm we propose
in what follows starts with runningMAX_MATCHINGon each cluster and by delaying its
decision on the cross-edges (in other words, the exposed vertices of any cluster are firstly
considered as not belonging to the solution under construction). Next, once all clusters are
revealed, graphGB is formed andMAX_MATCHING(B)is run. The final solution is the
union of the endpoints of all the edges retained by the successive runs ofMAX_MATCHING.
In what follows, forV ′ ⊆ V , we denote byG[V ′] the subgraph ofG induced byV ′.

Let us consider the model where the cost due to the change of the status ofx vertices
is f (x) wheref is some given positive function satisfyingf (0) = 0. We assume that the
cost of the final solution equals the number of the vertices added to the covering during the
execution of the on-line computation plusf (x), wherex is the number of vertices added
to the covering when the whole graph is revealed; we also consider that the optimal cost is
�(G). It is quite natural to assume thatf is continuous and not decreasing. In what follows,
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we restrict ourselves to the case where the slope off (more precisely the average unit cost
f (x)/x, x > 0) is monotonous. This seems to us to be the most natural case. Similar
analyses could be conducted for other kinds of cost-functions, but they should require
specific formulations forf.

6.1. f (x) = �x, for some� > 0

We assume� > 1 (the case��1, i.e. the one where postponing the decision is beneficial
is not natural in on-line computation) and consider the following algorithm denoted by
Bt_OLVC:
• for i = 1, . . . , t , setC = X(MAX_MATCHING(Gi ));
• setB = G[∪ti=1(Vi \X(MAX_MATCHING(Gi ))];• outputC = C ∪X(MAX_MATCHING(B)).
Also, as previously, fori = 1, . . . , t , we setMi = MAX_MATCHING(Gi ) and denote by
mi the cardinality ofMi ; also, we setMB = MAX_MATCHING(B) and denote bymB the
cardinality ofMB .

Proposition 3. The competitive ratio ofBt_OLVC against an optimal off-line algorithm for
VC is bounded above by2�.

Proof. In fact, as one can see fromBt_OLVC, the vertices changed belong to∪ti=1(Vi \
X(Mi)). Among these vertices, exactly|X(MB)| = 2mB vertices pass from non-covering
to covering ones. Suppose that for each of them a cost� has to be paid. In this case, the cost
of the solution computed byBt_OLVC is smaller than, or equal to,(2

∑t
i=1 mi)+ 2�mB .

Using (4), for the optimal cost, we immediately get:cBt _OLVC�2�. �
Suppose now that we do not require polynomial execution times and consider the fol-

lowing algorithm, denoted byOt_OLVC:
• for i = 1, . . . , t , include in the solution an optimal vertex cover ofGi ;
• setB the graph induced by the uncovered edges;
• complete the solution by an optimal cover ofB.
Using the facts that�(G)� ∑t

i=1 �(Gi) and that�(G)��(B), by an analysis similar to the
one forBt_OLVC, we conclude a competitive ratio of 1+ �.

6.2. f (x)/x decreases with x

A decreasing average unit-cost is a very usual economic model. In this case, the hypothe-
ses onf imply that, for anyx > 0, f (x)��x, where� = f (1). Therefore, the result of
Proposition3 remains valid and the following corollary holds.

Corollary 4. For the case wheref (x)/x decreases with x, Bt_OLVC achieves competitive
ratio max{2,2f (1)}.

Consider now thatf (1) > 1 and assume that limx→∞ f (x)/x < 1. Then, there existsx0
such thatf (x0) = x0. Sincef is supposed fixed, one can assume thatx0 is known. In this
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case, we can consider the following on-line algorithm forON-LINE VERTEX COVER, (where
we suppose that the sizen of the final graph is known in advance):
• if n�x0, then applyOt_OLVC;
• wait until the whole graph is revealed and applyMAX_MATCHINGin order to compute a

2-approximation.
If n�x0, then a competitive ratio of 1+f (1) is polynomially achieved (sincex0 is supposed
to be known); otherwise, a competitive ratio 2 is guaranteed (see Section6.1dealing with
��1).

Suppose finally that limx→∞ f (x)/x = �1�1. Then, for any
 > 0, there existsx
, such
that for anyx�x
, f (x)�(�1 + 
)x. We then consider the following on-line algorithm for
ON-LINE VERTEX COVER(always supposing that the sizen of the whole graph is known in
advance):
• if n�x
, then applyOt_OLVC;
• applyBt_OLVC.
The algorithm just above obviously guarantees competitive ratio max{1+ f (1),2(�1+ 
)}
and the following proposition summarizes the discussion of this section.

Proposition 4. If f (x)/x decreases with x, then, for any
 > 0, there exists a polynomial
time on line algorithm achieving competitive ratiomax{2,1 + f (1),2(�1 + 
)}, where
�1 = limx→∞ f (x)/x.

6.3. f (x)/x increases with x

By similar arguments as in Section6.2, one can prove that if limx→∞ f (x)/x = �2 <∞,
then a competitive ratio max{2,2�2} can be achieved. So we can now assume
limx→∞ f (x)/x = ∞.

If f (1) < 1, then we distinguish two cases, namely,n�x0 andn > x0, where, as
previously,x0 is such thatf (x0) = x0 (recall thatn denotes the order of the whole graph).

The first case can be faced by the same arguments as in Section6.2.
Consider now casen > x0 and assume thatf (x)/x > 1. It can be easily shown that for

anyn there existsrn ∈ (0, n] such that

f (2rn)

2rn
= n

rn
(27)

i.e.,f (2rn) = 2n. Note thatrn can be polynomially computed by dichotomy.
For the cost-model dealt, we somewhat modifyBt_OLVC and assumen known in

advance. We so derive the following algorithm denoted byMt_OLVC:
(a) arrival ofG1: setC = X(MAX_MATCHING(G1));
(b) arrival ofGi , i = 2, . . . , t :

• set:B = G[∪ij=1(Vj \X(MAX_MATCHING(Gj )))]andMB = MAX_MATCHING(B);
• if mB�rn, then setC = C ∪X(MAX_MATCHING(Gi )), else setC = C ∪ Vi ;

(c) let i0 be the lasti for which the then instruction of Step (b) is executed; setB ′ =
G[∪i0j=1(Vj \X(MAX_MATCHING(Gj )))];

(d) outputC = C ∪X(MB ′).



102 M. Demange, V.Th. Paschos / Theoretical Computer Science 332 (2005) 83–108

Theorem 7. If the change of the status of x vertices induces a costf (x) > x, where
f (x)/x increases with x, then the competitive ratio ofMt_OLVC against an optimal off-line
VC-algorithm is bounded above by3n/rn, wherern is such thatf (2rn) = 2n.

Proof. Note first that the only vertex-changes performed byMt_OLVCare onX(MB ′)
(whereB ′ is the graph constructed in Step (c)) and, furthermore, thatmB ′ always satisfies
mB ′ �rn and, consequently

f (2mB ′)

2mB ′
� f (2rn)

2rn

(27)= n

rn
,

f (2mB ′) � 2mB ′
n

rn
. (28)

If the else statement of Step (c) inMt_OLVC is not executed at all, i.e., ifi0 = t (Step
(c)), thenmB�rn, where, obviously,B = B ′ = G[∪tj=1(Vj \X(MAX_MATCHING(Gj )))].
Consequently, using (28)

cMt_OLVC�
2

∑t
i=1mi + f (2mB ′)∑t
i=1 mi +mB ′

� max

{
2,
f (2mB ′)

mB ′

}
. (29)

Suppose, without loss of generality, that the max in (29) is realized by the termf (2mB ′)/
mB ′ ; so, (29) becomes

cMt_OLVC�
f (2mB ′)

mB ′
= 2

f (2mB ′)

2mB ′
� 2f (2rn)

2rn

(27)= 2n

rn
. (30)

On the other hand, suppose that the else statement of Step (b) is executed at least once. Then

mB > rn. (31)

Using (28) and denoting byv(C) the value of the setC computed byMt_OLVC, we get

v(C)�n− 2mB ′ + f (2mB ′)
(28)
� n+ 2mB ′

n

rn
. (32)

Denote bym the cardinality of a maximum matching ofG and use (4), (31) and (32).
Then,cMt_OLVC= v(C)/�(G)�(n/rn) + 2(n/rn) = 3n/rn, that concludes the proof of
the theorem. �

Corollary 5. Assume thatf (x)/x increases with x and thatx < f (x)�xp, for any
p ∈ N.Then, the competitive ratio ofMt_OLVC against an optimal off-line VC-algorithm is
bounded above by6n1−1/p.

Indeed,f satisfies the conditions of Theorem7. Furthermore, the hypotheses onf imply
thatrn�n1/p/2. Therefore, the result claimed in Corollary5 follows immediately.

We now show that the result of Theorem7 is quite tight, since no on-line algorithm
can achieve competitive ratio (against an optimal off-line one) better thancrn for some
constantc.
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Proposition 5. The result of Theorem7 is asymptotically non-improvable. Indeed, there
exist cost-functions verifying the hypotheses of Theorem7 such that no on-line algorithm
can achieve,against an optimal off-line algorithm, competitive ratiocn/rn for anyc < 1/2,
even ift = 2 and the final graph is bipartite.

Proof. Assume cost-functionf : x  → x2 (it clearly verifies the hypotheses of Theorem
7), let (�, n1) ∈ N×N and setn = (1+�)n1. At the first step,V1 is an independent set of
sizen1. If Player 2 chooses some vertices ofV1, then the whole instance is a graph without
any edge. In this case, the optimal value�∗(G) is 0, whereas the on-line value is positive.
The resulting ratio equals∞ and the theorem holds.

Consequently, we can focus ourselves to the case where Player 2 does not choose any
vertex during the first step. In this case the graph consists ofn1 stars of size(1+�) rooted
in V1, one star per vertex inV1. Then, optimal value satisfies (recall thatn = (1+ �)n1)

�∗(G) = n

� + 1
= n1. (33)

Denote byV ′
1 the set of vertices ofV1 that are changed in order to be included in the

final solution (i.e., the vertices introduced in the solution after the backtracking). Then, the
solutionC computed by Player 2 verifiesC ⊇ V ′

1 ∪ V2 \ �(V ′
1) for a total cost of

v(C)�f (|V ′
1|)+ �(n1 − |V ′

1|). (34)

Consequently, Player 2 chooses, at best, a setV ′
1 of cardinality

�∗ ∈ Argmin
�∈

[
0, n

�+1

]
{
�2 − �� + n�

� + 1

}
. (35)

Let c and
 > 0 be such that 1/
√

2(2+ 
) > c (clearly,c < 1/2). Define thenn1 = 1/

and� = 2n1. One can easily show that (35) implies�∗ = n1; by (34), v(C) = n2

1. Using
it together with (33) and taking into account that�∗ = n1, we get:v(C)/�∗(G) = n1 =
rn/

√
2(2+ 
) > cn/rn. �

7. Conclusions

On-line computation is actually a very active area of the theoretical computer science. It is
adomainof great interest for operational researchersalso, fromboth theoretical andpractical
points of view, since the mathematical problems here emanate from models expressing
reality more richly than the conventional ones. The vertex-covering problem dealt in this
paper is one of the central problems in combinatorial optimization in its off-line version.As
we have seen at the beginning of the paper, it remains very natural even in its on-line version.
There exists a number of open problems that seem interesting for further studies. First of
all, the improvement, if possible, of the competitive ratios obtained and the achievement of
lower bounds for the case wheret < n. Also, a further generalization of the vertex-covering
is the one where we consider weights on the vertices of the input-graph and we search for
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a minimum total-weight vertex cover. In the company model presented in Section1, this
generalization has a very natural interpretation if we consider that the manufacturing of an
order has its proper cost and the company wishes to minimize the cost of the manufacturing
in subcontracting. Performing a competitive analysis of on-line algorithms for this weighted
version ofON-LINE VERTEX COVERseems to us a very interesting open problem.
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Appendix A. Proof of Theorem 5

The main idea of the proof is analogous to the one of the proof of Item 2 in Theorem1.
The extra difficulty here is because oft = o(n). It should be noted that the factt = n in
Theorem1 importantly simplifies the respective proof.

As in Section3.3, we consider a two-player game. Player 1 reveals the instance by
clusters while Player 2 constructs the solution, i.e., it partitionsVi into two subsets:Si
andCi , the former one denoting the set of the independent vertices ofVi and the latter
one denoting the set of the covering vertices ofVi . We denote byPLAY2 the procedure,
representing construction of the decision of Player 2, about the partition ofVi . In other
words, the decision of Player 2 will be denoted by(Ci, Si) = PLAY2(Vi ). Moreover, we
call badly covereda d-leaves star whose all leaves are included in the vertex cover under
construction. The revealing strategy of Player 1 is based upon the following module denoted
byONE_VERTEXand dealing with the revealing of a single vertex. It is called with inputs
� ∈ N, G[∪j=1,...,i Vi], i.e., the graph already revealed, and two sets of verticesRS and
RC ; it returns a new vertexy, its links with the vertices already revealed and the setsRS and
RC updated. The neighbors ofx considered in the third “if” of algorithmONE_VERTEX
deal with the graph already revealed. For reasons of simplicity, we set in what follows
G[∪j=1,...,i Vi] = [G]i . ModuleONE_VERTEXworks as follows:
1. if |RC |��, then y is connected to� vertices ofRC ; these vertices are removed

fromRC ;
2. if |RC | < �, then

(a) if RS "= ∅, then: choosex ∈ RS ; y is linked only withx; if x has� neighbors, then
setRS = RS \ {x};

(b) if RS = ∅, theny is isolated.
Remark that a star is built by Step 1 and by the second if of Step (2a). Moreover, in the

overall revealing algorithm, we also use the following additional moduleUPDATE(X1,Y1,
X2,Y2): if X1 contains an isolated vertex, then add it inX2; if Y1 contains an isolated
vertex, add it in Y2. Assume��16 be an integer. DefineK ′ = �1 + 2 log �� andK =
�− 2K ′ − 2�0. The final graphG has a form analogous to the one of Fig.1. It consists of
• � − 1 stars of size� + 1 plus a tree of size� + 1 with a vertex cover of size 2;
• a root-vertex such that the whole graph is a tree of degree�.



M. Demange, V.Th. Paschos / Theoretical Computer Science 332 (2005) 83–108 105

Assumet = �2 log�� + (2+K ′)(1+ �)+ 1 and consider the following strategy played
by Player 1 for revealing the graph int steps; this strategy is calledGAMEin what follows:
• set:K ′ = �1+ 2 log��,K = � − 2K ′ − 2, S = ∅, C = ∅, i = 0;
• PHASIS 1: main phasis

(1.1) setA = 0;
(1.2) whileA < K�: seti = i + 1; let Vi be an independent set of size�K − A/��;

set:(Ci, Si) = PLAY2(Vi ), S = S ∪ Si , C = C ∪ Ci , A = A+ �|Si | + |Ci |;
(1.3) setr = A−K�; letR1

C beasubsetofCof cardinalityr; set:XS = S,XC = C \ R1
C ;

• PHASIS 2: adjustment of the numbert of steps
setR2

S = ∅, t = �2� log�� − i, R2
C = R1

C , H2 = R2
C ; for j = 1, . . . , t : run ONE_

VERTEXand set:y = ONE_VERTEX(�, [G]i ,R2S,R2C); set:i = i + 1,Vi = {y},H2 =
H2∪{y}; set:(Ci, Si) = PLAY2(Vi ) (in this case|Vi | = 1); set:S = S ∪ Si ,C = C ∪ Ci ;
UPDATE(Si ,Ci ,R2S,R

2
C);

• PHASIS 3: re-adjustment of the number of blocks
(3.1) set:R3

C = ∅, R3
S = ∅,H3 = ∅;

(3.2) forj = 1, . . . , K ′(1+ �):
– if |H2| < K ′(� + 1), then set. = 2; else set:. = 3,V 2

i = ∅;
– for k = . to 3: set:y = ONE_VERTEX(�, [G]i ,RkS,RkC), V ki = {y}, Hk =
Hk ∪ V ki ;

– set:Vi = V 2
i ∪ V 3

i , i = i + 1, (Ci, Si) = PLAY2(Vi ) (here|Vi |�2), S = S∪
Si , C = C ∪ Ci ;

– for k = . to 3:UPDATE(Si ∩ Vki ,Ci ∩ Vki ,R
k
S,R

k
C);

– for i = 2,3, setui the degree of the vertex ofRiS (if non-empty; remark that
|RiS |�1);

• PHASIS4: last two blocks (steps (4.1) and (4.2) construct the last star, while steps (4.3)
and (4.4) construct the last block)
(4.1) seti4 = 0,R4

C = R2
C ∪ R3

C (|R4
C |�2� − 2),R4

S = ∅;
(4.2) repeat until a star is built byONE_VERTEX: set:i = i + 1, i4 = i4 + 1; set:y =

ONE_VERTEX(�, [G]i ,R4S,R4C),Vi = {y}, (Ci, Si) = PLAY2(Vi ),C = C ∪ Ci ,
S = S ∪ Si ; UPDATE(Si ,Ci ,R4S,R4C)

(4.3) (at the beginning of the step,R4
S = ∅)) repeat untilR4

S "= ∅ or |R4
C | = �: set:

i = i + 1, i4 = i4 + 1; set:y = ONE_VERTEX(�, [G]i ,R4S,R4C), Vi = {y},
(Ci, Si) = PLAY2(Vi ), C = C ∪ Ci , S = S ∪ Si ; UPDATE(Si ,Ci ,R4S,R4C);

(4.4) ifR4
S = ∅, thenanewvertexy, linked toanyvertexofR4

C , is revealed; set:Vi = {y},
(Ci, Si) = PLAY2(Vi ), i = i + 1, i4 = i4 + 1, S = S ∪ Si , C = C ∪ Ci ; else
(|R4

S | = 1)�−|R4
C | vertices are revealed; letVi be their set; they are linked to the

(unique) vertex ofR4
S and one of them is linked to any vertex ofR4

C (if non-empty);
(Ci, Si) = PLAY2(Vi ), i = i + 1, i4 = i4 + 1, S = S ∪ Si , C = C ∪ Ci ;

• PHASIS 5: completion ofG by the last clusters; the setH5 of vertices to be revealed
during this phasis consists of
– for any vertexx ∈ XS , � independent vertices linked tox;
– |XC |/� vertices each one linked to� proper independent vertices ofXC ;
– � − ui vertices linked toRiS , i = 2,3;
– the root-vertexr;
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(5.1) seti5 = 2(� + 1)− i4 + 1;
(5.2) partitionH5 into i5 non-empty clustersVj , j = 1, . . . , i5 such thatr belongs to

the last one;
(5.3) forj = 1 to i5: set(Sj , Cj ) = 2_PLAY(Vj ), C = C ∪ Cj , S = S ∪ Sj .

Lemma 2. 1. PHASIS 1ofGAME takesatmost�2� log �� stepsandat theend,K��A <
(K + 1)�, r < �, |XC |/� ∈ N; moreover, |XS | + |XC |/� = K.

2. At the end ofPHASIS 2, i = �2� log�� and|H2|�K ′(� + 1).

Proof of Item 1. From the size of the independent setVi computed in Step (1.2), one gets
�|Si |+|Ci |��|Vi | < (K+1)�−A. Hence, the current value ofAsatisfiesA < (K+1)�,
so r < �. On the other hand, clearly,A = �|S| + |C|. Consequently, at the end of Step
(1.2), one has|C| = q� + r with q + |S| = K. So,|XC | = q�.

We now show that Step (1.2) is executed at most�2� log �� times. Denote byAi the
value ofA at the end of theith execution of the loop. Sequence(Ai)i satisfies,∀i, such that
Ai < K�

Ai+1�Ai +K − Ai

�
. (A.1)

Let nowBi = K� − Ai . Sequence(Bi)i satisfies (using (A.1)) the following induction
rule:

B0 = K�, (A.2)

Bi+1�Bi
(

1− 1

�

)
∀i such thatBi > 0. (A.3)

From (A.2), one can deduce that,∀i,Bi−1 > 0 andBi�K�(1−�−1)i . Furthermore, from
(A.1) and (A.2), Bi becomes non-positive fori > log(K�)/− log((1− �−1)i). This last
quantity is smaller than 2� log �. In fact, log(K�)/(− log(1−�−1))�� log (K�)�2�
log�. Consequently, Step (2) is not executed more than�2� log �� times and the proof of
Item 1 is complete.

Proof of Item 2. The value ofi claimed follows immediately from the total number of
the iterations duringPHASIS 2. Furthermore,|H2| = |R1

C | + t�� + �2� log ���
(� + 1)(�2 log �� + 1). �

From algorithmONE_VERTEXwe can deduce that at the end ofPHASIS 2, the graph
revealed consists of|XS | isolated independent vertices, of|XC | (= �(K − |XS |)) isolated
covering vertices, ofs2 badly covered stars of size�+ 1, of2 badly covered stars of size
u2 + 1, u2 < � and ofv2 < � isolated covering vertices. Moreover,2 = |RS2 | ∈ {0,1}
andv2 = |RC2 |��.

Lemma 3. At the end ofPHASIS 3, |H2| = |H3| = (� + 1)K ′, i = �2� log �� +
(� + 1)K ′.
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Proof. It follows immediately from the fact that, at the beginning ofPHASIS 3,
|H2|�(� + 1)K ′. �

At the end ofPHASIS 3 the graph revealed consists of|XS | isolated independent ver-
tices, of |XC | isolated covering vertices,|XS | + |XC |/� = K, and of the subgraphs of
the final graph induced byH2 andH3 created duringPHASES 2and3, i.e., of s2 + s3
badly-covered stars of size� + 1, of |R2

S | + |R3
S | badly-covered stars of sizesu2 + 1 and

u3 + 1, respectively,u2, u3��, and of |R2
C | + |R3

C | isolated vertices introduced in the
solution,|RiC |��, i = 2,3; moreover,|RiS |�1, (ui + 1)|RiS | + |RiC | = (� + 1)|RiS | and
si + |RiS | = K ′.

Lemma 4. At the end ofPHASIS 4, the following holds:
1. 2� i4�2(� + 1) andi = �2 log � � + (� + 1)K ′ + i4;
2. the graph already revealed consists of|XS | + |XC | isolated vertices such that|XS | +

|XC |/� = K, of s2+ s3 badly-covered stars of size�+1,of |R2
S |+ |R3

S | badly-covered
stars of sizesu2+1andu3+1, respectively,u2, u3��,of one badly covered star of size
� + 1 and of the last bloc, a 2-level tree the edges of which are covered by� vertices;

3. it remains�|XS | + |XC |/� + � − u2 + � − u3 + 1 vertices to be revealed, with
�|XS | + |XC |/��K.

Proof. The proof is immediate from the algorithmGAME. �

From Item 1 of Lemma4, 1� i5�2� + 1. On the other hand,k + 1�2� + 1 vertices
remain to be revealed (Item 2 of Lemma2). So, the partitioning in Step (5.2) ofPHASIS
5 is indeed possible.

The overall graph has been revealed withint = O(� log�) steps and is of ordern =
O(�2). Consequently,t = O(

√
n logn). Furthermore, the final vertex cover constructed by

Player 2 has size|C|��2, while a minimum vertex cover of the graph is of size�+2. This
concludes the proof.
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