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Summary 

Chromatin assembly factor I (CAF-I) from human cell 
nuclei is a three-subunit protein complex that assem- 
bles histone octamers onto replicating DNA in a cell- 
free system. Sequences of cDNAs encoding the two 
largest CAF-I subunits reveal that the p150 protein con- 
tains large clusters of charged residues, whereas p60 
contains WD repeats, p150 and p60 directly interact 
and are both required for DNA replication-dependent 
assembly of nucleosomes. Deletion of the p60-binding 
domain from the p150 protein prevents chromatin as- 
sembly, p150 and p60 form complexes with newly syn- 
thesized histones H3 and acetylated H4 in human cell 
extracts, suggesting that such complexes are interme- 
diates between histone synthesis and assembly onto 
replicating DNA. 

Introduction 

The DNA of eukaryotic organisms is packaged in the nu- 
cleus with an approximately equal mass of protein, forming 
a complex nucleoprotein structure known as chromatin. 
The most fundamental repeat structure of chromatin is the 
nucleosome core particle, comprised of 146 bp of DNA 
wrapped around an octamer of histone proteins (two mole- 
cules of each of the four core histones, H2A, H2B, H3, 
and H4). Packaging of DNA into nucleosomal structures 
is generally inhibitory to processes requiring access to 
the DNA, including transcription (reviewed by Felsenfeld, 
1992; Paranjape et al., 1994). Conversely, activation of 
genes is often correlated with an increased nuclease sen- 
sitivity within regulatory regions, indicative of an altered 
chromatin structure. Propagation of such so-called open 
chromatin regions over the course of multiple cell divisions 
is an important aspect of maintaining cellular differentia- 
tion. Therefore, insights into mechanisms involved in the 
assembly and inheritance of chromatin structures are an 
important goal for the study of eukaryotic gene regulation. 

Assembly of new nucleosomes is closely linked tempo- 
rally to the passage of the replication fork in somatic cells. 
After replication, nascent DNA displays transient sensitiv- 
ity to nucleases, and only after 10-20 rain does newly 
synthesized chromatin display a digestion pattern and 
nucleosomal spacing similar to that of unreplicated chro- 
matin (e.g., Levy and Jakob, 1978; Smith et al., 1984). 
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Also, histones H3 and H4 are assembled onto nascent 
DNA almost immediately after replication-fork passage, 
whereas histones H2A and H2B are added to DNA after 
2-10 min (Worcel et al., 1978). This same order of addition 
has been observed in completely defined systems in which 
purified histones and DNA are mixed in 2 M NaCI and 
assembled into nucleosomes by dialysis (Hansen et al., 
1991). The universality of this pathway probably reflects 
the fact that H3 and H4 are the most tightly bound and 
centrally located histones of the core particle (see van 
Holde, 1989; Wolffe, 1992). 

Extracts of egg or embryonic cells of Xenopus and Dro- 
sophila promote assembly of regularly spaced nucleo- 
somes (Laskey et al., 1977; Glikin et al., 1984; Becker 
and Wu, 1992; Kamakaka et al., 1993). Xenopus oocytes 
contain large amounts of nucleoplasmin bound to histones 
H2A and H2B and NI/N2 bound to histones H3 and H4 
(Kleinschmidt et al., 1985; Dilworth et al., 1987) Nucleo- 
plasmin and NI/N2 are acidic proteins that sequester the 
large maternal store of histones and assemble large 
amounts of chromatin during the rapid early embryonic 
cell divisions. However, these factors do not require DNA 
replication to assemble nucleosomes. 

In contrast with embryonic cells, somatic cells do not 
store large pools of histories H3 and H4, but instead syn- 
thesize them in a largely cell-cycle dependent manner at 
the onset of DNA synthesis (Wu and Bonner, 1981). A 
three-subunit protein termed chromatin assembly factor 
I (CAF-I) was purified from human somatic cell nuclear 
extracts based on its ability to assemble histone octamers 
onto SV40 origin-based Plasmids undergoing replication 
in vitro (Stillman, 1986; Smith and Stillman, 1989). CA F-I 
differs from other assembly factors because it does not 
promote significant nucleosome assembly in the absence 
of ongoing DNA replication. CAF-I performs the first step 
of the assembly process, bringing histones H3 and H4 
to replicating DNA; histones H2NH2B can bind to this 
chromatin precursor subsequent to DNA replication to 
complete the histone octamer (Smith and Stillman, 
1991a). Thus, CAF-I assembles nucleosomes in vitro by 
the same two-step mechanism observed in vivo, and it 
does so in a manner linked to DNA replication. 

CAF-I is also unique among nucleosome assembly fac- 
tors because it assembles specific histones onto DNA. 
CAF-I cannot assemble histones H3 and H4 purified from 
cellular chromatin onto DNA. Instead, CAF-I uses the his- 
tones H3 and H4 present in cytosolic extracts of human 
cells (Smith and Stillman, 1989, 1991a). These histones 
are newly synthesized, as detected by pulse labeling 
(Smith and Stillman, 1989, 1991a; see below). In vivo, 
there is a burst of histone H3 and H4 synthesis at the 
onset of S phase (Wu and Bonner, 1981), and the newly 
synthesized histone H4 is transiently acetylated on lysine 
residues near the N-termini while still in the cytoplasm 
(Ruiz-Carillo et al., 1975; Jackson et al., 1976; Sobel et 
al., 1994, 1995). This modification is lost during entry into 
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the nucleus and assembly into chromatin. Also, acetylated 
histone H4 in cytosolic extracts is in a complex that con- 
tains histone H3 (Perry et al., 1993). When deacetylase 
enzymes are inhibited, nucleosomes assembled onto 
newly replicated DNA are enriched in acetylated H4 (Perry 
et al., 1993). Thus, mechanisms exist to target newly syn- 
thesized histones to the DNA replication fork. 

We present here a molecular characterization of replica- 
tion-linked chrom atin assembly proteins, the p150 and p60 
subunits of the human CAF-I complex. Newly synthesized 
histones H3 and H4 in cell extracts form complexes with 
p150 and p60, suggesting that the CAF-I proteins in these 
complexes are involved in escorting newly synthesized 
histones to sites of DNA replication-linked chromatin as- 
sembly. 

Results 

Molecular Cloning of p150 and p60 cDNAs 
We cloned a cDNA encoding the p150 subunit of CAF-I 
using a combination of antibody screening and protein 
sequencing (Figure 1; see Experimental Procedures). Ex- 
cept for partial human cDNA sequences, there are cur- 

rently no close homologs of the p150 gene in sequence 
data bases. However, the p150 gene has several striking 
features. The gene is predicted to encode a highly charged 
protein with an isoelectric point of 5.5. Furthermore, there 
are several regions with large clusters of acidic residues. 
The p150 gene also has a PEST box, which is defined as 
a region enriched in proline (P), glutamic acid (E), serine 
(S), threonine (T) and also aspartic acid residues (D) (Rog- 
ers et al., 1986). The presence of these motifs in proteins 
has been correlated with short in vivo half-lives. Indeed, 
the p150 protein undergoes proteolysis in cellular extracts 
(see below). 

A cDNA encoding the p60 subunit of CAF4 was cloned 
using amino acid sequence data (Figure 2A). p60 is a mem- 
ber of the tryptophan-aspartate (WD), or transducin, re- 
peat family of proteins (reviewed by Neer et al., 1994). 
Such proteins contain four to eight repeated motifs; each 
motif is approximately 40 am ino acids in length, often end- 
ing in WD residues (Figure 2B). p60 itself has seven re- 
peats, although the fifth and sixth repeats show significant 
divergences from canonical residues. The structural or 
biological sign ificance of these repeats is presently am big- 
uous, since they have been found in many eukaryotic or- 
ganisms and in a large number of proteins with greatly 
different functions and cellular Iocalizations. However, a 
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Figure 1. Predicted Amino Acid Sequence of the CAF-I p150 Subunit 
Peptide sequences obtained from the p150 subunit of the CAF-I com- 
plex are underlined. 
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Figure 2. Sequence and Internal Repeat Structure of the CAF-I p60 
Subunit 
(A) Predicted amino acid sequence. Peptide sequences obtained from 
the p60 subunit of the CAF-I complex are underlined. Amino acids 
100-116 and 117-123 were sequenced as different peptides. The 
tryptophan at amino acid 119 and the tryptophan and serine at amino 
acids 492-493 could not be unambiguously determined from the pro- 
tein sequence data. 
(B) WD repeat structure of p60. Numbers of amino acids (aa) are indi- 
cated next to the primary sequence of each of the seven repeats. Most 
nonconserved amino acids between repeats are omitted for brevity. 
Underlined residues conform to the consensus shown at the bottom. 
This alignment was made by hand; the derived consensus for the 
repeats in the p60 is very similar to that found previously by examina- 
tion of a large number of WD protein sequences, although some differ- 
ences are observed (e.g., Neer et al., 1994). h represents any of the 
hydrophobic amino acids L, I, V, M, F, C, or A; s represents the small 
amino acids S, A, G, or T; x indicates that any amino acid can be 
found at that position. 
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Figure 3. Immunological Characterization of Human Cell Extracts 
Samples were separated on a 10% SDS-polyacrylamide gel and im- 
munoblotted. Lane 1, -65  p.g of 293 cell $100 cytosolic extract; lane 
2, - 54  ~g of anti-p60 MAb 24-depleted $100 extract; lane 3, -75  
p.g of $100 made in the presence of 0.25 M NaCI; lane 4, total 293 
cell proteins. Approximately 107 cells were lysed in 1 ml of SDS sample 
buffer; 5 p.I was analyzed on this gel. 
(A) Detection of p150. The filter was probed with anti-p150 MAbs 1 
and 48. 
(B) Detection of p60. The same filter shown in (A) was stripped and 
reprobed with anti-p60 MAbs 96 and 53. 

recent study has shown that a single WD repeat can act 
as a direct pro te in-prote in  interact ion domain  (Komachi 
et al., 1994). The C-terminus of the p60 gene also contains 
a PEST region. 

Chromatin Assembly by Recombinant 
p150 and p60 
Initial exper iments  showed that the p150 protein was suffi- 
cient to promote  DNA repl icat ion- l inked ch romatin assem- 
bly in the presence of $100 extract,  a cytosol extract  made 
by disrupting human 293 cells at low ionic strength (see 
Figure 4B, lanes 14-17;  data not shown). However,  the 
$100 extract  conta ined substant ial  amounts  of the p60 
subunit  (Figure 3B, lane 1). In contrast, the p150 subuni t  
was not abundant  in the $100  cytosol extract,  al though it 
could be easi ly detected in whole-cel l  lysates or in an $100 
extract  made by disrupting cells in the presence of 0.25 
M NaCI, which contains more nuclear proteins (Figure 3A, 
lanes 1, 3, and 4). Therefore, to test wl~ether p60 was 
essential for the chromat in assembly reaction, we de- 
pleted the p60 from the $100  extract  by immunoaff in i ty  
chromatography with an ant i-p60 monoclonal  ant ibody 
(MAb) resin (Figure 3B, lane 2; Figure 4B). 

Recombinant  baculoviruses containing ei ther the p150 
or p60 genes were generated,  and the p150 and p60 pro- 
teins were purif ied from extracts of infected insect cells 
(Figure 4A). The purif ied proteins were added to DNA repli- 
cat ion react ions to test for assembly of nuc leosomes 
(Sti l lman, 1986; Smith and Sti l lman, 1989). In this assay, 
DNA repl icat ion of plasmids bear ing the SV40 origin is 
dependent  on SV40 T ant igen and a human cell cytosol ic 
extract  ($100) that contains the necessary DNA polymer- 
ases and auxi l iary factors. Addi t ion of purif ied CAF-I to 
this reaction promotes the format ion of nuc leosomes dur- 
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Figure 4. Purification and Characterization of 
Recombinant p150 and p60 Proteins 
(A) Approximately 0.75 p.g of p150 (lane 1) and 
1.5 I~g of p60 (lane 2) Q-Sepharose fractions 
purified from insect cells were analyzed on a 
10% SDS-polyacrylamide gel and stained with 
Coomassie blue. M indicates molecular mass 
markers, with mass in kilodaltons. 
(B) Chromatin assembly by recombinant p150 
and p60. S~40 replication reactions (50 pl) 
were performed with anti-p60 MAb 24-depleted 
cytosolic $100 extract (lanes 1-13) or with un- 
depleted $100 (lanes 14-17). Extracts were 
supplemented with the indicated amounts of pu- 
rified recombinant p150 or p60 or both. Repli- 
cation products were analyzed on a 1% aga- 
rose gel and autoradiographed. Migration of 
form I negatively supercoiled and form Io re- 
laxed monomer circle DNA is indicated. 
(C) Micrococcal nuclease digestion of assem- 
bled chromatin. Replication reactions (300 p.I) 
were supplemented with 144 ng of insect cell 
p150 plus 72 ng of p60 (lanes 1-6), 144 ng of 
p150 alone (lanes 7-12), or 72 ng of p60 alone 
(lanes 13-18). Aliquots of replication products 
(50 p.I) were digested for the indicated amounts 
of time. Migration of linear double-strand DNA 
markers is indicated along the right, with 
lengths in base pairs. The migration of mono- 
nucleosome-, disome-, trisome- and tetra- 
some-length material is indicated by the 
arrows. 

(D) Replication-preferential assembly by p150 and p60. Total DNA in the gel shown in (B) was visualized by ethidium bromide staining. Note 
the presence of an unradiolabeled ladder of topoisomers in reactions that underwent efficient assembly of replicated molecules (e.g., lanes 6, 7, 
and 11-13). 
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ing DNA replication. The degree of nucleosome assembly 
is assessed by the superhelical state of radiolabeled DNA 
after removal of proteins. Since each nucleosome con- 
strains one negative supercoil (Simpson et al., 1985), effi- 
cient nucleosome formation is indicated by the migration 
of replicated DNA as a highly negatively supercoiled form 
(termed form I) in native agarose gels. 

Addition of both p150 and p60 was required for chroma- 
tin assembly in the p60-depleted extract, but only p150 
was required in the undepleted extract (Figure 4B), consis- 
tent with the immunoblotting results (see Figure 3). In the 
undepleted extract, 24 ng of p150 was sufficient to convert 
completely the replicated DNA in a standard 50 ld assay 
to a highly negatively supercoiled form (Figure 4B, lane 
16; data not shown). In the p60-depleted extract, this 
amount of p150 would not form chromatin without addition 
of p60 (Figure 4B, lane 8); full supercoiling of the replicated 
DNA required 6-12 ng of p60 (-0.1-0.2 pmol) and 24 ng 
p150 ( -0 .2  pmol; Figure 4B). Approximately 50 ng ( -0 .2  
pmol) of CAF-I purified from human cells is required for 
full assembly under these conditions (Smith and Stillman, 
1989). Therefore, the specific activities of the recombinant 
p150 and p60 proteins were very similar to that of the 
CAF-I complex from human cells. 

The recombinant p150 and p60 proteins assembled 
chromatin in a replication-preferential manner. Upon addi- 
tion of high levels of these two recombinant proteins, 
nearly all of the radiolabled, closed circular monomer plas- 
mid was negatively supercoiled (e.g., Figure 4B, lanes 6, 
7, ar:ici 11-13). In contrast, analysis of total DNA recovered 
from these replication reactions by ethidium bromide 
staining of the same gel (Figure 4D) showed that unlabeled 
DNA present in these reactions consisted of a ladder of 
relaxed topoisomers present in all lanes. Even at levels 
of p150 and p60 that caused complete supercoiling of the 
replicated DNA, it is clear that the unlabeled, unreplicated 
DNA was not assembled into chromatin. 

To better characterize the product molecules, we mildly 
digested chromatin assembly reactions with micrococcal 
nuclease. This cleaves linker DNA between neighboring 
nucleosomes, resulting in a nuclease-resistant ladder of 
bands indicating that an array of nucleosomes had been 
formed. In the presence of both p150 and p60, digestion 
of products yielded a ladder of bands with a spacing of 
approximately 190 bp (Figure 4C, lanes 2-6), similar to 
that previously described during the characterization of 
the CAF-I complex (Stillman, 1986; Smith and Stillman, 
1989). Addition of either p150 or p60 alone to the p60- 
depleted $100 extract resulted in protection of some sub- 
nucleosomal-sized DNA without a repeated pattern. 

Molecular Dissection of the p150 Protein 
p150 synthesized by in vitro translation (Figure 5A, lane 1) 
supports chromatin assembly when added to $100 extract 
(Figure 5B, lanes 2 and 3). To map regions of the p150 
protein required for activity, we constructed a series of 
N-terminal, C-terminal, and internal deletions of the p150 
gene (diagrammed in Figure 6A). The three internal dele- 
tions created were: the PEST domain, amino acids 245- 

296; the highly charged KER domain, comprised chiefly 
of lysine (K), glutamic acid (E), and arginine (R), amino 
acids 311-445; and the ED region, amino acids 564-641, 
which includes the largest clusters of the acidic residues 
glutamic acid (E) and aspartic acid (D) in the p150 protein. 

After in vitro translation of the mutated cDNAs (Figure 
5A), roughly equimolar amounts of the various p150 deriv- 
atives were tested for chromatin assembly (Figure 5B; 
summarized in Figure 6A). The N-terminal 296 amino 
acids of p150 were dispensable for chromatin assembly 
activity in the $100 extract, because the A88, A204, A296, 
and APEST proteins all acted as efficiently as wild-type 
p150 (Figure 5B, lanes 4-11). In contrast, internal deletion 
of the KER or ED regions destroyed detectabl~ activity, 
as did any of the C-terminal deletions tested (Figure 5B, 
lanes 12-15 and 18-25). Also, a large N-terminal deletion 
to amino acid 678 yielded nonfunctional protein (Figure 
5B, lanes 16 and 17). 

We also tested in vitro translated p150 derivatives for 
binding to p60 using a coimmunoprecipitation assay. Wild- 
type and mutant p150 molecules were incubated with p60 
and an anti-p60 MAb (Figure 5C, even-numbered lanes). 
As a negative control for nonspecific precipitation of p150, 
assays were also performed in the absence of p60 (Figure 
5C, odd-numbered lanes). Coprecipitations were per- 
formed using purified recombinant p60 (Figure 5C, lanes 
1-30) or with in vitro translated p60 (Figure 5C, lanes 31- 
38) with similar results. All of the p150 derivatives that are 
functional for chromatin assembly are precipitated by the 
anti-p60 antibody, but only in the presence of p60 (Figure 
5C, lanes 1-10 and 31-34; summarized in Figure 6A). In 
addition, the three internal deletion mutants interact with 
p60 (Figure 5C, lanes 9-14 and 35-38), as does the N-ter- 
minal deletion mutant that extended to amino acid 619 
(Figure 5C, lanes 15 and 16). However, the N-terminal 
deletion mutant that extended to amino acid 678 was not 
bound by p60 (Figure 5C, lanes 17 and 18). Furthermore, 
all deletions that included the C-terminus of p150 elimi- 
nated interaction with p60 (Figure 5C,Janes 19-28). These 
data suggested that the p60-binding domain of p150 is 
located in the C-terminal third of the protein and that this 
region is necessary but not sufficient for chromatin assem- 
bly activity. Since the A619 construct (amino acids 620- 
938 remaining) and the AED construct (amino acids 564- 
641 deleted) both bound p60, we conclude that amino 
acids 642-938 are sufficient for p60 binding. We propose 
that the lack of interaction of the A678 p150 derivative 
with p60 results from either global unfolding of this protein 
or the absence of important residues for interaction in 
amino acids 642-677. 

To test whether the interaction between the C-terminal 
domain of p150 and p60 was direct, glutathione S-trans- 
ferase (GST) was fused to the middle third of p150 (GST- 
p150M, amino acids 297-619) or to the C-terminal third 
of p150 (GST-p150C, amino acids 620-937) and tested 
for binding to in vitro translated p60 (Figt~re 6B, lanes 1-4) 
or purified recombinant p60 (Figure 6B, lanes 5-8). In both 
cases, unfused GST or GST-p150M did not bind p60, 
but GST-p150C did. This interaction was stable in the 
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presence of at least 0.5 M NaCI. The interact ion between 
the p150 C-terminal third and p60 is therefore a direct 
prote in-prote in  interaction. 

Interactions among p150, p60, and Histones H3 
and H4 in Cell Extracts 
Newly synthesized human histone H4 is transient ly ace- 
ty lated on Lys-5 and Lys-12 (Sobel et al., 1995), and the 
histones H3 and H4 used by CAF-I for chromat in  assembly 
are newly synthesized molecules in human cell cytosol 
extracts (Smith and Sti l lman, 1991a). We therefore tested 
whether  the p150 or p60 CAF-I subunits interact with ace- 
ty lated histone H4 present in cell extracts. For some exper-  
iments, extracts were prepared from human 293 cells that 
had been pulse labeled with ~4C-lysine and arginine to 
increase the sensit ivi ty of detect ion of the newly synthe- 

sized histones. Immunoprecip i tat ion exper iments  were 
per formed using MAbs that recognize p150 and p60 
(MAbs 1 and 24, respect ively; Smith and Sti l lman, 1991b) 
and a rabbit ant iserum raised against a synthet ic pept ide 
corresponding to the tet raacety lated Te t rahymena histone 

H4 N-terminus, which reacts with all acety lated forms of 
the protein (Lin et al., 1989). Also, to maintain the labi le 
acetyl groups on the histones, sodium butyrate, an inhibi- 
tor of histone deacety lase enzymes,  was added to the 
harvested cells prior to homogenizat ion and at all subse- 
quent  steps of the exper iments.  

First, interact ions between proteins present in the $100 
cytosol extract  were invest igated. Immunoprec ip i ta ted 
proteins were analyzed by immunoblott ing~to detect p60. 
The anti-p60 MAb 24 did indeed precipi tate the p60 protein 
in these exper iments,  but the control 12CA5 MAb did not 
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Figure 5. Analysis of p150 Deletion Mutants 
(A) In vitro translation of p150 mutants. We ana- 
lyzed 50 arbitrary units of each full-length prod- 
uct (40 U for A619) on a 10o/0 SDS-polyacryl- 
amide gel. Arbitrary units were calculated by 
Fuji phosphoimager quantitation of full-length 
protein present in a given volume of each trans- 
lation. The A619 and CA678 templates trans- 
lated particularly poorly, so that these were of 
insufficient concentration to test in the chroma- 
tin assembly assay (see below). We do not 
know why the CA678 protein appears to be 
particularly susceptible to degradation or pre- 
mature translational stopping or both. 
(B) Chromatin assembly by p150 mutants. 
SV40 replication reactions (50 Ill) were per- 
formed with undepleted $100 cytosol extract 
supplemented with in vitro translated p150 pro- 
teins. We used 300 or 600 arbitrary units of in 
vitro translated wild-type p150 proteins (lanes 
2 and 3, respectively). The same amounts of 
each mutant were used in subsequent pairs 
of lanes, adjus.~ed for the predicted number of 
methionines present in the particular proteins 
so that the same number of molecules was 
added. Migration of form I negatively supemoiled 
and form Io relaxed monomer circle DNA is indi- 
cated. 
(C) Coimmunoprecipitation of p150 mutants 
with p60. Recombinant p60 (0.21 p.g; even- 
numbered lanes, 2-30) was mixed with the indi- 
cated in vitro translated p150 proteins and im- 
munoprecipitated with anti-p60 MAb 24 beads. 
We used 300 arbitrary units of the p150 pro- 
teins, except in the following cases in which 
poor translation required use of less protein: 
A619, 75 U; CA678, 63 U. For these precipita- 
tion experiments, the amount of in vitro trans- 
lated proteins was not adjusted for the number 
of methionines. For lanes 31-38, 600 arbitrary 
units of in vitro translated p60 was used in the 
even-numbered lanes in place of purified re- 
combinant p60. Input wild-type in vitro trans- 
lated p150 (lane 39) and in vitro translated p60 
(lane 40) are shown; migration of p60 is indi- 
cated. 

wt, wild-type. 
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Figure 6. Direct Interaction between p150 C-terminus and p60 
(A) (Upper panel) Summary of p150 mapping data. The portions of 
the p150 protein intact in the various constructs are indicated by the 
closed line(s) next to the construct names on the left. The plus signs in 
the column labeled Complements $100 indicate that the given protein 
performed chromatin assembly in the presence of undepleted Sl00 
cytosolic extracts (data from Figure 5B). The plus Signs in the column 
labeled Binds p60 indicate coprecipitation by anti-p60 antibody in the 
presence of p60 (data from Figure 5C). ND, not determined (translation 
of these constructs was too inefficient for testing in the assembly 
assay). (Lower panel) Domain diagram of p!50. The PEST, KER, and 
ED regions are shown on the same scale as in the upper panel. Also 
diagrammed are the amino acids in the p60-binding domain and the 
GST fusion constructs. 
(B) GST-fusion protein binding. In vitro translated p60 (4.5 Id, lanes 
2-4) or 0.16 I~g of recombinant p60 (lanes 5-7) was mixed with 1.2 
I~g of GST (lanes 2 and 5), GST-p150M (lanes 3 and 6), or GST- 
p150C (lanes 4 and 7) and precipitated with glutathione-CL4B resin. 
Proteins eluted from washed beads were separated on a 10% SDS- 
polyacrylamide gel and analyzed by autoradiography (lanes 1-4) or 
transferred to nitrocellulose and probed with anti-p60 MAbs 96 and 
53 (lanes 5-8). Lane 1 shows 0.5 p,I of in vitro translated p60 and lane 
8 shows 0.21 p~g of recombinant p60 as markers. Molecular mass 
markers in kilodaltons are indicated on the right. 

(Figure 7A, lanes 1 and 2). Also, the anti-acetylated pep- 
tide serum precipitated some of the p60 present in the 
extract, but normal rabbit sera did not (Figure 7A, lanes 
3 and 4). Only a subset of the p60 and histones H3 and 
H4 interact in cytosol extract, because this interaction is 
dependent on the small amount of endogenous p150 pres- 
ent in the $100 extract (see below). Next, we examined 
proteins in 293 cell nuclear extracts, where p150 is more 
abundant. In this case, both the p150 and p60 subunits 
were in complexes precipitated by the anti-acetylated H4 
antisera (Figure 7B, lane 4), but not normal rabbit sera 
(Figure 7B, lane 5). 

In the in vitro DNA replication reactions, addition of 
CAF-I proteins to the $100 cytosol extract promotes chro- 
matin assembly. We therefore tested whether addition of 
recombinant p150 and p60 to the $100 cytosol extract 
would increase the amount of the chromatin assembly fac- 
tor subunit-histone complexes. First, the anti-acetylated 
peptide serum, but not control serum, coprecipitated 
added p150 and p60 proteins, and this interaction was 
stable in at least 0.5 M NaCI (Figure 7C). Second, immuno- 
precipitations of the labeled extract with MAbs against the 
CAF-I subunits showed that addition of recombinant p150 
and p60 greatly increased the amount of coprecipitated 
histones H3 and H4. When the anti-p150 antibody was 
used, addition of p150 alone resulted in substantial co- 
precipitation of the histones (Figure 7C, lane 2). In con- 
trast, addition of both p150 and p60 was required for a 
similar effect when the precipitation was performed with 
an anti-p60 antibody (Figure 7C, lane 8). This suggests 
that p150 is the subunit responsible for interaction with 
the histones. 

Discussion 

Mechanism of CAF-I Activity 
Previous work (Krude and Knippers, 1993) and our own 
calculations (data not shown) suggest that CAF-I acts stoi- 
chiometrically in vitro. We propose that, consistent with a 
nonenzymatic mechanism, the p150 and p60 subunits act 
as molecular chaperones involved in directing newly trans- 
lated histones H3 and H4 to the DNA replication fork. How 
the link to the replication apparatus is achieved is still 
not clear, since preliminary attempts to detect interactions 
between individual DNA replication proteins and CAF-I 
subunits have not been successful (data not shown), sug- 
gesting that important chromatin assembly components 
remain unknown. Also, the interaction between CAF-I and 
the replication proteins is probably transient in nature, be- 
cause nucleosome assembly by CAF-I is noncooperative. 
That is, assembly reactions containing subsaturating 
amounts of CAF-I yield product molecules with intermedi- 
ate levels of negative supercoils, rather than fewer com- 
pletely assembled molecules (Smith and Stillman, 1989; 
Krude and Knippers, 1993; Figure 4). 

In addition to the p60 and p150 subunits, the CAF-I com- 
plex purified from human cell nuclei contains a third sub- 
unit, p50. Preliminary data using recently derived poly- 
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Figure 7. Interactions among Newly Synthesized Histones H3 and H4 
and CAF-I Subunits 
(A) Endogenous proteins in the 293 cell $100 cytosol extract. Approxi- 
mately 0.18 mg of 14C-labeled S100 extract protein ( -1 x 106 cpm) 
was immunoprecipitated with anti-p60 MAb 24 (lane 1), MAb 12CA5 
(lane 2), anti-acetylated H4 rabbit sera (lane 3), or normal rabbit sera 
(lane 4). Lane 5, unlabeled $100 extract marker. Precipitated proteins 
were separated on high resolution 18% SDS-polyacrylamide gels 
(Thomas, 1989), immunoblotted, and probed with anti-p60 MAbs 96 
and 53. Ig indicates mouse immunoglobulin light chain that cross- 
reacts with the secondary antibody. 
(B) Endogenous proteins in nuclear extract. Approximately 0.05 mg of 
protein was either analyzed directly (lane 6) or first imm unoprecipitated 
with 30 Id of anti-p150 MAb 1 (lane 1), 30 p.I of anti-p60 MAb 24 (lane 
2), MAb 12CA5 (lane 3), anti-acetylated H4 rabbit sera (lane 4), or 
normal rabbit sera (lane 5). Proteins were separated on a 10% SDS- 
polyacrylamide gel, immunoblotted, and probed with a mixture of anti- 
p150 MAbs 1 and 48 and anti-p60 MAbs 96 and 53. Detected proteins 
migrating between the indicated full-length p150 and p60 species are 
proteolytic fragments of p150 (data not shown). Ig indicates rabbit 
immunoglobulin heavy chain that cross-reacts with the secondary 
antibody. 
(C) Coimmunoprecipitation of recombinant p150 and p60 with ace- 
tylated H4 in $100 cytosol extract. Sl00 extract protein (0.72 mg) 
was supplemented with 0.13 I~g of recombinant p150 and 0.1 p.g of 
recombinant p60 and immunoprecipitated with anti-acetylated H4 rab- 
bit sera (lane 1) or normal rabbit sera (lane 2). Proteins were analyzed 
as in (B). 
(D) Coimmunoprecipitation of newly synthesized histones H3 and H4 
with recombinant p150 and p60 in $100 cytosol extract. We immuno- 
precipitated 80 pg of ~4C-labeled $100 extract protein (-4.6 x 10 s 
cpm) with anti-p150 MAb 1 (~p150, lanes 1-4) or anti-p60 MAb 24 
(~p60, lanes 5-8) after addition of 0.2 ~g of recombinant p150 (lanes 
2, 4, 6, and 8) and 0.15 ~g of p60 (lanes 3, 4, 7, and 8). Precipitated 
proteins were separated on a high resolution 18% SDS-polyacryl- 
amide gel (Thomas, 1989) and visualized on a Fuji phosphoimager. 
14C-labeled histone markers are also shown (lane 9). 

clonal antisera suggest that this protein is present in the 
$100 cytosol extract. However, we are currently unable 
to deplete this protein and thus cannot presently address 
its function (data not shown). Molecular characterization 
of the p50 subunit is in progress. 

Domains of the p150 and p60 Proteins 
Molecular dissection of the p150 protein shows that it con- 
tains at least three domains. The C-terminal third of p150 
contains a high affinity binding site for the p60 protein, 
which cannot be deleted without destroying chromatin as- 
sembly activity. The middle third of the protein contains 
highly charged regions that also cannot be deleted without 
destroying activity, yet such mutants'st i l l  bind p60, sug- 
gesting that the acidic clusters in this region could be in- 
volved in interaction with the highly basic histone proteins. 
Alternatively, this region could be for interaction with other 
proteins or for correct three-dimensional folding of the pro- 
tein. The N-terminal third of p150 can be deleted without 
affecting chromatin assembly activity. This region con- 
tains the PEST box, a motif  found in many proteins that 
undergo regulated degradation, such as cyclins (Tyers et 
al., 1992). The p60 C-terminus also contains such a motif. 
Further exper iments regarding cell-cycle regulation of the 
synthesis, location, and activity of the CAF-I subunits will 
be required to address the possible role of these motifs. 

Role of Newly Synthesized Histones 
in CAF-I Activity 
The ~-amino groups of lysines near the N-termini of core 
h is tones undergo revers ib le acety lat ion ( rev iewed by 
Csordas, 1990; Turner, 1991). In the nucleus, acetylation 
of histones assembled into chromatin is correlated with 
DNasel hypersensitivity and transcriptional activation. 

In the cytoplasm, histone acetylation is found on newly 
synthesized molecules (Ruiz-Carillo et al:, 1975; Jackson 
et al., 1976). This modif ication is rapidly lost upon entry 
into the nuc leus and assemb ly  into chromat in  unless 
deacetylases are inhibited, by sodium butyrate. The rela- 
t ionship between the cytoplasmic acetylation and chroma- 
tin assembly has been most clearly shown in experiments 
using the unicellular protozoan Tetrahymena. This organ- 
ism contains two nuclei, a transcriptionally active macro- 
nucleus, and a transcriptionally inactive micronucleus. 
During mating, the micronuclei remain transcriptionally in- 
ert while undergoing mult iple rounds of DNA synthesis, 
al lowing the study of histone acetylation in the absence 
of transcription. Pulse-labeled histones from the micro- 
nuclei of mating cells showed that newly synthesized his- 
tones H3 and H4 were both acetylated (Allis et al., 1985). 
N-terminal sequence analysis showed that the H4 was 
specifically acetylated on Lys-4 and Lys-11 (correspond- 
ing to residues 5 and 12 of mammal ian H4; Chicoine et 
al., 1986). The same specif ic pattern of diacetylation has 
been observed in mammals and Drosophila (Sobel et al., 
1994, 1995), 

As mentioned above, CAF-I will only assemble histones 
H3 and H4 derived from cytosolic extracts. Newly synthe- 
sized histone H4 in such extracts is in a complex that 
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contains newly synthesized histone H3, among other pro- 
teins (Perry et al., 1993). Our data show that these com- 
plexes are bound by the ~60 and ~150 CAF-I subunits, 
which subsequently act to deposit the histones onto repli- 
cating DNA. 

Why would cells use acetylation to target newly synthe- 
sized histones for replication-linked chromatin assembly? 
One possibility is that acetylation plays a role in regulating 
transcription factor access to nascent chromatin. In this 
regard, transcription factor TFIIIA can bind reconstituted 
nucleosomes containing hyperacetylated or trypsinized 
core histones, but not nucleosomescontainingan unmodi- 
fied histone octamer (Lee et al., 1993), suggesting that 
acetylation of the histone tails regulates access to nucleo- 
somal DNA. Alternatively, acetylation may be used just 
as a marker and not because it changes the interaction 
of histones with DNA. Better characterization of factors 
that cooperate with CAF-I during DNA replication-linked 
chromatin assembly will allow for direct examination of 
this issue. 

Experimental Procedures 

Purification and Protein Sequencing of CAF-I 
from Human 293 Cells 
Nuclear extracts were prepared from 64 I of 293 cells, and Pl 1 phos- 
phocellulose chromatography was performed as described previously 
(Smith and Stillman, 1989). The 0.38-0.6 M P11 fraction was dialyzed 
overnight against chromatography buffer A (25 mM Tris-HCI [pH 7.51, 
1 mM EDTA, 10% glycerol, 0.05% NP-40) plus 0.15 M NaCI. All chro- 
matogragby buffers were freshly supplemented with 0.1 mM DTT and 
the following protease inhibitors: 1 mM PMSF, 1 mM sodium metabisul- 
f&e, 100 pglml bacitracin, 1 mM benzamidine, 1 pglml each of pep- 
statin, aprotinin, and leupeptin (all chromatography included these 
additions). Dialyzed proteins were passed through an -0.5 ml column 
of Sepharose-CL46 and then rocked for 1 hr at 4OC with -2 ml of 
MAb 24-protein A-Sepharose resin (cross-linked at approximately 5 
mg of antibody per milliliter of resin using dimethylpimelimidate, as 
described by Harlow and Lane, 1988). The resin was then collected 
into a column, washed with 40 ml of buffer A plus 0.1 M NaCl and 
then 25 ml of buffer A plus 0.4 M NaCI, and CAF-I was eluted with 
3.5 M MgCI,, 25 mM Tris-HCI (pH 7.5), 100 mM NaCI, 0.05% NP-40. 
The eluate was immediately loaded onto a 0.2 ml hydroxylapatite col- 
umn (Bio-Rad, HTP grade), which was then washed with solution B 
(10% glycerol, 0.05% NP-40) plus 10 mM potassium phosphate (pH 
7.5). The CAF-I complex was eluted with solution B plus 0.6 M potas- 
sium phosphate (pH 7.5). CAF-I was diluted to a conductivity equal 
to buffer A plus 0.1 M NaCI, loaded onto an -0.1 ml Q-Sepharose 
column, and eluted with buffer A plus 0.5 M NaCI. 

Human CAF-I (Q-Sepharose peak) was separated on a 10% SDS- 
polyacrylamide gel, stained with Coomassie blue G (Aldrich), and indi- 
vidual bands were excised. Proteins were digested in situ with lysylen- 
dopeptidase; the resulting peptides were separated by reverse phase 
chromatography and sequenced by Edman degradation as described 
previously (Bell et al., 1993). 

Cloning of ~150 
A HeLa cell cDNA library constructed in Xgtll was screened with a 
mixture of MAbs 1 and 48 (anti-pl50) and 53 and 96 (anti-p60) raised 
against CAF-I (Smith and Stillman, 1991b). Two nonoverlapping posi- 
tives were obtained; one reacted with MAb 1 (termed pTBl), the other 
with MAb 48 (termed pTB2). No p60-reactive clones were found. The 
pTB2 cDNA contained poly(A) tail sequences, so the pTB1 insert was 
used to screen a HeLa cell random-primed hgtl0 cDNA library (a gift 
of R. Tjian) to find missing portions of the cDNA. Four independent 
positives were obtained (pTB5,6,8, and 9), which together overlapped 
both original inserts. DNA from these inserts was sequenced on both 
strands with Sequenase II (United States Biochemical). A composite 

cDNA of 3.15 kb was constructed in pBluescript SK(+) (Stratagene) 
by fusing the 5’-end sequences of pTB9 to the 3’-end sequences of 
pTB2 at the unique BssHll restriction site, forming plasmid pPK8. The 
first ATG in the predicted message is at the beginning of a long open 
reading frame that would yield a protein of 105 kDa upon translation. 
Included in this protein are all the peptide sequences obtained during 
amino acid sequence analysisof purified pl50(Figure 1). Primerexten- 
sion analysis of human cell RNA and RACE-PCR techniques con- 
firmed that this cDNA includes sequences at or very close to the correct 
5’ end of the transcript (data not shown). 

Cloning of p60 
Degenerate 17 nt primers were designed based on the N- and C-ter- 
minal six amino acids of the longest peptide obtained (23 residues; 
see Figure 2A). RT-PCR reactions using these primers and human 
293 cell RNA produced a product of the expected 67 bp size. This 
product was cloned; several of the isolates contained internal se- 
quences encoding the same amino acids predicted from the peptide 
sequence data. The 87 bp fragment was labeled and used to probe 
a human cDNA library. Two positive clones containing hybrid cDNAs 
were isolated; the two correct halves of the gene were identified by 
the presence of sequenced peptides in the predicted translation prod- 
ucts on either side of an internal EcoRl site. The two halves were fused 
at the EcoRl site in a pBluescript vector to form plasmid pPK7. The 
resulting 2.1 kb cDNA encodes a protein of predicted M, of 81.5 kDa 
that contains all the sequenced peptides (Figure 2A). Upstream of the 
predicted initiator methionine, there are no other ATG codons in any 
reading frame. 

Other DNA Manipulations 
Constructs for the pl50- and p60-producing baculoviruses were made 
by cleaving pPK7 and pPK8 with Hindlll, treating them with Klenow 
and dNTPs for blunt-end formation, followed by cleavage with Eagl. 
The3.1 kbfragmentcontainingthep150cDNAandthe2.1 kbfragment 
containing the p60 cDNA were separately ligated into pVL1393 (Phar- 
mingen) and digested with Smal and Eagl to form pPKl1 and pPKl2, 
respectively. Baculoviruses were generated by cotransfection of Sf9 
cells with plasmids and BaculoGold linear viral DNA according to the 
instructions of the manufacturer (Pharmingen). 

The plSOAPEST, AKER, and AED internal deletions were made by 
the Kunkel method, using the dutung- Escherichia coli strain BW313 
transformed with pPK8 essentially as described previously (Sambrook 
et al., 1989). Candidate mutants were tested for the presence of a novel 
restriction endonuclease recognition site generated at the junction 
(BamHI for APEST and AKER; Sal1 for AED), and the correct nucleo- 
tide sequence at the deletion breakpoint was confirmed by DNA se- 
quencing. 

Oligonucleotides for generating internal deleti&s were as follows: 
APEST, 5”CCAGCCACAC CCCAAGGATC CACGCCCCTC CGCAG-3’; 
AKER, 5’-ACTAAGAAAT TCGTCAAAGG ATCCTGTGGG AAGT’IT- 
GCC-3’; AED, 5’-GAAGACGGCA CTCATCCGTC GACAGAAACT 
GAAGGCCAAG G-3’. Oligonucleotides for generating N-terminal dele- 
tions were as follows: A88, 5LAlTAATACGA CTCACTATAG GAAA- 
CAGACA CCATGGAAAC CAGTATTGGCCAG-3’; A204,5’-ATTAAT- 
ACGA CTCACTATAG GAAACAGACA CCATGGACAG TTGGAG- 
TGAAGC-3’. These oligonucleotides were used in conjunction with the 
Stratagene T3 primer in PCR reactions using pPK8 as a template to 
generate DNA templates for in vitro transcription/translation. 

In vitro translation of wild-type ~150 protein was performed using 
construct pPK38. This was made by insertion of the 3.1 kb Ncol- 
Xbal fragment of pPK8 into the pCITE-1 vector(Novagen). C-terminally 
truncated ~150 proteins were generated by digesting pPK38 with re- 
striction enzymes prior to in vitro transcription/translation as follows: 
CA195, Aval; CA363, Aflll; CA476, Pvull; CA564, BssHII; CA678, 
Fspl. 

In vitro translation of the p15OA296 protein was performed using 
construct pPK49. This was made by insertion of the 2 kb BamHI- 
EcoRl fragment of the pl50APEST plasmid into *BamHI-EcoRI- 
cleaved pCITE-Pa (Novagen). 

Construct pPK48 for overproduction of GST-pl5OC was made by 
insertion of the 1.3 kb Ncol (Klenow-treated)-Sac1 fragment of pPK8 
into Ncol (Klenow-treated), Sacl-digested pGEX-KG (Guan and Dixon, 
1991). 
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Construct pPK53 for overproduction of GST-p150M was made by 
insertion of the 0.9 kb Ncol fragment of pPK49 into the Ncol site of 
pGEX-KG. Unfused GST protein was overproduced using the pGEX- 
KG plasmid. 

Recombinant Protein Purification 
Approximately 2 x 107 logarithmically growing Sf9 insect cells were 
plated on each of ten 150 mm 2 tissue culture flasks. Baculoviruses 
were added at a multiplicity of infection of ten to each flask, and infec- 
tion was allowed to proceed for 36 hr at 27°C. Cytoplasmic and nuclear 
extracts were then prepared essentially as described previously (Smith 

- and Stillman, 1989). 
The ammonium sulfate pellet from the p150-containing nuclear ex- 

tract was resuspended in buffer A plus 0M NaCI to a final conductivity 
equal that of buffer A plus 0.15 M NaCI. The extract was then passed 
through an -0 .5  ml column of Sepharose-CL4B, rocked for 1 hr at 
4°C with ~ 2 ml of MAb 1-protein G-Sepharose (cross-linked as for 
the MAb 24 resin). The resin was then collected into a column and 
washed with 40 ml of buffer A plus 0.1 M NaCI and then with 25 ml 
of buffer A plus 0.3 M NaCI. The bulk of the p150 subunit was eluted 
with buffer A plus 4 M LiCI. The antibody eluate fraction was immedi- 
ately loaded onto a 1 ml hydroxylapatite column. The column was 
washed with 10 ml of buffer A (without EDTA) plus 0~2 M NaCI and 
then with 10 ml of solution B plus 0.25 M potassium phosphate (pH 
7.5). p 150 was eluted with solution B plus 0.8 M potassium phosphate. 
EGTA was added to the p150 fraction to a 0.1 mM final concentration. 
The p150 protein was diluted with buffer A plus 0 M NaCI to a conductiv- 
ity equal that of buffer A plus 0.2 M NaCI and loaded onto a small 
(0.1-0.2 ml) Q-Sepharose column. The column was washed with buffer 
A plus 0.2 M NaCI; p150 was eluted with buffer A plus 0.5 M NaCI. 

Immunoaffinity chromatography of nuclear extracts prepared from 
Sf9 cells infected with the p60 baculovirus was performed as described 
for the human CAF-I complex. Then, p60 was loaded onto an - 1 ml 
hydroxylapatite column. The column was washed with 10 ml of buffer 
A.(without EDTA) plus 0.2 M NaCI and then with 10 m l of solution B plus 
10 mM potassium phosphate (pH 7.5). p60 was eluted with solution B 
plus 0.25 M potassium phosphate (pH 7.5). EGTA was added tothe 
p60 fraction to a 0.1 mM final concentration. The p60 protein was 
diluted with buffer A plus 0 M NaCI to a conductivity equal that of 
bufferA plus 0.1 M NaCI and loaded onto a small Q-Sepharose column. 
The column was washed with buffer A plus 50 mM NaCI; p60 was 
eluted with buffer A plus 0.3 M NaCI. p60 was dialyzed against buffer 
A plus 25 mM NaCI plus 20% sucrose, frozen in liquid nitrogen in 
small aliquots, and stored at -70°C. 

DNA Replication Reactions and Product Analysis 
SV40 DNA replication reactions using human 293 cell cytosolic ex- 
tracts, the pSV011 plasmid, and SV40 T antigen overproduced in in- 
sect cells were performed and analyzed as described previously 
(Stillman, 1986; Smith and Stillman, 1989). 

For micrococcal nuclease digestion, 300 id replication reactions 
were performed for 1 hr at 37°C. These reactions were supplemented 
with 480 ng histonas H2A/H2B purified from 293 cell chromatin (Simon 
and Felsenfeld, 1979), because the human cytosol extract has substoi- 
chiometric amounts of these compared with histones H3 and H4 (data 
not shown; see also Smith and Stillman, 1989, 1991a). At the end of 
the 1 hr reaction, CaCI~ was added to a final concentration of 3 mM 
for reactions performed with undepieted cytosolic extracts; 10 mM 
CaCI2 was used with p60-depleted extracts. Reactions were then di- 
vided into six aliquots of 50 I*1 each and digested with micrococcal 
nuclease at 20°C and analyzed by gel electrophoresis as described 
previously (Smith and Stillman, 1989). 

Analysis of In Vitro Translated Proteins 
In vitro transcription/translation reactions were performed using the 
TNT T7 coupled reticulocyte lysate system (Promega) according to 
the instructions of the manufacturer. Amounts of full-length material 
for each construct were normalized per volume of lysate by analysis 
of SDS-polyacrylamide gels on a Fuji phosphoimager. Immunoprecipi- 
tations were performed by mixing indicated amounts of in vitro trans- 
lated proteins or recombinant p60 with 15 p.I of a 15% slurry of MAb 
24 (Smith and Stillman, 1991b) cross-linked to protein A-Sepharose 
and 15 Id of a 50% slurry of CL4B (Pharmacia) as carrier resin. The 

reactions were mixed by inversion at 4°C for 1 hr. The beads were 
collected by brief pelleting in a microfuge, washed twice with 1 ml of 
50 mM Tris-HCI (pH 8.0), 1o/0 NP-40, 0.5 M NaCI, o n c e  with 1 ml of 
50 mM Tris-HCI (pH 8.0), 1% NP-40, 0.15 M NaCI, and rosuspended 
in SDS-PAGE loading buffer. Proteins were separated on 10%o SDS- 
polyacrylamide gels and autoradiographed. 

GST Protein Production and Precipitations 
GST and GST fusion proteins were overproduced in E. coli strain 
BL21(DE3) carrying pLysS. Cultures of 500 ml were grown at 30°C 
to A~o 0.6-0.8. IPTG was added to a final concentration of 0.5 raM, 
and growth was continued for 4 hr. Cells were harvested and frozen 
in liquid nitrogen. For lysis, batches of induced cells were resuspended 
in 25 ml of 20 mM Tris-HCI (pH 8.0), 100 mM NaCI, 1 mM EDTA, 
0.5% NP-40 at 4°C. All buffers also included 1 mM DTT and PMSF. 
The lysed cells were sonicated briefly. Debris was pegeted at 10,000 
rpm in an SS34 rotor, and the supernatant was mixed with 0.6 ml of 
glutathione-CL4B resin (Pharmacia) at 4°C for 1 hr. The resin was 
washed with 10 column volumes of lysis buffer, 10 column volumes 
of phosphate-buffered saline, and then 2 column volumes of 50 mM 
Tris-HCI (pH 8.7), 1 mM EDTA, 10O/o glycerol, 0.05% NP-40, 0.1 M 
NaCI. GST proteins were then eluted with the latter buffer with 10 mM 
glutathione freshly added. Pooled protein peaks were dialyzed against 
chromatography buffer A plus 0.1 M NaCI to remove glutathione, fro- 
zen, and stored at -70°C. 

For each precipitation, 5 I~1 of a 75% slurry of glutathione-CL4B 
resin was mixed with 15 p~l of CL4B as carrier resin (Pharmacia). Resins 
were washed three times with 50 mM Tris-HCI (pH 8.0), 10/o NP-40, 
150 mM NaCI and resuspended to a volume of 30 p.I per reaction in 
the same buffer. Washed resins were distributed to individual tubes, 
rocked at 4°C for 1 hr with proteins, and washed twice with 1 ml of 
50 mM Tris-HCI (pH 8.0), 1% NP-40, 500 mM NaCI and once with 1 
ml of 50 mM Tris-HCI (pH 8.0), 1% NP-40, 150 mM NaCI. Bound 
proteins were then resuspended in SDS-PAGE sample buffer and 
analyzed on 10o/0 SDS-polyacrylamide gels. 

293 Cell Labeling and Immunopreclpltatlons 
293 cells were pulse-labeled with 14C-lysine and 14C-arginine for 1 hr 
prior to harvest, and $100 cytosol extracts were prepared as described 
previously (Smith and Stillman, 1991a) in the presence of 10 mM so- 
dium butyrate. For immunoprecipitations using mouse MAbs, 40-50 
p.I of a 15% slurry of the antibody covalsntly coupled to protein 
A-Sepharose (Pharmacia) was washed three times with l"ml of wash 
buffer (25 mM Tris-HCI [pH 8.0], 1 mM EDTA, 1% NP-40, 10 mM 
sodium butyrate) plus 50 mM NaCI (Figure 7A) or 150 mM NaCI (Figure 
7C). Resins were rasuspended to 100 pJ per precipitation in the same 
buffer before addition of extract. For immqnoprecipitations using rabbit 
sera, 5-15 p.I of a 50% slurry of protein A-Sepharose was mixed with 
2.5 td of rabbit sera at 4°C for 30 rain. Unbound proteins were removed 
by two washes with wash buffer plus 50 mM NaCI (Figure 7A) or 150 
mM NaCI (Figure 7B), and resins were then treated as for the mouse 
antibodies. Indicated amounts of extracts were mixed with the pre- 
pared resins for 1 hr at 4°C. Beads were then washed five times with 
1 ml of the wash buffer plus 50 mM NaCI (Figure 7A) or four times 
with wash buffer plus 150 mM NaCI, followed by one time with wash 
buffer plus 50 mM NaCI (Figure 7B) or four times with wash buffer 
plus 500 mM NaCI, followed by one time with wash buffer plus 50 mM 
NaCI (Figure 7C) and were then resuspended in protein gel sample 
buffer. 

Immunoblotting was performed as previously described (Harlow and 
Lane, 1988). Proteins were detected using ECL reagents (Amersham) 
according to the instructions of the manufacturer. 
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