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a b s t r a c t

In our previous works, we proposed a reproducing kernel method for solving singular and
nonsingular boundary value problems of integer order based on the reproducing kernel
theory. In this letter, we shall expand the application of reproducing kernel theory to
fractional differential equations and present an algorithm for solving nonlocal fractional
boundary value problems. The results from numerical examples show that the present
method is simple and effective.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this letter, we consider the following nonlocal fractional boundary value problem:
Dαu + a(x)u′(x)+ b(x)u(x) = f (x), 0 ≤ x ≤ 1,

u(0) = 0, u(1) =

m
i=1

αiu(ξi).
(1.1)

where 1 < α ≤ 2,Dα denotes the Caputo fractional derivative of order α,m is a positive integer, 0 < ξi < 1,
a(x), b(x) ∈ C[0, 1] and f (x) is given such that (1.1) satisfies the existence and uniqueness of the solutions. Here we only
consider homogeneous boundary conditions u(0) = 0, u(1) =

m
i=1 αiu(ξi) since nonhomogeneous boundary conditions

can be reduced to the homogeneous boundary conditions easily.
Fractional differential equations arise in various fields of physics and engineering such as biophysics, blood flow

phenomena, aerodynamics, electrodynamics of complex media, electrical circuits, electron-analytical chemistry, biology,
control theory, fitting of experimental data, etc. In recent years, fractional differential equations, as an important research
branch, have attracted much attention [1–8]. However, most of the papers and books on fractional calculus are devoted to
the solvability and numerical solutions of initial value problems for fractional order differential equations. In contrast to
the case for initial value problems, not much attention has been paid to the nonlocal fractional boundary value problems.
Some recent results on the existence and uniqueness of nonlocal fractional boundary value problems can be found in [9–13].
However, discussion on numerical solutions of nonlocal fractional boundary value problems is rare.

The goal of this letter is to give an effective method for solving nonlocal fractional boundary value problems based on
the reproducing kernel theory.
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The rest of the letter is organized as follows. In the next section, somedefinitions and lemmas for fractional derivatives are
gathered. An algorithm for solving nonlocal fractional boundary value problems is introduced in Section 3. Some numerical
examples are presented in Section 4. Section 5 ends this paper with a brief conclusion.

2. Preliminaries

In this section, we provide some basic definitions and properties of the fractional calculus theory which are useful in the
following discussion. These definitions and properties can be found in [1,3,5,11–13], and references therein.

Definition 2.1. The Riemann–Liouville fractional order integral of order α of a function f (t) is defined as

Iα f (t) =
1

Γ (α)

 t

0
(t − τ)α−1f (τ )dτ , α > 0, t > 0

I0f (t) = f (t).
(2.1)

Properties of the operator Iα f can be found in [1]. We mention only the following:

Lemma 2.1. For α, β ≥ 0 and γ ≥ −1, we have

Iα Iβ f = Iα+β f ,

Iαtγ =
Γ (γ + 1)

Γ (γ + 1 + α)
tα+γ .

The Riemann–Liouville derivative has certain disadvantageswhen trying tomodel real-world phenomenawith fractional
differential equations. Therefore, we shall introduce a modified fractional differential operator proposed by Caputo.

Definition 2.2. The α-order Caputo derivative of f (t) is defined as

Dα f (t) =
1

Γ (m − α)

 t

0
(t − τ)m−α−1f (m)(τ )dτ , α > 0, t > 0 (2.2)

wherem − 1 < α < m,m ∈ N .

Also, we introduce one of its basic properties.

Lemma 2.2. If m − 1 < α < m,m ∈ N, α > 0, t > 0, γ > 0, then

Dα Iα f (t) = f (t),

IαDα f (t) = f (t)−

m−1
k=0

f (k)(0+)
tk

k!
, t > 0,

Dαtγ =
Γ (γ + 1)

Γ (γ + 1 − α)
tγ−α.

3. The algorithm

Applying the operator Iα to both sides of (1.1) yields

u(x)− u′(0)x + Iα[a(x)u′(x)+ b(x)u(x)] = F(x), (3.1)

where F(x) = Iα f (x).
Obviously, (1.1) and (3.1) are equivalent. Therefore, it suffices for us to solve (3.1). The reproducing kernel theory has

important applications in numerical analysis, differential equations, probability and statistics, and so on [14–21]. We shall
solve (3.1) in the reproducing kernel space.

To solve (3.1) using the reproducing kernel method presented in [14,16], it is necessary to construct a reproducing kernel
spaceW 3

2 [0, 1] in which every function satisfies the nonlocal boundary conditions of (1.1).
First, we construct the following reproducing kernel space.
The reproducing kernel Hilbert space W 3

[0, 1] is defined as W 3
[0, 1] = {u(x) | u′′(x) is an absolutely continuous real

valued function, u′′′(x) ∈ L2[0, 1], u(0) = 0}. The inner product and norm inW 3
[0, 1] are given, respectively, by

(u(y), v(y))W3
2

= u(0)v(0)+ u′(0)v′(0)+ u(1)v(1)+

 1

0
u′′′v′′′dy
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and

∥u∥W3 =

(u, u)W3 , u, v ∈ W 3

[0, 1].

By [14,16], it is easy to obtain the reproducing kernel

k0(x, y) =


h1(x, y), y ≤ x,
h1(y, x), y > x, (3.2)

where h1(x, y) =
1

120y(−(x
2
− 1)y4 + 5(x − 1)xy3 − x(x4 − 5x3 + 10x2 − 246x + 120)y − 120(x − 1)x).

Next, we construct a reproducing kernel space W 3
2 [0, 1] in which every function satisfies u(0) = 0 and u(1) =m

i=1 αiu(ξi).
W 3

2 [0, 1] is defined asW 3
2 [0, 1] = {u(x) | u(x) ∈ W 3

[0, 1], u(1) =
m

i=1 αiu(ξi)}.
Clearly,W 3

2 [0, 1] is a closed subspace ofW 3
[0, 1] and therefore it is also a reproducing kernel space.

Put L1u(x) = u(1)−
m

i=1 αiu(ξi). In the following theorem, the reproducing kernel ofW 3
2 [0, 1] is introduced.

Theorem 3.1. If L1xL1yk0(x, y) ≠ 0, then the reproducing kernel k(x, y) of W 3
2 [0, 1] is given by

k(x, y) = k0(x, y)−
L1xk0(x, y)L1yk0(x, y)

L1xL1yk0(x, y)
, (3.3)

where the subscript x on the operator L1 indicates that the operator L1 applies to the function of x.

Proof. It is easy to see that k(x, 0) = 0 and k(x, 1) =
m

i=1 αik(x, ξi), and therefore k(x, y) ∈ W 3
2 [0, 1].

For every u(y) ∈ W 3
2 [0, 1], obviously, L1yu(y) = 0 and

(u(y), k(x, y))W3 = (u(y), k0(x, y))W3 −
L1yk0(x, y)

L1xL1yk0(x, y)
(u(y), L1xk0(x, y))W3

= u(x)−
L1yk0(x, y)

L1xL1yk0(x, y)
L1x(u(y), k0(x, y))W3

= u(x)−
L1yk0(x, y)

L1xL1yk0(x, y)
L1xu(x) = u(x).

That is, k(x, y) has the ‘‘reproducing property’’. Thus, k(x, y) is the reproducing kernel of W 3
2 [0, 1] and the proof is

complete. �

For (3.1), letting Lu(t) = u(t) − u′(0)t + Iα[a(t)u(t)], it is clear that L : W 3
2 [0, 1] → W 1

2 [0, 1] is a bounded linear
operator (for the definition of W 1

2 [0, 1] and its reproducing kernel, refer to [14]). Put ϕi(x) = k(xi, x) and ψi(x) = L∗ϕi(x)
where k(xi, x) is the reproducing kernel of W 1

2 [0, 1] and L∗ is the adjoint operator of L. The orthonormal system {ψ i(x)}
∞

i=1
ofW 3

2 [0, 1] can be derived from the Gram–Schmidt orthogonalization process applied to {ψi(x)}∞i=1:

ψ i(x) =

i
k=1

βikψk(x), (βii > 0, i = 1, 2, . . .). (3.4)

Theorem 3.2. For (3.1), if {xi}∞i=1 is dense on [0, 1], then {ψi(x)}∞i=1 is the complete system of W 3
2 [0, 1] and ψi(x) =

Ltk(x, t)|t=xi .

Proof. Note that

ψi(x) = (L∗ϕi)(x) = ((L∗ϕi)(t), k(x, t))
= (ϕi(t), Ltk(x, t)) = Ltk(x, t)|t=xi .

Clearly, ψi(x) ∈ W 3
2 [0, 1].

For each fixed u(x) ∈ W 3
2 [0, 1], let (u(x), ψi(x)) = 0, (i = 1, 2, . . .), which means that

(u(x), (L∗ϕi)(x)) = (Lu(·), ϕi(·)) = (Lu)(xi) = 0. (3.5)

Note that {xi}∞i=1 is dense on [0, 1]. Hence, (Lu)(x) = 0. It follows that u ≡ 0 from the existence of L−1. So the proof of the
Theorem 3.2 is complete. �
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Theorem 3.3. If {xi}∞i=1 is dense on [0, 1] and the solution of (3.1) is unique on W 3
2 [0, 1], then the solution of (3.1) is

u(x) =

∞
j=1

Ajψ j(x), (3.6)

where Aj =
j

l=1 βjlF(xl).

Proof. Applying Theorem 3.2, it is easy to see that {ψ i(x)}
∞

i=1 is the complete orthonormal basis ofW 3
2 [0, 1].

Note that (w(x), ϕi(x)) = w(xi) for eachw(x) ∈ W 1
2 [0, 1]; hence we have

u(x) =

∞
i=1

(u(x), ψ i(x))ψ i(x)

=

∞
i=1

i
k=1

βik(u(x), L∗ϕk(x))ψ i(x)

=

∞
i=1

i
k=1

βik(Lu(x), ϕk(x))ψ i(x)

=

∞
i=1

i
k=1

βik(F(x), ϕk(x))ψ i(x)

=

∞
i=1

i
k=1

βikF(xk)ψ i(x). (3.7)

and the proof of the theorem is complete. �

The approximate solution un(x) can be obtained by taking finitely many terms in the series representation of u(x) and

un(x) =

n
j=1

Ajψ j(x). (3.8)

Remark. Since W 3
2 [0, 1] is a Hilbert space, it is clear that


∞

i=1(
i

k=1 βikf (xk))2 < ∞. Therefore, the sequence un is
convergent in norm.

Lemma 3.1. If u(x) ∈ W 3
2 [0, 1], then there exists a constant c such that |u(x)| ≤ c∥u(x)∥W3

2
, |u′(x)| ≤ c∥u(x)∥W3

2
.

From Lemma 3.1, by the convergence of un(x) in the sense of norm, it is easy to obtain the following theorem.

Theorem 3.4. The approximate solution un(x) and its derivatives u′
n(x) are both uniformly convergent.

4. Numerical examples

In this section, two numerical examples are provided to show the accuracy of the present method. All computations are
performed byMathematica 5.1. Results obtained by themethod are compared with the exact solution for each example and
they are found to be in good agreement with each other.

Example 4.1. Consider the following nonlocal fractional boundary value problem:
D1.3u(x)+ cos(x)u′(x)+ 2u(x) = f (x), 0 ≤ x ≤ 1,

u(0) = 0, u(1) = u(1/8)+ 2u(1/2)+
31
49

u(7/8)

where f (x) = 2x2 + 2x cos(x)+
Γ (3)
Γ (1.7)x

0.7. The exact solution is given by u(x) = x2.
Using the present method, taking xi =

i
n , i = 1, 2, . . . , n, n = 10, the numerical results are as given in Fig. 1.

Example 4.2. Consider the following nonlocal fractional boundary value problem:
D1.6u(x)+ sinh(x)u(x) = f (x), 0 ≤ x ≤ 1,

u(0) = 0, u(1) = u(1/10)+ u(1/2)+
9397
8704

u(9/10),

where f (x) = sinh(x)(x2 + x3)+
Γ (3)
Γ (1.4)x

0.4
+

Γ (4)
Γ (2.4)x

1.4. It is easy to verify that the exact solution is u(x) = x2 + x3.
Using the present method, taking xi =

i
n , i = 1, 2, . . . , n, n = 20, the numerical results are as shown in Fig. 2.
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Fig. 1. Absolute errors |u10(x)− u(x)|, |u′

10(x)− u′(x)| for Example 4.1.

Fig. 2. Absolute errors |u20(x)− u(x)|, |u′

20(x)− u′(x)| for Example 4.2.

5. Conclusion

In this letter, we introduce an algorithm for solving nonlocal fractional boundary value problems. Themajor advantage of
the proposed method resides in its simplicity in dealing with essential boundary conditions. Also, the approximate solution
obtained by the present method and its derivative are both uniformly convergent. The results from numerical examples
show that the present method is an accurate and reliable analytical technique for treating nonlocal fractional boundary
value problems.
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