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A new direction in the theory of general linear boundary value problems 
is explored. The starting point is an explicit Volterra factorization of the 
Green’s matrix (and related kernels) associated with the problem. This result 
leads to (1) imbedding of the boundary value problems, (2) initial value 
algorithms for their solution, and (3) comparison theorems relating two different 
boundary value problems with a common boundary condition. Extensions and 
connections with earlier work in this area are presented. 

1. INTRODUCTION 

In this paper we explore a new direction in the theory of general linear 
boundary value problems. Our method of approach is through the formalism 
of factorization and imbedding. The starting point is an explicit Volterra 
factorization of the Green’s matrix (and related kernels) associated with the 
problem. This leads to a natural imbedding of the boundary value problem 
into a family of such problems. The imbedding in turn generates initial 
value algorithms for the solution to the original boundary value problem. 
In addition, the factorization and imbedding formalism yields comparison 
theorems relating the solutions of two different boundary value problems 
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with a common boundary condition. The results presented in this paper 
extend our earlier work in this area found in [2,4,7]. 

We are concerned with general linear boundary value problems of the 
following type: 

y’ = (A + Cly + P, BY = t, (1.1) 

where y and p are regulated mappings of an interval [a, b] into a Banach 
space E; A and C are regulated mappings of [a, b] into the space of bounded 
linear operators on E; B is a bounded linear operator from the space of 
regulated maps into E and f is an element of E. 

To give the spirit of our theory, we describe briefly, but in some detail, 
the nature of one of our basic results. The factorization theory leads us 
naturally to an imbedding of the problem (1.1) into a one-parameter family 
of such problems. These can be described as follows: Let @,.,(t, s) be the 
fundamental matrix defined by 

at (4 4 = 44 @At, 4, qs, s) = I, 

where I is the identity operator on E. For T E (a, b], define the one-parameter 
family of boundary operators BA(7) by 

BA(T)Y = B ((1 - 4. - ~)Y(-N + B (4. - 4@~(*, ~>lr(d, 

where h is the Heaviside step function 

h(t) = 1, t >,o 

= 0, t < 0. 

The imbedded family of problems are now given by 

Y’ = (A + ‘7~ + P, B.&)y = 6. (1.2a) 

It is shown that on the interval (a, T) the solution of (1.2a) coincides with 
the solution of the problem, 

Y’=(A+CJY+P,, BY = 6, (1.2b) 

where CT(t) = C(t), p7(t) = p(t) for a < t < T, and C,(t) = p7(t) = 0 for 
7 < t < b. When 7 = a, (0.2b) is just the problem: 

Y’ = AY, BY = 5, (1.3) 

which is assumed solvable. On the other hand, for 7 = b, (1.2a) and (1.2b) 
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are the same as (1.1). The imbedding (1.2b), thus, allows us to pass 
“smoothly” from a solvable problem (1.3) to the desired problem (1 .l). 
A result which is characteristic of our theory can now be stated. Equations 
(1.2a,b) have a unique solution for every T E [a, b] if and only if the following 
Riccati initial value problem has a solution on [a, b]: 

R’ = (A + C)R - RDCR, R(a) = Y, for some YEL(E), (1.4) 

where Yf is the value at a of the solution to (1.3) and where 

D(T) = B{h(. - 7) @J., T)}. 

In this case, the solution r(t, T) to (1.2a) is given by 

y(t, 7) = R(t) u(t, 7) f + R(t) w(t, 7) + o(t), 

where U, w, v satisfy the initial value equations 

au - = -UD(T) C(T) R(T), 
aT 

U(t, t) = I, (1.5a) 

aw 
- = - u(t, 7) D(T)&+) v(T) + J’(T)), 

aT 
w(t, t) = 0, (ISb) 

; = (A + C)e, 3-p - RD(Cw +P), w(u) = 0. (1.5c) 

The algorithm implied by this result is as follows: To determine the 
solution of (1. I), r(ta , b), f or a fixed t = t, and given b, integrate (1.4) and 
(1.5~) up to the point t ,, ; then adjoin (1.5ab) and integrate the entire system 
(1.4), (1.5) to the end point b. 

The one-pass nature of this algorithm makes it suitable for “real-time” 
problems as found in the theory of optimal filtering and control [9]. 

In the special case 

A = 0, Y = (Z), By = ($) 

Eqs. (1.4) and (1.5) give the formalism of “invariant imbedding” [7]. Our 
results generalize this setting in various directions. Apart from the increased 
generality of the boundary conditions in (1.6), the flexibility of having non- 
zero A gives promise of circumventing the “critical-length” problem (cf. [lo]). 
This critical-length problem is analogous to a similar situation arising in the 
solution of linear algebraic equations of the form 

(A + C)X =f, (1.7) 
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where A is nonsingular. The method of factorization may fail for (1.7), 
but be perfectly satisfactory for the equivalent problem 

(I + A-‘C)X = A-lf. 

An outline of the paper now follows. 
In Section 2, we describe a general setting for linear boundary value 

problems of the type (1 .l). We choose as our space of mappings the regulated 
functions as defined by Dieudonne [l]. This choice was made, first, because 
of the simplicity of defining definite and indefinite integrals of such functions 
with values in a Banach space, and, secondly, because for certain boundary 
operators B the coefficients of the generated initial value problems (e.g. 
(1.4) and (1.5)) will h ave discontinuities even when A and C are continuous. 
In fact, the differential equations appearing in this paper are only a symbolic 
representation for their integral equation counterparts. No more is demanded 
of the derivatives. 

In Section 3, the Green’s matrix GA,B is defined for the problem 

r’==Ay+p, BY =I. 

The standard properties of GAsB are then derived. 
Section 4, contains the main factorization theorem. 

THEOREM. Let K be the integral operator on [a, 61 with kernel GA,e(t, s)C(s). 
Then 

(I - K) = (I - Z’) (I - z-), 

where .Z+, Z- are upper and lower Volterra integral operators, zy and only if the 
Riccuti equation (1.4) has a solution on [a, 61. 

Expressions for the Volterra factors and their resolvents, are obtained 
explicitly in terms of the solution of (1.4). 

A comparison theorem for linear boundary value problems is given in 
Section 5. It relates the solvability of (1.1) when C = 0 to the case of general 
C. In addition another equivalent inital value algorithm is given for the 
solution of (1.1). This algorithm is of the two-pass variety but is of lower 
dimension than (1.5). At the end of this section a surprising property of 
Green’s matrices is observed. 

In Section 6 the connection between factorization and imbedding is made 
explicit. The Gohberg-Krein [8] theory of factorization shows that the 
Volterra factorization obtained in Section 4 is equivalent to the unique 
solvability of the family of problems (1.2b). 

We then show that the solvability of (1.2b) is equivalent to the solvability of 
(1.2a) and derive the corresponding initial value algorithm (1.4) and (1.5). 
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Section 7 makes contact with work done in [2]. Here we focus our attention 
on factorization of the boundary value operators themselves. This leads to 
an alternate interpretation and derivation of the results given in Section 6. 

Our final Section 8, considers the special case of the theory, mentioned 
earlier, in which the formalism of invariant imbedding applies. The funde- 
mental kernel, introduced in [4], is shown to be a component of the Green’s 
matrix GA,B. In addition, the Volterra factors related to this fundamental 
kernel are shown to have the same relationship to the Volterra factors of 
GA.&. 

2. DIFFERENTIAL EQUATIONS IN THE SPACE OF REGULATED MAPS 

Following Dieudonne [l], we say a mapping f from an interval [u, b] of 
reals into a Banach space E is regulated if f has one-sided limits at every 
point of [a, b]. Let s([a, b], E) be the vector space of all such maps. Endowed 
with the norm l/f// = SUP~+~] /lf(t)il, S([u, b], E) is a Banach space. The 
interval [u, b] will be fixed throughout this paper unless otherwise stated, 
and we abbreviate s([u, b], E) to S(E). The basic properties of regulated 
mappings concerning their definite and indefinite integrals, as derived in [I], 
will be assumed. 

If E, F are two Banach spaces let L(E, F) denote, as usual, the Banach 
space of all bounded linear mappings of E into F. We write L(E) for L(E, E). 

Let p E S(E), A E S(L(E)), then an element y E S(E) is said to be a solution 
of the equation 

if 

Y’ = AY + P, (2.1) 

We note that this definition implies that a solution to (2.1) is automatically 
continuous. 

Let S,(E) be the linear space of all elements y E S(E) which satisfy the 
equation 

I 

y’ = Ay. (2.3) 

An element B sL(S(E), E) is said to be nonsingular for A if B 1 S,(E), the 
restriction of B to S,(E), is a bijection. It is an elementary exercise (cf. 
[l, 10.5; 21) t o s h ow that S,(E) is a closed subspace of S(E). Hence, if B 
is nonsingular for A then F, , the inverse of B ) S,(E), is an element of 
wz SAW)* 
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Of special importance will be the point evaluation map P(T) E L(S(E), E) 
defined by P(T)% = X(T), x E S(E), 7 E [a, b]. 

The global existence and uniqueness theorem for solutions of Eq. (2.3) 
satisfying given initial conditions shows that BO(T) is nonsingular for every 
A E S@(E)), see [l, 10.61. Let FAo(T) denote the inverse of e(T)\ S,(E). 
Since P(T) S,(E) iS continuous in 7, so is PA’(T). 

An element B EL(S(E), E) will be called a boundary operator. A typical 
example of such an operator is given by 

where 

B = f h$‘(Ti) + 1‘” de x(e) B’(e), (2.4) 
i=l a 

and 

We state and prove here certain elementary results concerning the proper- 
ties of Bo, FAO, and B which will be needed in the following sections. 

PROPOSITION 2.1. (a) The resttictkm of B” to S,(E) sutisjes 

P(t) = BO(T) + s” A(B) Be(B) de. 
7 

(2.5) 

(b) Let Fao(t) = (BO(t)j S,(E))-l, then 

~~o(t) = FAo(7) - JtFAO(e) A(e) a. 
7 (2.6) 

(c) If boundary operator B is given by the representation (2.4) and if 
D(s) = B {h(. - s) aA(., s)}, where 

QA(t, s) = BO(t) FAo(s) 

then D is a regulated mapping from [a, b] into L(E), i.e., D E S(L(E)). 

Proof. (a) If u E S,(E), then by definition 

u(t) = U(T) + St A(e) ~(6) de, 7, t E [a, b]. 
I 
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BO(t)u = BO(T)U + (I*” A(B) Be(B) de) 24, 

so that (2.5) holds. 

(b) This is proved in more generality in Proposition 7.1 b. 

(c) Let D”(s, T) = B0(7) {h(* - s) QA(., s)}. 

Then D”(s, r) = h(7 - s) pba(r, s) E S&(E)) and 

D = f A$"(., TJ + j-" &h(B)DO(., 0). 
i-l a 

Since S(L(E)) is closed under uniform limits the absolute convergence of the 
sum and integral gives the desired results. Q.E.D. 

3. GREEN'S MATRIX 

We associate with the pair (A, B), where A E S&E)), and B EL(S(E), E) 
is nonsingular for A, a kernel GA,a(t, s) defined by the following relationship: 

Y' = AY + P, BY=& 5‘g-T (3.1) 

if and only if 

r(t) = s” GA.& 4 P(S) ds + B”W’~k, t E [a, bl, (34 a 

where FA = {B / S,(E)}-I. 
In analogy with the classical case, we call GA,B the Green’s matrix for the 

pair (A, B). (A similar definition if given in [3].) 
The Green’s matrix GA,B is constructed as follows: Let aA(t, s) be the 

fundamental matrix for A, i.e., the solution of the system 

a@A -g-- (*, 4 = A@,,(*, 4, @A(& s) = I 

or equivalent by 

ajA(t, s) = I + J’ A(e) oA(e, s) de. 
, 

We note that 

QiA(t, s) = P(t)F,O(s). 
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The general solution to (3.1) can be written as 

r(t) = 1” @A(4 4 p(s) ds + @A@, 4 Y(4. 
a 

Successively applying B and FA to (3.3) yields (3.2) with 
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(3.3) 

G,,,(t, s) = h(t - s) @.,,(t, s) - B”(t)F.JV(. - $)@A(-, S>h (3.4) 

where h(t) is the Heaviside step function, 

h(t)= 1,t>,O 

= 0, t < 0, 

It is clear that GA,s is a regulated function of t for each s. To insure that 
is regulated in s for each t we must demand that the mapping D: 

2 6 + L(E), defined by 

s -+ D(s) = B{h(. - s) @A(., s)}, 

is regulated; i.e., D E S&(E)). 

Henceforth it will be assumed that D is regulated. Proposition (2.1~) shows 
that this requirement is satisfied by all “reasonable” boundary operators. 

The above construction shows that a solution to (3.1) is also a solution to 
(3.2). Conversely, if y satisfies (3.2) and GA,e is given by (3.4) then y satisfies 
(3.1). 

G has the usual continuity and differentiability properties associated 
withAaBGreen’s matrix (cf. [3]). Th e next proposition records these properties 
in their integrated form. 

PROPOSITION 3.1. The Green’s matrix 

GA,&, T) = h(t - T) QiA(t, T) - B”(t)F,B{h(* - 7) @A(*, 4 

has the following properties: 

-A.B(-, T> = 0, fUY d 7 E [U, b], (3.5a) 

Gtdt> T) = GAB@, 7) - j-” A(e) GA,B@, T) de 
t 

- h(B - T) @A@ ” Q-3 7) + h(t - T) @&, T), 

(3.5h) 

where t v 7 = max(t, T). 

505b4/3-9 
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GA,&, T) = B”(t)F,B([l - A(* +]I> 

+ [h(t - T) - 1-y 

(3.5c) 

Proof. (a) Note first that 

Ga,B(-, T) = h(. - T) QA(*, T) -F,B{h(. - T) QA(., T)>. 

Thus,BG,,,(., T) = B{h(. - T) QA(., T)> - B{h(* - T) DA(., T)] = 0, since 
BF, = I E L(E). 

(b) 

s ’ A(e) GA.& 7) &I 
t 

= 
s ’ q){h(o - T) q6, T) - B”(6)FAqT)) d6 

t 

= h@ - T) 6, A(8) @A(& T) dT - (B’(j$ - BO(t)) FA D(T) 

= h@ - T){@A@> T> - @PA@ ” 7, T)> - fp(/? - BoWA 

= GA,&? T) - GA.&, 7) - h(/? - T> @A@ ” 7, 7) + h(t - 7) @A@, + 

(4 

s ’ GA.&, 4 4@ de 
a 

zzz ST I+ - 0) DA@, 8) A(B) d0 - P(t) F,B 1’ A(. -0) QA(., 0) A(0) d0 

= &(t, U) - @~(t, t /\ T)} 

a 

- B”(t)F,J([@,(*, a) - @A(*, - * T)l> 

= - @&, t A T) + BO(t) F,B{h(* - T) @A(., * A T) 

+ (1 - h(- - T)) @A(*, * * ‘-)I 

= - QA(t, t A T) + B’(t) F,B(h(. - T) @A( ‘, T)} 

+ BO(t) F,B{I - h(* - T)I> 

= - GA.&, T) + W)FJW - h(* - T)lI> 

+ [h(t - T) - 111. Q.E.D. 
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4. BOUNDARY VALUE PROBLEMS AND FACTORIZATION 

Our main interest is in solving the boundary value problem 

Y’ = AY + CY + P, BY = t, (4.1) 

where A, C E S@(E)), p E S(E), 5 E E, and B EL(S(E), E) is nonsingular 
for A. 

Using the construction of Section 3, problem (4.1) is equivalent to 

y(t) = j-” GA,& 4 WY(S) ds 
a 

+ j-” GA.&, 4 P(S) ds + B”W,& t E [a, b]. (4.2) 
a 

We write (4.2) as the Fredholm integral equation 

where 

W, 4 = GA.& 4 C(s), 4 s E [a, 4, 

f(t) = j-” GA,& 4 P(S) ds + J-W)~k. 
a 

(4.3) 

(4-4) 

Equation (3.2) shows that f satisfies the boundary value problem 

f’ = Af +p, Bf = 4, 

which is solvable by assumption. 

(4.5) 

In this section, we obtain the factorization of the operator (I - K), where 
K is the Fredholm integral operator with kernel K(t, s). As discussed in earlier 
works [4-71, we say that a kernel k(t, s) admits Volterra factorization if there 
exist kernels UT+, u- such that 

k(t, s) = u+(t, s) + u-(t, s) - ~amln(t’s’ u+(t, 0) u-(0, s) d0, 4 s E [a, bl, 

where 
(4.6) 

u+(t, s) 3 0, t < s, u-(t, s) SE 0, t > s. 

The factorization equation (4.6) is equivalent to the operator equation 

(I - K) = (I - if+) (I - E). 
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Our first theorem gives necessary and sufficient conditions for Volterra 
factorization of K. This result generalizes the work of [7] which was concerned 
only with special two-point boundary value problems. 

THEOREM 4.1. Let k be given by (4.4). Then k admits the Volterra factoriza- 
tion (4.6) if and only if the Riccati initial-value problem 

R’ = (A + C)R - RDCR, R(a) = Bo (a)I;A (4.7) 

has a solution in S(L(E)). In this case, the Volterra factors are given by 

u+(t, 4 = @At, s)U - R(s) D(s)} C(s), t > s, 
(4.8a) 

= 0, t <s, t,sE[a,b], 

u-(4 s) = -R(t) D(s) C(s), t G s, 

= 0, t > S, t, s E [a, b]. 
(4.8b) 

Remarks. (a) In Section 2 we defined what was meant by a solution to a 
linear equation in the space of regulated mappings. The definition for 
nonlinear equations is the same, namely, R E S(L(E)) satisfies (4.7) if 

R(t) = J-%WA + 1’ [(A(4 + C(e)) W) - R(d) W) W) WV do, 
a 

tE[a, b]. 

(4.9) 
Further, as before, if R satisfies (4.9), then R is automatically continuous. 

(b) We adopt the convention that any function S+(t, s) of two variables 
t, s with a superscript + vanishes for t < s. Similary a function S-(t, s) 
vanishes for t > s. 

Proof. Suppose (4.6) holds. Note first 

k+(t, s) = (QA(t, s) - B’(t)F,D(s)) C(s) = BO(t){F,,O(s) - F,D(s)}C(s), t > s, 

k-(t, s) = -BO(t)F,D(s) C(s), t < s. 

Thus, (4.6) is equivalent to the pair of equations 

a+(t, s) = P(t)(F,O(s) - FAD(s)} C(s) + j”‘* a+(& 0) o-(6 s) de, t > s, 
a 

a-(t, d = --BOWAD c(s) + St a+(t, 0) u-(6, s) &I, t < s. 
a 
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By the uniqueness of solutions of linear Volterra equations in the space of 
regulated maps (cf. [ 1, I I .7, Problem S]), we can, therefore, write 

af(t, s) = B(t) T(s) C(s), t > s, 

o-(t, s) = -R(t) D(s) C(s), t < s, 

where the maps T E S(L(E, S(E)), R E S(L(E)) are given by 

T(s) = FRO(s) - FAD(s) - s’ T(e) C(e) R(e) D(s) de, s E [a, bl, a 
(4.10) 

R(t) = BO(t)F, + s” IF(t) T(e) c(e) R(B) de, t E [a, bl. . (4.11) 
a 

Two facts are important to note: 

(9 T(s) 4 e SAW) f or each s E [a, b], and each t E E. This follows from 
the resolvent expansion of the solution to (4.10) on observing that the forcing 
function (FAo(s) - FAD(s)) operating on 5, belongs to S,(E), for each s E [a, b] 
and (EE. 

(ii) Bo(t) T(t) + R(t) D(t) = 1. 

This follows at once from (4.10) and (4.11). 
We now show R(t) satisfies (4.7). 
If J is any element in L(E, S,(E)), then by Proposition (2.la), 

B’(t) JE = P(T) Jf + (J’: A(s) B’(s)] ds) 5, for every 5 E E, 

so that 

Wt)J = @TM + J” A(s) BO(s)J ds, t, 7 E [a, 61. (4.12) 
7 

Identity (4.12) in (4.11) then given 

R(t) = P(a) FA + 1 t .4(s) P(s) FA ds 
(4.13) 

+ lt \w9 ke) c(e) R(e) + it 4s) P(S) T(e) c(e) R(e) dij de. 

Since 

I I t de f .4(s) Bo(s) T(e) c(e) R(e) ds 
a 

= Iat ds 4) ws) (jas T(e) c(e) w) de) 3 
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Eq. (4.13) becomes 

R(t) = B”(u)FA + s” A(s) R(s) ds + s’ (I - R(s) D(s)) C(s) R(s) ds 
a a 

or, equivalently, 

R’ = (A + C)R - RDCR, R(a) = BO(u)F, . 

This completes the proof of the first part of the theorem. 
Now suppose problem (4.7) has a solution R E S&(E)). 

Defining u* by Eq. (4.8a,b) gives, for t > s, 

where 

u+(t, 4 + IS o+(t, 0) u-(0, s) de 

= c&(7, s) C(s) - B”(t) H(s) D(s) C(s), (4.14) 

H(s) = FJ’(s) R(s) - j8FAo(e)(1 - R(e) D(e)) C(e) R(e) de. (4.15) 
a 

We claim H(s) = FA , so that the right side of (4.14) equals K+(t, s), t > S. 
This assertion is proved by applying the following lemma to the integral 
in (4.15) and using Proposition 2.1 b. 

LEMMA 4.2. (Integration by parts [I, 8.71). If U, YE S(L(E, S(E)), 
x, YE S(L(E)) and 

U(s) = U(u) + j”’ v(e) de, 
a 

~(~1 = xcu) + 1’ y(e) de, 
a 

then 

j’ u(e) Y(e) de = u(s) x(s) - u(~) X(U) - 1’ v(e) x(e) de. 
a a 

Analogously, Eq. (4.8 a,b) give, for t < s 

where 

u-(t, S) + s,” u+(t, 8) u-(e, s) de = K(t) ~(~1 qs), (4.16) 

K(t) = R(t) + 1” qt, e)(l - R(e) D(e)) c(e) R(e) de. 
a 
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A similar argument to the above then yields K(t) = BO(t)FA , so that the 
right side of (4.16) equals K-(t, s), t < s. Thus, the mappings u* defined by 
Eq. (4.8 a,b) yield the Volterra factors of IL Q.E.D. 

Remarks. The above formalism also gives a representation for the 
resolvents L’* of the Volterra factors 0 *. Thus, if the initial value problem 
(4.7) has a solution R E S(L(E)) and if the kernels v*(t, s) are defined by 

v+(t, s) = o+(t, s) + j” a+(t, e) v+p, s) de, t > s, 
s 

v-p, S) = +, S) + 1’ u-(t, e) v-(e, S) de, t < s, 
t 

then the following equations hold: 

T (t, s) = (A + C) V+(t, s) - RDCV+(t, s), 

V+(s, s) = (I - R(s) D(s)) C(s), 

q (t, s) = (A + C) v-(t, s), 

V-(s, s) = R(s) D(s) C(s). 

These in turn lead to the representations, 

V+(t, s) = R(t) R-l(s) (I - R(s) D(s)) C(s), 

v-(4 4 = -@A+&, s) R(s) D(s) C(s), 

where R-f E S(L(E)) and satisfies the linear equation 

(R-l)’ = -R-l(A + C) + DC, R-l(a) = BF,O(a). 

5. A COMPARISON THEOREM FOR BOUNDARY VALUE PROBLEMS 

As in Section 4, we are still interested in solving the boundary value problem 
(4.1). The theme of this section is, however, the following. Under the as- 
sumption of the solvability of (4.1) when C = 0, we show via the preceeding 
factorization theory that this can lead to an initial value algorithm for the 
solution of (4.1) with general C. Our main result has the flavor of a comparison 
theorem. 

THEOREM 5.1. If B is nonsingular for A and ij the Riccati initial value 



532 MCNABB AND SCHUMITZKY 

problem (4.7) has a solution R E S(L(E)) thm B is nonsingular for A + C. 
Further the boundary value problem (4.1) 

Y’ =Ay+ CY+P, BY = 5 

is equivalent to the initial value problem 

w’ = p + (A + C)w - RDCW, 44 = f (4 

Y’ = (A + ClY + P, y(b) = w(b), 

where f is the solution of the boundary value problem 

(5.1) 

(5.2) 

f’=Af+p, Bf = 5. (5.3) 

Proof. The boundary value problem (4.1) is equivalent to the Fredholm 
integral equation 

(I-K)y =f. 

By virtue of Theorem 4.1 this in turn is equivalent to the pair of Volterra 
integral equations 

(I - .zCf)w = f, 

(I - z-)y = w, 

or explicity 

w(t) = f(t) + j-” B”(t) F,‘(e)(I - W) D(e)> c(e) W(e) 4% (5.4) 
a 

Y(t) = w(t) - Jb R(t) D(e) we(e) 4 
t 

f W = f(a) + Iat 43f (4 de. 

(5.5) 

(5.6) 

Applying the operator identity (4.12) to (5.4) gives 

w(t) = f (4 + J” v - w) D(e)) w 44 de 
a 

+ J” 03 A(S) P(S) j’ (I - R(e) D(e)) c(e) w(e) de. 
a a 

On using (5.4) and (5.6) we have 

44 = f (4 + 1” W44 + C(s)) 4s) - R(s) D(s) C(s) ~(4 ds a 
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or, equivalently, 

w’ = (A + C)w - RDCw, 44 = fW* 

A similar argument using Eq. (4.7) and (5.1) applied to (5.5) yields 

Y’ = (A + Cly + P, y(b) = w(b). 

Thus, the initial value formulation (5.1) and (5.2) shows that a unique 
solution y of (4.1) exists for every [ E E. Thus, B is nonsingular for A + C. 

Q.E.D. 

Remarks. (a) The full force of factorization theory is not needed to 
prove that B nonsingular for A implies B nonsingular for A + C. The 
following result is, in fact, trivial: If B is nonsingular for A and if (I- GA,&‘) 
is invertible then B is nonsingular for A + C. This result, however, does not 
give the corresponding initial value algorithm. On the other hand, it does lead 
to what may be a surprising property Green’s matrices. Namely, The Fredhok 
resolvent of GA,sC is equal to GA+&?; or in operator notation 

(I - GA&)-l - I = GA+&. 

(b) A “converse” to Theorem 5.1 is given in Section 7 (cf. Remarks after 
Theorem 7.2). 

6. FACTORIZATION AND IMBEDDING 

The general theory of Gohberg and Krein [8] for factorization of integral 
operators leads, in the setting of Section 4, to an imbedding of the correspond- 
ing boundary value problem. The meaning of this imbedding for special 
two-point boundary value problems was discussed in detail in [7]. The 
question arises as to the meaning of the imbedding in the general case. 

The Gohberg-Krein theory states: The kernel k(t, s) has a Volterra 
factorization for t, s E [a, b] if and only if the operators I - P,.KP7 are 
invertible for all T E [a, b], where P, : S(E) -+ S(E) is defined by 

(PA (4 = x(t), a < t G 7, 
= 0, r<t\<b. 

This result applied in the setting of Section 4 is equivalent to the statement: 
The kernel GA.s (t, s) C(s) h as a Volterra factorization if and only if the 
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boundary operator B is nonsingular for all the operators A + C, , where 

CT(t) = C(t) a < t ,( 7, 
zzz 0, r<t<b. 

This last condition is, in other words, that the boundary value problems 

Y’ = AY + CY, By = E, 7 E [a, b], (6.1) 

all have unique solutions. 
We now give another interpretation of this condition by relating it to an 

imbedding of the boundary operator itself. This, then, is a generalization of 
invariant imbedding [7]. 

Define BA(7) EL(E), E), T E [a, b] by 

BA(+ = B[(l - h(. - T))x(.)] + B[h(. - T) c&(., T)]x(T), x E S(E). (6.2) 

PROPOSITION 6.1. BA(7) is nonsingular for A + C if and only ;f B is 
nonsingularfor A + C, . Moreover, ;f y, is the solution to (6.1) and if z, is the 
solution to the boundary value problem 

Z’ = (A + C)z, BA(T) = I, (6.3) 
then 

PTY7 = PA ’ 

Proof. First observe that the general solution to (6.1) is 

J%(t) = (1 - h(t - 7)) @A+&, 7) a + W - 7) @a@, + 

for some a E E, (LX = y7(T)). B is nonsingular for A + C, , if and only if the 
operator M(T) EL(E) given by 

M(T) = B{(l - h(. - T>> Qia+c(*, 7) + h(t - 7) @A(., T)> 

is invertible. Next observe that the general solution to (6.3) is 

for /3 E E, (p = q(T)). BA(r) is nonsingular for A + C, if and only if the 
operator IV(r) EL(E) given by 

N(T) = B{(l - A(., T>) @A&., T>> + W(*, 7) @A(., T)> @A+&, 7) 

is invertible. Since @,.,+c(~, T) = 1, we have M(T) = N(T) and the first part 
of the proposition is proved. 
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The second part of the proposition is obtained by noting that 01 = j? and 
therefore from the above expressions for y7 and a, , 

Y7W = %@>, a<t<7. Q.E.D. 

The main results of this section now follows from the Proposition 6.1 and 
Theorem 4.1. The first of these is a direct corollary. 

THEOREM 6.2. BA( ) T is nonsingular for A + C for all r E [a, b] if and only 
if the Riccati equation (4.7): 

R’ = (A + C)R - RDCR, R(a) = B“(a)F, 

has a solution R E S&(E)). 
Next, the factorization formalism provides an algorithm for the solution 

of the imbedded boundary value problems (6.3). 

THEOREM 6.3. If BA( ) 7 is nonsingular for A + C for all T E [a, b], then 
the solution to the imbedded boundary value problem 

Y’ = (A + C>Y + P, BA(TlY = 5 

is given by 

At, 4 = R(t) u(t, +t + R(t) w(t, T) + v(t), (6.4) 

where the maps U, w, v, u are determined by either of the two initial value 
systems 

g (t, T) = DCRu(t, T), u(T, 7) = 8, 

$f (t, T) = DCRw + D(cv + p), W(T, T) = 0, 

v’=(A+C)v+$-RD(Cv+p), v(a) = 0, 

u(t, T) = u(t, +f; 

and, equivalently, 

g (t, T) = - u(t, T) DCR, qt, t) = I, 

g (t, 7) = - u(t, 7) D(Cv + p), w(t, t) = 0, 

v’=(A+C)v+p-RD(Cv+p), v(a) = 0. 

(6.5a) 

(6.5b) 

(6.5~) 

(6.5d) 

(6.6a) 

(6.6b) 

(6.6c) 
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Remarks. (a) This result, along with the initial value system (5.1)-(5.3), 
gives three methods of solution to the original boundary value problem 
(4.1). The system (5.1)-(5.3) . is a two-pass algorithm and in some cases 
(e.g. real time problems) would not be appropriate. It does, however, have 
the advantage that only one “operator” equation, namely (4.7) need be solved. 
System (6.5) is also a two pass algorithm with the same advantage. However, 
(6.5) may be “stable” in cases when (5.1)-(5.3) is not. Finally, system (6.6) 
is a one-pass algorithm. It has the same stability advantage as (6.5) but requires 
an additional operator equation in (6.6a). 

(b) The algorithm implied by (6.6) is as follows: To determine the solution 
of (4.1) y(tO , b), for a fixed t = to , and given b, integrate (4.7) and (6.6~) up 
to the point to ; then adjoin (6.6a,b) and integrate (4.7) and (6.6) to the end 
point b. 

(c) The proof of Theorem 6.3 follows the same lines as that given in 
Theorem 5.1. We will rederive the same result in Section 7 by alternate 
means, and, thus, we omit the details here. 

7. FACTORIZATION OF THE DIFFERENTIAL EQUATIONS 

Up to this point we have viewed the boundary value problem (4.1) in 
terms of its equivalent Fredholm integral equation and derived the preceeding 
results via Voltkrra factorization. An alternate approach involves factorizing 
the operators associated with the boundary value problem itself. This idea 
was initiated in [2] for the case A = 0. Here we extend the theory of [2] and 
also cover the case of general A. 

Let BA(7) be defined by (6.2), i.e., 

BJT)X = B[(l - A(- - T)) x(.)1 + B[h(* - 4 @A(., 41w (7.1) 

The elements A, B, C and D are as before. We write, however, S,,, for 
S/i+,(E). 

PROPOSITION 7.1. (a) The restriction of BA(r) to S,,, satisfies 

(a) BA(T) = BA(a) + IT D(e) W> B”(4 4 a, i- E [a, 4 (7.2a) 
a 

or, equivalently, 

(BA)’ = DCBO. 
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(b) If BA(T)I s/t+, is invertible for 7 E [LX, fl] C [u, b], and if FA,J7) 
denotes the inverse of B,(T)( S,.,,, then 

(F/w)’ = -F,t.c DCB°F,,, - 

Proof. (a) If y E S,,(E), we see from Eq. (7.1) that 

BA(T)Y = BY + W(* - T)[@A(-s T) - @A+&., d pry, 

now define z(T) by 

z(T) = B - s” D(e) c(e) w(e) de. 
7 

Using the definition of D(0) in Section 3, we have that 

z(T) = B - B s” h(. - 4 w-, 0) cw me) de 
7 

= B - B Ih(. - T) [’ C&(., 0) c(e) By) de). 

By Proposition (2.la), F(t)1 S,,, satisfies 

B’(t) = p(T) -I- lrt (A(e) + c(e)) me) de. 

From the definition of Qa(t, s) we obtain the adjoint equation 

Further, 

@A(~, t) = @.,&, T) - 1’ @A(S, e) A(e) de. 
7 (7.3) 

I t aqt, e) c(e) Bye) de 
I 

(7.4) 
= 1’ he, ww + c(e)) we)1 de + J” wA(tr 6) 491 me) de. 

+ T 

Using Lemma 4.2, the left side of (7.4) restricted to A’,,,, becomes 

p(t) - @,t(t, 7) p(T) = {@a+&, 7) - @A@, T)> B”(T)- 
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Thus, Z(T)/ S,,, is given by 

Z(T) = B + B{h(. - 4 [@At, 7) - @A+&, 411 B0(4 
= BAT), 

and, hence, the definition of Z(7) implies that BA(r) satisfies (7.2). 

(b) Now assume BA(7)I S,,, invertible for 7 E [LY, /3]. Since BJT)/ S,,, 
is continuous in 7, the same is true of FA,J,7). For convenience, we write 
F = FA,c in the remainder of this proof, 

Define X(r) by 

X(T) = F(m) - ITF(0) D(8) C(0) BO(B) F(0) do. 
a 

Using (7.2a) and Lemma 4.2 we then have that 

By X(,) - By x(~) = ST D(e) c(e) 230(e) x(e) de 
a 

- 
I ’ BA(4 w4 w c(e) B,(e) F(e) de 
a. 

zzx 
s 

’ o(e) c(e) B,(e)(x(e) -F(e)) de. (75) 
a 

But X(ar) = F(cu) so that B,J(II) X(m) = I = BA(7)F(~). Thus, (7.5) can be 
written as 

ix(,) - F(~)) = qT) ST o(e) c(e) Bye){x(e) - F(e)) de, (7.6) 
(I 

where we have used the fact that X(T) GL(E, S,,,). By the uniqueness of 
solutions to Volterra integral equations (cf. [I, 11.61) it follows that X(T) = 
F(T) and consequently (7.2b) is verified. Q.E.D. 

We now utilize the idea of factorization of the operators associated with the 
imbedded boundary value problems. 

THEOREM 7.2. BA(7)1 S,,, is inwertible for T E [a, p] if and only if the 
Riccati equation 

R’ = (A + C)R - RDCR, W = B”b)hA4 

has a solution in S([OI, /3], E). In this case 

R(T) = WT)FA.& 

(7.7) 
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Proof. (a) Assume BA(7)1 S,,, is invertible for 7 E [a, /3]. Define 

S(T) = @(dF,4,&). 

From Eqs. (7.2b), (7.3) and Lemma 4.2 

S(7) - SC4 = 1’ WV) + c(e)] s(e) - s(e) o(e) c(e) s(e)> de, (I 

so that S(T) satisfies (7.7) on [01, /3]. 

(b) Assume (7.7) has a solution R E S([cy, /3], E). Since R(a) = B”(a)FA,J~), 
we have BA(~)I S,,, is invertible, by assumption. By the continuity of 
BA(+ s/i+, as a function of 7, we have that BA(T)l S,,, is invertible for 
7 E [01, u) for some u > 0. Let Q be the set of singular points of B,.,(T)] S,,, 
for 7 E [OL, /3]. If .C2 is not empty let /?,, = inf Q. Clearly fl,, > a. By a standard 
argument // FA,c(T)ll ---f m as 7 ---f po , T E [a, PO). On the other hand, R(T) = 
B’(T) FA,c(T), 7 E [ar, PO) by part (a) of this theorem and the uniqueness 
property of Volterra equations. Since B’(T) II S,,, is invertible for 7 E [01, PO) 
this implies 1) R(7)]/ ---f 00 as 7 -+ ,k& , 7 E [01, /3,,). This contradicts the assump- 
tion that R E S([ol, /?I, E). Thus G is empty. Q.E.D. 

Remark. The representation R(t) = Be(t) 27,&t) gives a partial converse 
to Theorem 5.1. Namely, If B is nonsingular for A + C and the initial value 
problem R’ = (A + C) R - RDCR, R(b) = BO(b) FA+c, has a solution 
R E S(L(E)) then B is nonsingulav for A. The proof follows from the 
observations 

R(b) = B’(b) F,-,,,(b) = B’(b) FA+c 
and 

R(a) = BO(a) F,,,(a) = @(a) FA . 

The ingredients are now at hand to give a proof of Theorem 6.3. The 
main idea of the proof is the factorization of BO(t) F&T). 

Proof of Theorem 6.3. (a) We first assume p z 0. The solution y(t, T) of 
the imbedded boundary value problem 

Y’ = (A + C>Y, BAHY = 5 

can be represented as 

Yk 7) = ~(t)F~.&)t. 
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Since FA,C(t) BA(t) is the identity of S,,, , we have 

where 

y(t, 4 = W)F,,c(t) B&)F/w(+f (7.8) 

= R(t) UP, 41, 

WY 7) = BAw~A.Cb)* 

Evidently, U(T, T) = I EL(E), and from Eqs. (7.2a,b) we immediately obtain 

u(t, 7) = ]W) + 1” W) C(e) @‘VI de/ FA,&) 
7 

= I + J” me) c(e) B,(e) cd) ww5.C(4 de I 

= I + It o(e) c(e) R(e) u(e, T) de (7.9a) 
7 

and 

up, T) = BA(t) jF,,,(t) + /th,c(e) w c(e) 4wkc(~) de1 7 
= I + St u(t, e) o(e) c(e) R(e) de. 

(7.9b) 

7 

Equations (6.5a,d) and (6.6a) f 11 o ow from the above and the remaining 
Eqs. (6.5b,c) and (6.6b,c) all have trivial solutions when p = 0. 

(b) We now consider general p. First observe that the nonhomogeneous 
problem 

y'=(A+ClY+P, B,&)Y = f 

may be written as a homogeneous problem in the extended space B = E X R’, 
where R’ = real line. Thus, 

c = (,” $), &) = (Bf’ Bt&)) 

gives rise to the equivalent problem 

9 = (A + C)y, B(*)y = f. 
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It is readily shown, as in [2], that 

where fAsc(7) satisfies 

The natural extensions of Eqs. (7.8), (4.7), and (7.9a,b) lead, respectively, to 
(6,4), (6.5c), and (6Sb), (6&b) an d 1 a so regenerate Eqs. (4.7), (6Sa,d), (6.6a). 

Q.E.D. 

8. FUNDAMENTAL KERNELS 

The concept of a fundamental kernel was defined in [4]. Such kernels are 
closely related to special Green’s matrices but this connection was not made 
explicit. In this section we precisely define this relationship. 

Let E = El x Ez , where El and E, are two Banach spaces; write y = 
(:)EE, UE El WEE,; and let Q, ~ES(L(EJ), j3, ~ES(L(E~)), WEL(E,J. 
A continuous map l-’ : [a, 61 x [u, 61 -L(E,) is said to be fundamental 
relative to (01, fi, y, w) if the following equations hold: 

m s) = qs, s) + [ tB(q w, s) & t 2 s, (8.la) 
s 

qt, s) = qt, t) + IS qt, 0) y(O) de, s 3 4 (&lb) 
t 

r(t, 0 = w + It b(e) + bv) r(e, 0) + r(4 e) r(e)j de, t > a. (Klc) 
a 

Matrix kernels of the type r(t, s) 6( s are a generalization of those which ) 
arise in the theory of linear filtering and control (cf. [4,9]). These kernels 
are intimately connected with special two-point boundary value problems. 
In particular, the Green’s matrix formulation for these problems contains the 
fundamental kernel as a component. The special problem is as follows: 

(8.24 y’ = AY + CY +p, BY = f, (8.2a) 

A=(: Ty) c=(“s 39 
23 = (; -J B0(4 + (; 4 qq. 

(8.2b) 

(8.2~) 
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THEOREM 8.1. Let GA,B be the Green’s matrix associated with the problem 
(7.2) and assume B is nonsingular for A. Then the following representation holds: 

GA,&, s) = (“y ‘) IQ;;&), 

where .F is a fundamental kernel relative to (01, j3, y, w). 

Proof. Write 

GAB = (2 2). 
Proposition 3.1, Eq. (3.5a) gives 

( Gl(a, T> - wG&, 7) GAa, 4 - wG&, 7) 
G(bt 4 Gdb, T) > 

= o. 
(8.3) 

Also 

Using (3.5b) with p = b, we have 

GA,&, T) = GA B(b, T) - (1 - h(t - +Ijb A(6) G&6, T) de. (8.5) 
t 

Considering G3(t, T): Eqs. (8.3), (8.4), and (8.5) give 

G3(t, T) = 0 + /‘y(e) G&0, T) de; 
t 

hence, G3(t, T) = 0. 
Considering G4(t, 7): Eqs. (8.3), (8.4), and (8.5) give 

G&, T) = --(I - h(t - +I+ s” y(e) G,(k T) do; 
t 

so that 

G4(t, T) = 0, t>T 

= -@-$, 7) t < TI 

i.e., 

G4(t, T) = -@l,(t, 7). 

Using (3Sb), with /3 = t, t = a, T > a, we have 

GA.&, 4 = G,da, ~1 + W - dI+ f 
t A(0) GA&? T) de. (8.6) a 
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Considering G,(t, 7): Eqs. (8.3), (8.4), and (8.6) give 

G,(t, T) = h(t - T)I + j” ,8(O) G&J, T) de 
a 

= @&gs+(t, T). 

Considering G,(t, 7): Eqs. (8.3), (8.4), and (8.6) give 

G&, T) = - w@&, T) + j” [jy> G,(R 7) - a(e) q(e, T)] de 
a 

=- w@-,(~, T) - j’ a(e) ak,(e, T) de + j’ p(e) qe, T) de 
a a 

+ j” w) w, 4 de 
7 

or 

(8.7) 

G,(T, T) = -~@-,(a, 7) + j' (-43) Q-,(4 T) + B(e) G&4 T>> de. (8.8) 
a 

In particular, (8.7) hold for t > T. 

To obtain the adjoint to (8.7), we use (3.5~). First note, for a < 7 < b, 
(8.2~) shows that B{[l - h(. - T)]I} is independent of T. Thus, Eq. (3.5~) 
gives, for 7 >/ t > a, 

GA,&, T) = Gzdt, t) - jT GA.& 0) 44 de. 
t 

Since, 

GA& 4 44 = ( G,(t, s) B(s) G,(t, 4 44 - W> 4 14s) 
o 

G& 4 ~(4 ) ’ 

G,(t, 7) = G(t, t) + jT G,(t> '4 r(e) de> 7 >, t. (8.9) 
t 

We now consider G~(T, T). Using Eqs. (8.8), (8.9), and (7.3), we have 

qT, T) = - w 11 -k s,’ @-,& 0) Y(e) de 1 (8.10) 

- jaT 43 11 + joT @-,PY 4 Y(S) dj 

+ j; w) p,(R 0) + s,’ G&t 4 Y(S) ds/ 

=- w + s : {-4q + kw cut 0) + w, 4 m de. 
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Equations (8.7), (8.9), and (8.10) show that -Ga(t, 7) is a fundamental kernel 
relative to (OL, /3, y, 0~). Q.E.D. 

As an example of the earlier theory we apply the results of Sections 4, 5, 
and 6 to the case at hand. 

The boundary operator BA(7) is given by 

The imbedded boundary value problems (6.4) are equivalent to 

u’ = pu + art7 f p, 

-v’ = su + yv + q, 

u(u) - w(u) = A, V(T) = 7). 
(8.11) 

The boundary operator B is always nonsingular for A since the boundary 
value problem (8.1 I), with 6 = 0, separates into two initial value problems. 
Thus, GA.* always exists. Moreover, if we write 

then it is found that 

The Riccati initial value problem (4.7) for R = (2 2) becomes 

R,’ = t% + d, + R,@-,(b, -)W , R,(a) = 1, 

R,’ = + + BR, + R,@-,(b, -) SR, , R,(a) = w@-&, 4, 

R,’ = AR, - yR3 + R,@+(b, *) 6R, , R,(a) = 0, 
(8.12) 

R4’ = --6R, - yR, + R,@+,(b, .) SR, , R,(a) = @-,(a, b), 

where we have used the fact that 

D(T) = B{h(* - T> @A(** T)} = (0” @& .,)’ 
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We observe 

R, = @-,(-, 6)) 

so that Ra = 0. 
Next note that the mapping 

satisfies the Riccati initial value problem, 

P’ = a+ bP + py + PSP, p(u) = w. (8.13) 

Hence, R,' = (j3 + $)R,. 
Further a solution R E S&(E)) to (8.12) exists if and only if a solution 

,I E S(L(E,)) to (8.13) exists. This fact gives the standard result on the 
solvability of the lrnbedded boundary value problem (8.11) (cf. [4, 7j). 

Finally, the Volterra factors of G,,, C are related to the Volterra factors 
of Ei in the following simple way: If 

and 

(I - GA&) = (I - &)(I - u-) 

(I - l3) = (I - Sf)(l - s-) 

s 0 uf= o o) 
( 1 ( 

s- 0 u-== -@Z,8 1 0 * 

and, consequently, 

w, 4 = @@ps+(C $) p(s) 6(s), 
S-(4 s> = p(t) @iry(t, s) 6(s). 
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