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A Characterization of Minimizable Metrics in the Multifacility Location
Problem

HANS-JÜRGEN BANDELT, V ICTOR CHEPOI AND ALEXANDER V. K ARZANOV

In the minimum 0-extension problem (a version of the multifacility location problem), one is given
a metricm on a subsetX of a finite setV and anon-negative functionc on the unordered pairs of
elements ofV . The objective is to find a semimetricm′ on V that minimizes the inner productc ·m′,
provided thatm′ coincides withm within X and each element ofV is at zero distance fromX. For
m fixed, this problem is solvable in strongly polynomial time ifm is minimizable, which means that
for any supersetV and functionc, the minimum objective value is equal to that in the corresponding
linear relaxation.

In [9], Karzanov showed that the path metric of a graphH is minimizable if and only if all isometric
cycles ofH have length four and the edges ofH can be oriented so that non-adjacent edges in each
4-cycle have opposite orientations along the cycle (such graphs are calledframesin [9]). Extending
this result to general metricsm, we showthatm is minimizable if and only ifm is modular and its
underlying graph is a frame.

c© 2000 Academic Press

1. INTRODUCTION

A semimetricon a setX is a functiond : X × X → R+ satisfyingd(x, x) = 0, d(x, y) =
d(y, x), andd(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X. If, in addition,d(x, y) > 0 for
all x 6= y, thend is called ametric. A particular instance is thepath metric dG of a connected
graphG: the distancedG(x, y) is the minimum number of edges in a path ofG connecting
the nodesx and y. A semimetricd′ on a supersetV ⊇ X is called anextensionof d if
d′(x, y) = d(x, y) for all x, y ∈ X, and a 0-extensionif, in addition, for eachv ∈ V , there
exists somex ∈ X such thatd′(v, x) = 0.

Now, consider a metricm on a subsetX of a finite setV and a non-negative integer-valued
function c on the set

(V
2

)
of unordered pairs of elements (points) of V. The minimum0-

extension problemcan be stated as follows:

Find a 0-extensionm′ of m to V minimizing c ·m′ :=
∑(

c(e)m′(e) : e∈
(V

2

))
. (1.1)

This problem is equivalent to a variant of themultifacility location problem, in which the
existingfacilities are located at points ofX, the elements ofV − X are thought of as new
facilities to be placed at points ofX, and the numbersc(x, y) represent a measure of mutual
communication or supporting task between facilitiesx andy. (For a survey on location prob-
lems, see, e.g., [11].) Whenm is the path metric of the complete graphK p with p nodes,(1.1)
turns into theminimum p-terminal(or p-way) cut problem, which is known to be solvable
in polynomial time if p = 2 (as being the classical minimum cut problem [7]), and strongly
NP-hard if p = 3 [5].

Let τ(V, c,m) denote the minimum objective valuec·m′ in (1.1), and letτ ∗(V, c,m) denote
the minimum objective value inits relaxation:

Find an extensionm′ of m to V with c ·m′ minimum. (1.2)

Since every 0-extension is an extension,τ(V, c,m) ≥ τ ∗(V, c,m). We call a metricm min-
imizableif τ(V, c,m) = τ ∗(V, c,m) holds for any choice of a finite supersetV of X and
non-negative functionc. Since (1.2) is a linear program whose constraint matrix is of size
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FIGURE 1. An orientation of a 4-cycle.

polynomial in|V |, this problem issolvable in stronglypolynomial time using a version of the
ellipsoid method [12]. This implies that for every minimizable metricm, (1.1) is solvable in
stronglypolynomial time as well. It turned outthat the class of graphs whose path metrics are
minimizable is rather large.

THEOREM A ([ 9]). The metric dH of a graph H is minimizable ifand only if H is heredi-
tary modular and orientable.

Recall that a metricm on X is calledmodular if every three pointsx1, x2, x3 ∈ X have
a median, that is, a pointx ∈ X satisfyingm(xi , x) + m(x, x j ) = m(xi , x j ) for all 1 ≤
i < j ≤ 3. A graphH is calledmodular if its path metricdH is modular, andhereditary
modular if every isometric subgraph ofH is modular. (A subgraphH ′ of H is isometricif
dH ′(u, v) = dH (u, v) for all nodesu, v of H ′; in other words,dH is an extension ofdH ′ .)
Every modular graphH is bipartite; moreover, one can easily show that the cycle space of
H has a basis comprising only 4-cycles. We say thatH is orientable if its edges can be
oriented so that opposite (non-adjacent) edges in every 4-cycle have opposite orientations
along the cycle; see Figure1. For example, the complete bipartite graphK p,r is orientable
if and only if min{p, r } ≤ 2; further the graphK−3,3, that is, K3,3 minus one edge is not
orientable (see Figure2(b)). (In the orientable case, the orientation turns a modular graph into
the Hassediagram of an ordered set in which every order-interval constitutes a modular lattice.
Indeed, every order-interval consists of the nodes on shortest paths between its end points, and
therefore [3, Theorem 4.7] applies.) Following [9], we call an orientable hereditary modular
graph aframe.

In this paper we showthat TheoremA can be extended to give a complete characteriza-
tion of minimizable general metrics. Givena metricm on X, its underlying graph H(m) is
obtained from the complete graph onX by deleting all edgesxy such that there is a nodez
between xandy, i.e.,z 6= x, y andm(x, z)+m(z, y) = m(x, y). In other words,H(m) is the
least connected graph onX in which any two nodes are connected by a path shortest form.

We can now state the result of this paper.

THEOREM. A metric m is minimizable if andonly if m is modular and its underlying graph
H(m) is a frame.

2. PRELIMINARIES

We begin with reformulating the property that a metricm on a setX is minimizable in
polyhedral terms. We regard any semimetric on a finite supersetV ⊇ X as a vector of the
euclidean spaceR(

V
2) whose coordinates are indexed by the edges of the complete graph

on V . The set of extensions ofm to V forms a polyhedron inR(
V
2), denoted byPV,m. For

m′,m′′ ∈ PV,m, we say thatm′′ decomposes m′ in PV,m if m′ ≥ λm′′ + (1− λ)m′′0 for some
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m′′0 ∈ PV,m and 0< λ ≤ 1. If no extensionm′′ 6= m′ decomposesm′, thenm′ is called

extreme. The extreme extensions are precisely the vertices of the dominantPV,m + R(
V
2)
+ of

the polyhedronPV,m. In particular, every 0-extension ofm is extreme.
It is easy to see that any extension that decomposes an optimal solution of (1.2) is an op-

timal solution as well. On the other hand,by linear programming arguments, every extreme
extension is a unique optimal solution of (1.2) for somec :

(V
2

)
→ R+. This implies the

following characterization of minimizablemetrics (cf. [9]):

a metricm on X is minimizable if and only if forall finite supersetsV of X, (2.1)

every extreme extension ofm to V is a 0-extension.

This property suggests the following approach to proving our theorem: in order to decide
whether a given metricm is minimizable or not, it suffices to show that any extension ofm is
decomposable by a 0-extension or to find an extreme extension which is not a 0-extension. In
order to verify that an extension is extreme we will use the fact that the extreme extensions
have maximal sets of shortest paths. More precisely, letd be a semimetric onV ⊇ X. A path
on V is a finite sequenceP = (v0, v1, . . . , vk) of points ofV . Thed-length d(P) of P is
d(v0, v1)+ · · · + d(vk−1, vk), andP is calledd-shortestif d(P) = d(v0, vk). We say thatP
is anX-pathon V if v0, vk ∈ X, and denote the set ofd-shortestX-paths byI(d) = I(X,d).
It is not difficult to see that:

for m′,m′′ ∈ PV,m, m′′ decomposesm′ if and only if everym′-shortestX-path (2.2)

is m′′-shortest, i.e.,I(m′) ⊆ I(m′′); this inclusion is strict whenm′ 6= m′′.

Next, in our proof we will use the fact that a modular metric and the path metric of its
underlying graph have the same set of shortest paths. For a connected graphH = (X, E) and
a length functioǹ : E → R+, let dH,` denote the semimetric onX, wheredH,`(x, y) is the
minimum`-length`(P) = `(x0x1)+ · · · + `(xk−1xk) of a pathP = (x = x0, x1, . . . , xk−1,
xk = y) betweenx and y in H . If H is the underlying graph of a metricm and` is the
restriction ofm to E, thendH,` is just m. For an edgexy of H(m), we therefore refer to
m(x, y) as the length ofxy. We say that two edgese, e′ of H are projective if there is a
sequencee= e0, e1, . . . ,ek = e′ of edges such that every two consecutive edgesei , ei+1 are
opposite in some 4-cycle ofH . A maximal set of mutually projective edges is called anorbit.
Each bridgee of H constitutes an orbit consisting only ofe (recall that abridge is an edge
whose removal disconnectsH ).

PROPOSITION1 ([1]).

(i) If m is a modular metric, then the graph H(m) is modular and m is constant on the
edges of each orbit of H(m).

(ii) Conversely, if H= (X, E) is a modular graph and̀ is a positivelength function on
E which is constant within each orbit of H, then the metric dH,` is modular, and the
metrics dH and dH,` have the same sets of shortest paths.

Finally, we will use the following properties of hereditary modular graphs.

PROPOSITION2 ([2]).

(i) A graphis hereditary modular if and only if it is bipartite and contains no isometric
cycles of length six or more.

(ii) A modular but not hereditary modular graph contains an isometric 6-cycle.
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3. PROOF OF THE ‘ ONLY IF ’ PART

Our method of proof is close to that for the corresponding part of Theorem 1.1 in [9].
Although the objects we deal with are moregeneral, the constructions we apply in subsequent
proofs of this section are relatively simpler than those used in [9].

Let m be a metric onX. We will rely on the following simple fact.

LEMMA 1 ([9]). Let m0 be the restriction of m to a set X0 ⊆ X. Let m′0 be an extreme
extension of m0 to a set V0 with V0∩ X = X0. Then there exists an extreme extension m′ of m
to V = V0 ∪ X which coincides with m′0 on V0.

Indeed, defined(x, y) to bem′0(x, y) for x, y ∈ V0, m(x, y) for x, y ∈ X, and min{m′0(x, z)
+m(z, y) : z ∈ X0} for x ∈ V0 and y ∈ X. One can easily check thatd is a metric onV
and, therefore,d is an extension ofm. Take any extreme extensionm′ of m that decomposes
d. Then the restriction ofm′ to V0 decomposesm′0 in PV0,m0. Sincem′0 is extreme inPV0,m0,
the semimetricm′ coincides withm′0 on V0, as required.

Next we will show that if the graphH(m) is not a frame, thenm has an extreme extension to
someV ⊃ X which is not a 0-extension. By (2.1), this would imply thatm is not minimizable.

LEMMA 2. Let H(m) be non-modular. Thenm is not minimizable.

PROOF. SinceH(m) is non-modular, by Proposition1(i), m is not modulareither. So there
exist pointsx1, x2, x3 ∈ X which do not have a median form. Let m0 denote the restriction
of m to X0 = {x1, x2, x3}. Define the numbersr1, r2, r3 ≥ 0 so thatr i + r j = m(xi , x j ) for
all 1≤ i < j ≤ 3; such numbers exist becausem is a metric, and they are unique. Add a new
point x and define the distance fromx to xi to ber i for i = 1,2,3. This gives an extension
m′0 of m0 to the setV ′ = X0 ∪ {x}. Evidently,m′0 is an extreme extension. By Lemma1, m
has an extreme extensionm′ to the setX ∪ {x} that coincides onV ′ with m′0. Since the triplet
x1, x2, x3 does not have a median,m′(x, y) > 0 for all y ∈ X, i.e.,m′ is not a 0-extension.
Hence,m is not minimizable. 2

LEMMA 3. Let H(m) be modular butnot orientable. Thenm is not minimizable.

PROOF. SinceH(m) is not orientable, it containsaMöbius sequence(‘orientation-reversing
dual cycle’), i.e., a circular sequence(e0 = x0y0, e1 = x1y1, . . . ,ek = xkyk = e0) of edges
such that:

(i) the edgese0, . . . ,ek−1 are distinct;
(ii) xi xi+1 andyi yi+1 are edges ofH(m) for i = 0, . . . , k− 1;

(iii) x0 = yk andy0 = xk (yielding the ‘twist’);

see Figure2. Let X0 be the set of (different) nodes occurring amongx0, y0, . . . , xk−1, yk−1,
and letm0 be the restriction ofm to X0. We extend the complete graph onX0 to the graph
G′ = (V ′, E′) by addingk new nodesz1, . . . , zk = z0 and 3k new edgesxi zi , yi zi andzi zi+1
for i = 0, . . . ,k− 1.

Since the edgese0, e1, . . . , ek−1 are projective, by Proposition1(i) they have the same
length, sayα. Any two edgesxi xi+1 and yi yi+1 are opposite in a 4-cycle and, therefore,
they have the same length

βi := m(xi , xi+1) = m(yi , yi+1) for i = 0, . . . ,k− 1.
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(a) Generic instance.
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FIGURE 2. Möbius sequences.

We define a lengthfunction` on the edge setE′ by letting

`(vw) =m(v,w) for v,w ∈ X0;

`(xi zi ) = `(yi zi ) = α/2 for i = 1, . . . ,k;

`(zi zi+1) = βi for i = 1, . . . ,k.

We assert thatd = dG′,` is an extension ofm0. To see this, it suffices to verifỳ(P) ≥
m(v,w) for any simple pathP in G′ with end nodesv,w from X0 and all intermediate nodes
in V ′−X0. We may assume without loss of generality thatP = (v, zi , . . . , z j , w)with v = xi

andw ∈ {x j , y j } for some 0≤ i ≤ j ≤ k− 1. Then

`(P) = α/2+
j−1∑
p=i

βp + α/2

= `(x j y j )+

j−1∑
p=i

`(xpxp+1)

≥ m(x j , w)+m(v, x j ) ≥ m(v,w).

Take an extreme extensionm′0 of m0 to V ′ that decomposesd. By Lemma1, there exists an
extreme extensionm′ of m to V = V ′∪X that coincides withm′0 onV ′. We assert thatm′ can-
not be a 0-extension. Indeed, consider the pathsPi = (xi , zi , yi ), Qi = (xi , zi , zi+1, yi+1),
andRi = (yi , zi , zi+1, xi+1) for i = 1, . . . ,k. By the definition of̀ and taking into account
that the paths(xi , yi , yi+1) and(yi , xi , xi+1) arem-shortest by Proposition1, we conclude
that

`(Pi ) = α = m(xi , yi ),

`(Qi ) = α + βi = m(xi , yi )+m(yi , yi+1) = m(xi , yi+1),

`(Ri ) = α + βi = m(yi , xi )+m(xi , xi+1) = m(yi , xi+1).

Hence,Pi , Qi , Ri ∈ I(V,m′) by (2.2). Suppose thatm′ is a 0-extension ofm. Then for each
new nodezi there exists a nodewi ∈ X such thatm′(zi , wi ) = 0. The onlym-shortest path
on X betweenxi andyi is xi yi , whencewi ∈ {xi , yi }. Assumew0 = x0; the casew0 = y0 is
analogous. Thenw1 = x1; otherwise,w1 = y1 would imply thatR0 is notm′-shortest because
α + β0 + α > m′(y0, x1). Similarly,w2 = x2, and so on, until one arrives atw0 = x0 = yk,
obtaining a contradiction. Thus,m is not minimizable. 2

LEMMA 4. Let H(m) be modular and orientablebut not hereditary modular. Then m is not
minimizable.
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FIGURE 3. GraphG′ in the proof of Lemma4.

PROOF. By Proposition2(ii) the graphH(m) contains an isometric 6-cycleC = (s0, s1, . . .,
s5, s0). Let m0 be the restriction ofm to X0 = {s0, . . . , s5}. SinceC is isometric, each path
(si , si+1, si+2, si+3) is shortest inH(m) and, therefore, it ism-shortest (taking indices mod-
ulo 6). Assi+2 andsi+5 are betweensi andsi+3, and vice versa, it follows that them-lengths
of opposite edges ofC are equal:

m(s0, s1) =m(s3, s4) =: α,

m(s1, s2) =m(s4, s5) =: β,

m(s2, s3) =m(s5, s0) =: γ.

We construct an extensionm′0 of m0 as follows. Assumeα ≤ β, γ . Consider the graph
G′ = (V ′, E′) with V ′ = X0 ∪ {x, y} shown in Figure3 (G′ is the skeleton of the cube with
one diagonal added). Note thatG′ is not orientable(as it includesK−3,3). Assign the following
lengths̀ (e) to its edgese∈ E′ :

`(si si+1) =m(si , si+1) for i = 0, . . . ,5,

`(s2x) = `(s5y) = α,

`(s0x) = `(s3y) = β,

`(s4x) = `(s1y) = γ,

`(xy) = β + γ − α.

Thenx and y are medians of the triplets{s0, s2, s4} and{s1, s3, s5}, respectively. Note also
that `(xy) is as small as possible subject to the requirement that the`-length of each path
from si to si+3 passing through the edgexy be at leastm(si , si+3) = α + β + γ , taking into
account thatα ≤ β, γ . Thenm′0 = dG′,` is an extension ofm0.

We first prove thatm′0 is an extreme extension, by showing thatm′0 is uniquely determined
by the set of̀ -shortestX0-paths inG′ cf. (2.2). To see the latter, note that the distances fromx
to s0, s2, s4 are determined by thè-lengths of the paths(s0, x, s2), (s2, x, s4), (s4, x, s0), and
then the distances fromx to s1, s3, s5 are determined by the paths(s1, s2, x, s4), (s3, s4, x, s0),
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(s5, s0, x, s2). Similarly, one can uniquely characterize thedistance fromy to eachsi . Fi-
nally, the distance betweenx andy is determined by thè-shortest path(s2, x, y, s5) because
m′0(s2, x) andm′0(s5, y) have already been determined.

Let m′ be an extreme extension ofm to X ∪ {x, y} that coincides withm′0 on V ′. Suppose
thatm′ is a 0-extension, and letu andv be the points ofX obeyingm′(u, x) = m′(v, y) = 0.
We assert thatG′ is isomorphic to the subgraph ofH(m) induced byX∪{u, v}. Indeed, since
x is a median of the tripletS= {s0, s2, s4} for m′, the nodeu is a median ofS for m, and thus,
by Proposition1,u is a median ofS in H(m) as well. SincedH(m)(si , si+2) = 2 for eachi , the
nodeu is adjacent inH(m) to each of the nodess0, s2, s4. Similarly,v is adjacent with each of
the nodess1, s3, s5. The fact thatC is isometric implies thatu 6= v and thatu, v /∈ C. Finally,
the pathP = (s2, u, v, s5) on X is m-shortest because the path(s2, x, y, s5) is m′-shortest.
Therefore,u andv belong to a shortest path froms2 to s5 in H(m). SincedH(m)(s2, s5) = 3
ands2, u, v, s5 are distinct,u andv are adjacent inH(m). Thus,H(m) contains a subgraph
isomorphic toG′ (which is non-orientable). This contradicts the orientability ofH(m), and
hence we conclude thatm′ is not a 0-extension. 2

Lemmas2–4cover all cases whenH(m) is not a frame,completing the proof ofthe ‘only
if’ part of the theorem.

4. PROOF OF THE‘ IF’ PART

The proof is based on the explicit construction of the tight span of the path metric of a frame
given in [9]. We review that construction, starting with necessary definitions.

An extensiond′ of a metricd on X to a (possiblyinfinite) setV ⊇ X is calledtight if no
other extension ofd to V is coordinatewise less than or equal tod′. This is equivalent to the
property that for anyx, y ∈ V , there ares, t ∈ X such thatd′(s, x) + d′(x, y) + d′(y, t) =
d(s, t).

It is shown in [8] (and independently in [6]) that for every metric space(X, d), there exists
a unique metric spaceT (d) = (X , δ) such thatδ is a tight extension ofd and any tight
extension(V,d′) of d is isometrically embeddable inT (d), in the sense that there exists a
mappingγ : V → X with the identity onX satisfyingd′(x, y) = δ(γ (x), γ (y)) for all
x, y ∈ V . The spaceT (d) is called thetight span(or injective envelope, orTX-space) of
(X, d). WhenX is finite,X can be represented as a polyhedral complex of dimension at most
|X|/2; see [6].

When H = (X, E) is a frame, the tight spanT (dH ) = (X , δ) of its path metric is a
two-dimensional complex obtained in the following way. LetK (A; B) denote the complete
bipartite graph with partsA andB. We call a maximal subgraphK (A; B) of H a bi-clique if
|A|, |B| ≥ 2. SinceH is orientable, any bi-cliqueK (A; B) satisfies min{|A|, |B|} = 2. As H
is bipartite and does not includeK−3,3 as an induced subgraph, it easily follows that:

the intersection of two bi-cliques ofH is either empty,
or a single node, or a single edge. (4.1)

Therefore, every 4-cycle ofH is contained in precisely one bi-clique. Note thatevery edgee
of H which is not a bridge is contained in a 4-cycle:e belongs to an isometric cycle, and by
Proposition2(i) all isometric cycles ofH have length 4.

To construct the ground setX = XH , we turn each edge into a homeomorphic copy of
the segment[0,1] ⊂ R1. Each 4-cycleC = (v0, v1, v2, v3, v0) (considered as a graph) is
extended to a two-dimensional discDC. Formally,DC is a homeomorphic copy of the square
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FIGURE 4. Creation of a folder.

[0,1] × [0, 1] ⊂ R2, the nodesv0, v1, v2, v3 are identified with the points (0,0), (0,1), (1,1),
(1,0), respectively, and the edges with the corresponding segments. IfC and another 4-cycle
C′ = (u0, u1, u2,u3,u0) have three nodes in common, say,vi = ui for i = 0,1,2, we
identify the corresponding triangular halves inDC and DC′ . More precisely, assuming that
v0, v1, v2 are represented in both discs by (0,0), (0,1), (1,1), respectively, we identify each
point in DC coordinatized by(ξ, η) for 0 ≤ ξ ≤ η ≤ 1 with the corresponding point(ξ, η)
in DC′ . As a result, every bi-cliqueK = K (A; B) with A = {s1, s2} and B = {t1, . . . , tk}
is turned into the spaceF(K ), called thefolder of K , homeomorphic to the space obtained
by gluing togetherk copies of the triangle{(ξ, η) : 0 ≤ ξ ≤ η ≤ 1} along the side{(α, α) :
0 ≤ α ≤ 1}; see Figure4 for k = 5. By 4.1, eachDC lies in one folder,and twooverlapping
folders intersect in a node or an edge. This gives the desired setX .

The segmentF = F(e) (of length 1) associated with a bridgee of H carries its natural
metric; for convenience,F is also referred to as a bridge ofX . Each folderF = F(K ) ob-
tained from a bi-cliqueK of H is endowed with the metricδF inherited from the participating
(overlapping) squares. More precisely, any two pointsx, y of F belong to at least one disc
DC (for some 4-cycleC in K ) with coordinatesx = (ξ, η) andy = (ξ ′, η′). ThenδF (x, y)
is defined to be thel1-distance|ξ − ξ ′| + |η − η′|; this number is the same for all discsDC

containingx, y. So eachδF is well defined, and moreover, any two points (on a segment)
shared by different foldersF andF ′ are at the same distance with respect toδF andδF ′ . The
desired intrinsic metricδ = δH on X is defined in a natural way: forx, y ∈ X , δ(x, y) is
the infimum of the valuesδ(P) = δF1(x0, x1)+ · · · + δFr (xr−1, xr ) over all finite sequences
P = (x = x0, x1, . . . , xr = y) in which each pairxi−1, xi belongs to the same folder or the
same bridgeFi . One can show thatδ coincides withδF within each folder or bridgeF .

THEOREM B ([9]). For a frame H, the metric space(XH , δH ) is precisely the tight span
T (dH ).

We will use a generalization of this theorem given in [10] where the class of finite met-
rics with two-dimensional tight spans is completelycharacterized. More precisely, consider a
modular metricm on X such thatH(m) is a frame. LetO1, . . . ,Ok be the orbits ofH(m).
We know thatm is constant within each orbitOi , saym(e) = hi for all e ∈ Oi . Note that
all edges of a bi-cliqueK = K (A; B) with |A| + |B| ≥ 5 are projective and, therefore, they
belong to a common orbit. On the other hand, ifK is a 4-cycle, it may happen that the two
pairs of opposite edges belong to distinct orbits. Accordingly, we introduce a metricδm

F on the
folder F = F(K ) of a bi-cliqueK or on a bridgeF as follows.

(i) If K is a bi-clique whose edges belong to one and the same orbitOi , then for each 4-
cycleC in K and pointsx, y ∈ DC, defineδm

F (x, y) = hi δF (x, y) (i.e.,δm
F is obtained

by uniformly stretching the metricδF by a factor ofhi in ‘all directions’).
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(ii) If K is a bi-clique given by a 4-cycle(v0, v1, v2, v3, v0) with v0v1 ∈ Oi andv1v2 ∈ O j

(i 6= j ), then forpointsx = (ξ, η), y = (ξ ′, η′) of F , defineδm
F (x, y) = h j |ξ − ξ

′
| +

hi |η − η
′
| (i.e., δm

F is obtained by stretchingδF by a factor ofhi in ‘vertical direction’
and by a factor ofh j in ‘horizontal direction’).

(iii) If e= uv is a bridge with{e} = Oi , say, thenthe segmentF = F(e) of length 1 with
its metricδF is stretched by the factor ofhi , that is,δm

F = hi δF .

These local metrics determine the intrinsic metricδm on the complexXH(m) in an analogous
fashion as forδH above.

THEOREM C ([10]). If m is a modular metric such that H(m) is a frame, thenT (m) is
(XH(m), δ

m).

(See also [4] for another proof.) Note that in [10] this theorem was proved for rational-valued
metrics; however, it remainsvalid for real-valued metrics by standard rational approximation
and compactness arguments. Indeed, take an infinite sequence`1, `2, . . . of positive rational-
valued functions on the edges ofH = H(m) such that each̀i is constant within each orbit
of H and the sequence of metricsmi = dH,`i , i = 1,2, . . ., converges tom. Since the tight
spansT (mi ) have the same ground setXH , one can see that the metricsδmi converge to some
metricδ onXH . That(XH , δ) is indeed the tight span ofm follows from the obvious fact that
for every tight extensionm′ of m, there are tight extensions ofmi ’s which converge tom′.

We are now ready to show thatm is minimizable, arguing in a way similar to [9]. Consider
any extensionm′ of m to a finite supersetV of X. We wish to show that there exists a 0-
extensionm′′ of m to V such that everym′-shortestX-path onV is m′′-shortest. Thenm′′

decomposesm′ (by (2.2)), implying that every extreme extension ofm is a 0-extension, i.e.,m
is minimizable(by (2.1)). Clearly we may assume thatm′ is coordinatewise minimal, i.e.,m′

is a tight extension ofm. Therefore, we may regardV as a subset of the ground setX = XH(m)

of the tight spanT (m) andm′ as the restriction ofδm to V .
We construct a mappingφ : X → X which is identical onX and brings everyδm-shortest

X-path onX to anm-shortest path onX. Choose a feasible orientation ofH = H(m). Then
every bi-cliqueK of H has a unique nodev = vK such that all edges ofK incident tov are
oriented towardsv (if K = K ({s1, s2}; {t1, . . . , tr }) with r ≥ 3, thenv is eithers1 or s2). For
x ∈ X , defineφ as follows:

(i) if x ∈ X, thenφ(x) = x;
(ii) if x is aninterior point on an edgee= yz ∈ E (i.e.,x 6= y, z) ande is orientedfrom y

to z, thenφ(x) = z;
(iii) if x is aninterior point of the folderF(K ) for a bi-cliqueK of H (i.e., x is not in the

boundaryK of F(K )), thenφ(x) = vK .

(This mapping can be interpreted as follows. The orientation ofH induces a partial order
≤ on X. The restriction of this order to any bi-cliqueK is extended to the folderF(K ) in
a natural way, by assuming that the smallest node ofK is coordinatized as (0,0) in the discs
of all 4-cycles ofK . This turnsF(K ) into a complete modular lattice. Also the order≤ is
extended in a natural way within each bridge ofX . Thenφ maps any pointx of a folder or
bridgeF to the smallest point fromX ∩ F which is greater than or equal tox and, therefore,
the interior ofF is mapped to the unique top point ofF .)

LEMMA 5. Let P= (x0, x1, . . . , xk) bea δm-shortest X-pathonX . Thenφ(P) = (φ(x0),
φ(x1), . . . , φ(xk)) is an m-shortest path on X.
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PROOF. We may assume that each pairxi−1, xi belongs to a common folderor bridge,
because wecan always connectxi−1 andxi by aδm-shortest path in which each consecutive
pair satisfies this property.

We use induction on the distance between the endsx0, xk of P in the graphH . The assertion
is trivial if dH (x0, xk) ≤ 1 (in casedH (x0, xk) = 1 all intermediate pointsx1, . . . xk−1 of P
lie on the edgex0xk). Also the assertion easily follows by induction ifP is splittable, which
means that some intermediate point ofP is in X − {x0, xk}. So assume thatdH (x0, xk) ≥ 2
and thatP is not splittable. Then none of the intermediate points lies on a bridge.

Consider the maximal initial subpathP0 = (x0, x1, . . . , xq) of P which is entirely con-
tained in some folderF(K ). Thenxq lies on the part of the boundary ofF(K ) formed by
the edges ofK not incident tox0. Moreover, since the pathP0 is δm-shortest, it is con-
tained in the discDC for some 4-cycleC = (v0, v1, v2, v3, v0) in K . We may assume
that x0 = v0, that xq lies on the edge (segment)v1v2 of DC, and thatv0, v1 have the
coordinates (0,0) and (0,1), respectively. Then 0= ξ(x0) ≤ ξ(x1) ≤ · · · ≤ ξ(xq) and
0 = η(x0) ≤ η(x1) ≤ · · · ≤ η(xq) = 1, where(ξ(x), η(x)) are the coordinates of a point
x in DC. By the construction ofφ, any point ofDC is mapped byφ to some node ofC.
Considering the possible orientations ofC, one can see that in all cases for anyx, y ∈ DC,
if ξ(x) ≤ ξ(y) andη(x) ≤ η(y), thenξ(φ(x)) ≤ ξ(φ(y)) andη(φ(x)) ≤ η(φ(y)). There-
fore, ξ(φ(x0)) ≤ · · · ≤ ξ(φ(xq)) andη(φ(x0)) ≤ · · · ≤ η(φ(xq)), i.e., the pathφ(P0) is
δm-shortest.

So we can delete the elementsx1, . . . , xq−1 from P, obtaining the pathP′ = (x0, xq, . . . , xk)

such thatδm(P′) = δm(P) andδm(φ(P′)) = δm(φ(P)). Recall thatφ(x0) = v0 andφ(xq) ∈

{v1, v2}. Insertv1 betweenx0 andxq in P′, which results in the pathR= (x0, v1, xq, . . . , xk)

satisfyingδm(R) = δm(P′) andδm(φ(R)) = δm(φ(P′)). SincedH (x0, v1) = 1 anddH (x0,
xk) ≥ 2, the pointv1 of R is different from bothx0, xk. Hence,R is a splittableδm-shortest
path. By the above argument, we haveδm(R) = m(x0, xk), and the result follows. 2

By this lemma, the metricm′ (being the restriction ofδm to V) is decomposed by the
0-extensionm′′ of m, defined bym′′(x, y) = m(φ(x), φ(y)) for x, y ∈ V . Thus,m is mini-
mizable. This completes the proof of the theorem.
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