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A Characterization of Minimizable Metrics in the Multifacility Location
Problem

HANS-JURGEN BANDELT, VICTOR CHEPOI AND ALEXANDER V. KARZANOV

In the minimum 0-extension problem (a version of the multifacility location problem), one is given
a metricm on a subseKX of a finite setV and anon-negative functiore on the unordered pairs of
elements ol/. The objective is to find a semimetmid’ onV that minimizes the inner product m’,
provided thatm’ coincides withm within X and each element of is at zero distance fronX. For
m fixed, this problem is solvable in strongly polynomial timanifis minimizable which means that
for any superse¥ and functionc, the minimum objective value is equal to that in the corresponding
linear relaxation.

In [9], Karzanov showed that the path metric of a gr&pts minimizable if and only if all isometric
cycles of H have length four and the edgestdfcan be oriented so that non-adjacent edges in each
4-cycle have opposite orientations along the cycle (such graphs are fratigesin [9]). Extending
this result to general metrign, we showthatm is minimizable if and only ifm is modular and its
underlying graph is a frame.

(© 2000 Academic Press

1. INTRODUCTION

A semimetrion a setX is a functiond : X x X — Ry satisfyingd(x, x) = 0,d(x, y) =
d(y, x), andd(x, y) + d(y, 2) > d(x, 2) for all x, y, z € X. If, in addition,d(x, y) > O for
all x # vy, thend is called ametric. A particular instance is theath metric & of a connected
graphG: the distancalg (X, y) is the minimum number of edges in a path®fconnecting
the nodesx andy. A semimetricd’ on a superseV 2 X is called anextensionof d if
d'(x,y) = d(x, y) forall x, y € X, and a 0-extensioif, in addition, for eachv € V, there
exists somex € X such thad’(v, x) = 0.

Now, consider a metrim on a subseK of a finite setV and a non-negative integer-valued
function c on the set(\zl) of unordered pairs of elements (pointsf V. The minimumO-
extension probleman be stated as follows:

Find a 0-extensiom’ of mto V minimizingc - m' := Z(c(e)m/(e) ‘ee (\2’)) (1.1)

This problem is equivalent to a variant of theultifacility location problemin which the
existing facilities are located at points of, the elements o¥/ — X are thought of as new
facilities to be placed at points of, and the numbers(x, y) represent a measure of mutual
communication or supporting task between facilitteandy. (For a survey on location prob-
lems, see, e.g.10l].) Whenm is the path metric of the complete graldly with p nodes(1.1)
turns into theminimum p-terminalor p-way) cut problem, which is known to be solvable
in polynomial time ifp = 2 (as being the classical minimum cut problem [7]), and strongly
NP-hard ifp = 3 [5].

Lett(V, c, m) denote the minimum objectivealuec-m’ in (1.1), and let*(V, c, m) denote
the minimum objective value iits relaxation:

Find an extensiom’ of mto V with ¢ - m’ minimum. 1.2)

Since every 0-extension is an extensioty, ¢, m) > t*(V, ¢, m). We call a metrian min-
imizableif (V,c,m) = t*(V, ¢, m) holds for any choice of a finite supersétof X and
non-negative functior. Since (.2) is a linear program whose constraint matrix is of size
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FIGURE 1. An orientation of a 4-cycle.

polynomial in|V|, this problem isolvable in stronglypolynomial time using a version of the
ellipsoid method 12]. This implies that for every minimizable metrig, (1.1) is solvable in
stronglypolynomial time as well. It turned othat the class of graphs whose path metrics are
minimizable is rather large.

THEOREMA ([9]). The metric ¢4 of a graph H is minimizable i&nd only if H is heredi-
tary modular and orientable.

Recall that a metrien on X is calledmodularif every three pointxi, X2, X3 € X have
amedian that is, a pointx € X satisfyingm(x;, X) + m(x, xj) = m(x, xj) for all 1 <
i < j < 3. AgraphH is calledmodularif its path metricdy is modular, anchereditary
modularif every isometric subgraph dfi is modular. (A subgrapid’ of H is isometricif
dp/(u, v) = dy(u, v) for all nodesu, v of H’; in other wordsdy is an extension ofly.)
Every modular graptH is bipartite; moreover, one can easily show that the cycle space of
H has a basis comprising only 4-cycles. We say tHats orientableif its edges can be
oriented so that opposite (non-adjacent) edges in every 4-cycle have opposite orientations
along the cycle; see Figurk For example, the complete bipartite gragh, is orientable
if and only if min{p,r} < 2; further the graph<3f3, that is, Kz 3 minus one edge is not
orientable (see Figur&h)). (In the orientable case, the orientation turns a modular graph into
the Hasseliagram of an ordered set in which every order-interval constitutes a modular lattice.
Indeed, every order-interval consists of the nodes on shortest paths between its end points, and
therefore [3, Theorem 4.7] applies.) Following [9], we call an orientable hereditary modular
graph aframe

In this paper we showhat TheoremA can be extended to give a complete characteriza-
tion of minimizable general metrics. Givenmetricm on X, its underlying graph Hm) is
obtained from the complete graph &hby deleting all edgesy such that there is a node
between xandy, i.e.,z # x, y andm(x, z) + m(z, y) = m(X, y). In other wordsH (m) is the
least connected graph ofiin which any two nodes are connected by a path shortestfor

We can now state the result of this paper.

THEOREM. A metric m is minimizable if andnly if m is modular and its underlying graph
H(m) is a frame.

2. PRELIMINARIES

We begin with reformulating the property that a metmicon a setX is minimizable in
polyhedral terms. We regard any semimetric on a finite sup&tset X as a vector of the

euclidean spaCR(\é) whose coordinates are indexed by the edges of the complete graph

on V. The set of extensions of to V forms a polyhedron irR(\zl), denoted byPy m. For
m', m” € Py m, we say that” decomposes fin Py m if m" > am” + (1 — 1)my for some
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mg € Pymand 0 < A < 1. If no extensiorm” # m’ decomposes?, thenn' is called

Vv
extreme. The extreme extensions are precisely the vertices of the doRipant RSF"‘) of
the polyhedrorPy . In particular, every 0-extension of is extreme.

It is easy to see that any extension that decomposes an optimal solution of (1.2) is an op-
timal solution as well. On the other hary linear programming arguments, every extreme
extension is a unique optimal solution of (1.2) for some (\2’) — R_. This implies the
following characterization of minimizabimetrics (cf. P]):

a metricm on X is minimizable if and only if forall finite superset¥ of X, (2.1)
every extreme extension ofto V is a 0-extension.

This property suggests the folling approach to proving our theorem: in order to decide
whether a given metrim is minimizable or not, it suffices to show that any extensioma$
decomposable by a 0-extension or to find an extreme extension which is not a 0-extension. In
order to verify that an extension is extreme we will use the fact that the extreme extensions
have maximal sets of shortest paths. More precisely ket a semimetric ov O X. A path

on V is a finite sequenc® = (vg, v1, ..., vk) of points of V. Thed-length dP) of P is

d(vg, v1) + - - - + d(vk—1, vk), andP is calledd-shortestf d(P) = d(vg, vk). We say thaP

is anX-pathonV if vg, vk € X, and denote the set dfshortestX-paths byZ(d) = Z(X, d).

It is not difficult to see that:

form’, m” € Py, m" decomposen? if and only if everym’-shortestX-path (2.2)
is m”’-shortest, i.eZ(m") € Z(m”); this inclusion is strict whem' # m”.

Next, in our proof we will use the fact that a modular metric and the path metric of its
underlying graph have the same set of shortest paths. For a connectedHgsagi, E) and
alength functior? : E — Ry, letdy , denote the semimetric a4, wheredy (X, y) is the
minimum£-length(P) = £(XoX1) + - - - + £(Xk—1Xk) Of a pathP = (X = Xo, X1, ..., Xk—1,
Xk = Y) betweenx andy in H. If H is the underlying graph of a metrim and ¢ is the
restriction ofm to E, thendy . is justm. For an edgexy of H(m), we therefore refer to
m(x, y) as the length oky. We say that two edges € of H are projectiveif there is a
sequence = e, €1, . .., & = € of edges such that every two consecutive edges 1 are
opposite in some 4-cycle ¢1. A maximal set of mutually projective edges is calledoabit.
Each bridgee of H constitutes an orbit consisting only ef(recall that abridge is an edge
whose removal disconnects).

PrRopPoOsSITIONT ([1]).

(i) If m isa modular metric, then the graph ¢h) is modular and m is constant on the
edges of each orbit of Kim).

(i) Conversely, if H= (X, E) is a modular graph and is a positivelength function on
E which is constant within each orbit of H, then the metri¢ dis modular, and the
metrics dy and dy ¢ have the same sets of shortest paths.

Finally, we will use the following properties of hereditary modular graphs.

PrROPOSITIONZ ([2]).

() A graphis hereditary modular if and only if it is bipartite and contains no isometric
cycles of length six or more.
(i) A modular but not hereditary modular graph contains an isometric 6-cycle.
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3. PROOF OF THE'ONLY IF' PART

Our method of proof is close to that for the corresponding part of Theorem 1.1 in [9].
Although the objects we deal with are mareneral, the constructions we apply in subsequent
proofs of this section are relatively simpler than those usef]in [

Let m be a metric onX. We will rely on the following simple fact.

LEMMA 1 ([9]). Let my be the estriction of m to a set X< X. Let n}, be an exteme
extension of mto a set \§ with Vo N X = Xg. Then there exists an extreme extensidwhm
to V = Vo U X which coincides with gon \p.

Indeed, define(x, y) to bemy(x, y) for x, y € Vo, m(x, y) for x, y € X, and mirffmy(x, z)
+m(z,y) : z € Xg} for x € Vg andy € X. One can easily check thdtis a metric onV
and, thereforedl is an extension of. Take any extreme extensionl of m that decomposes
d. Then the restriction af’ to Vo decomposesn;, in Py, m,. Sincemy is extreme irfPy, my,
the semimetrien’ coincides withmy on Vo, as required.

Next we will show that if the graphl (m) is not a frame, them has an extreme extension to
someV D X which is not a 0-extension. By (2.1), this would imply thats not minimizable.

LEMMA 2. Let H(m) be non-modular. Them is not minimizable

PrROOFE SinceH (m) is non-modular, by Propositiah(i), m is not modularither. So there
exist pointsxy, X2, x3 € X which do not hae a median fom. Let mg denote the restriction
of mto Xo = {X1, X2, X3}. Define the numbens,, rp,r3 > 0 so thatj 4+ rj = m(x;, x;) for
alll <i < j < 3; such numbers exist becausas a metric, and they are unique. Add a new
point x and define the distance fromto x; to ber; fori = 1, 2, 3. This gives an extension
my of mg to the setv’ = Xo U {x}. Evidently,m; is an extreme extension. By Lemriam
has an extreme extensiam to the setX U {x} that coincides oV’ with my,. Since the triplet
X1, X2, X3 does not have a mediam'(x, y) > O for ally € X, i.e.,m" is not a 0-extension.
Hencem is not minimizable. O

LEMMA 3. Let H(m) be modular bunhot orientable. Them is not minimizable.

PROOFE SinceH (m) is not orientable, it contairsMdbius sequencgorientation-reersing
dual cycle’), i.e., a circular sequené® = XoYo, €1 = X1V1, ..., & = XkYk = €p) of edges
such that:

(i) the edgesy, ..., &—1 are distinct;
(i) XX +1andy;yiy1 are edgesoH(m) fori =0,...,k—1;
(iii) xo = Yk andyp = X (yielding the ‘twist’);

see Figure2. Let Xg be the set of (different) nodes occurring amo@gyo, . . ., Xk—1, Yk—1,
and letmg be the restriction ofm to Xo. We extend the complete graph o to the graph
G’ = (V’, E') by addingk new nodeg;, ..., zx = zp and & new edges z, Y,z andz z ;1
fori =0,...,k—1.

Since the edgesp, €1, ..., &-—1 are projective, by Propositiofi(i) they have the same
length, sayx. Any two edgesx;xj+1 andy;yj+1 are opposite in a 4-cycle and, therefore,
they have the same length

Bi = m(X, Xi+1) = M(Yi, ¥i+1)  for i=0,.... k-1
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Yo Y1 Yk—1
€ €1 -1
X0 X1 Xk—1

(a) Generic instance.

FIGURE 2. Mbbius sequences.

We define a lengtfunction¢ on the edge sef’ by letting
L(vw) = m(v, w) for v, w € Xg;
L(Xiz) =L(YizZ) =a/2 for i=1,...,k;
0(ZZ+1) = Bi for i=1,...,k

We assert thatl = dg’ ¢ is an extension ofg. To see this, it suffices to verifg(P) >
m(v, w) for any simple pattP in G’ with end node®, w from Xg and all intermediate nodes
in V' — Xo. We may assume without loss of generality tRat= (v, z, .. ., zj, w) with v = X;
andw € {xj, yj} forsomeO<i < j <k—1.Then

j—1
UP)=0a/2+ ) Bp+a/2
pP=I
j-1
= LX) Yj) + Y E(XpXpt1)
pP=l
> m(Xj, w) + m(v, Xj) = M(v, w).
Take an extreme extensionj, of mg to V’ that decomposes. By Lemmal, there exists an
extreme extensiom’ of mto V = V’U X that coincides witim; onV’. We assert that' can-
not be a 0-extension. Indeed, consider the p&hs (X, z, Vi), Qi = (Xi, Z, Zi+1, Yi+1),
andR = (Vi, zi,z+1, Xi+1) fori = 1,...,k. By the definition of¢ and taking into account
that the pathgx;, vi, Vi+1) and(yi, Xi, Xi+1) arem-shortest by Propositiofi, we conclude
that

LP) =a=m(X,Yi),
Q) =a+ Bi =m(Xi, ¥i) +myi, Yir1) = MXi, Vi),
LR) =a+ B =myi, Xi) + MXi, Xi+1) = M(Yi, Xi+1)-

Hence,R, Qi, R € Z(V, m') by (2.2). Suppose that' is a 0-extension aofn. Then for each
newn nodez there exists a node; € X such thatm'(z, wi) = 0. The onlym-shortest path
on X betweenx; andy; is X; i, whencew; € {X;, ¥i}. Assumewg = Xo; the casavg = Yo is
analogous. Themw; = x1; otherwisew; = y1 would imply thatRy is notm'-shortest because
a + Bo+a > m'(yo, x1). Similarly, w, = x», and so on, until one arrives ap = xg = Yk,
obtaining a contradiction. Thus) is not minimizable. m]

LEMMA 4. Let H(m) be modular and orientableut not heeditary modular. Then m is not
minimizable.
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FIGURE 3. GraphG' in the proof of Lemmat-.

PROOF. By Propositior(ii) the graphH (m) contains an isometric 6ycleC = (sp, Si, - - -,
S5, Sp). Let mp be the restriction o to Xp = {s, ..., S5}. SinceC is isometric, each path
(S, S+1, S+2, S+3) is shortest inH (m) and, therefore, it isn-shortest (taking indices mod-
ulo 6). Ass 2 ands ;s are betweers; ands 3, and vice versa, it follows that tha-lengths
of opposite edges @ are equal:

m(So, 1) = M(S3, 1) =: «,
m(sy, ) = M(4, ) =: B,
m(sz, S3) = M(S5, Sp) =: .

We construct an extensian of mg as follows. Assumer < f, y. Consider the graph
G’ = (V/, E") with V' = Xg U {x, y} shown in Figure8 (G’ is the skeleton of the cube with
one diagonal added). Note that is not orientabldas it includesKg’g). Assign the following
lengthst(e) to its edge® € E' :

L(sS+1) =m(s,s41) for i=0,....5
U(X) = U(s5Y) = @,
£(soX) = L(s3Y) = B,
L(saX) = L(s1y) = v,
XYy =B+y—a.

Thenx andy are medians of the tripletso, S, 4} and{s;, s3, S5}, respectively. Note also
that £(xy) is as small as possible subject to the requirement thatthagth of each path
from s to 543 passing through the edge be at leasi(s, S+3) = o + 8 + y, taking into
account that < g, y. Thenmy = dg/ ¢ is an extension afig.

We first prove thatn; is an extreme extension, by showing thais uniquely determined
by the set of-shortestXp-paths inG’ cf. (2.2). To see the latter, note that the distances from
to 0, S, &4 are determined by thélengths of the pathé&y, X, $), (2, X, ), (%4, X, S), and
then the distances fromto s1, S3, S5 are determined by the patts, s, X, &), (S3, 4, X, S0),
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(S5, S0, X, S2). Similarly, one can uniquely characterize ttlistance fromy to eachs. Fi-
nally, the distance betweenandy is determined by thé-shortest patltis,, X, y, s5) because
my(S2, X) andmy(ss, y) have already been determined.

Let m’' be an extreme extension wfto X U {x, y} that coincides withmj, on V’. Suppose
thatm’ is a 0-extension, and letandv be the points oK obeyingm’(u, x) = m'(v, y) = 0.
We assert tha’ is isomorphic to the subgraph &f(m) induced byX U {u, v}. Indeed, since
x is a median of the tripled = {sp, S, &4} for m', the nodeu is a median oSfor m, and thus,
by PropositioriL, u is a median of5in H(m) as well. Sinc&lym) (s, S+2) = 2 for each, the
nodeu is adjacent inH (m) to each of the nodesy, s, s4. Similarly, v is adjacent with each of
the nodes, 53, S5. The fact thaC is isometric implies thatl # v and thatu, v ¢ C. Finally,
the pathP = (s, U, v, S5) on X is m-shortest because the paw, x, y, ss) is m’-shortest.
Thereforeu andv belong to a shortest path frosa to S5 in H(m). Sincedy m) (2, S5) = 3
andsp, u, v, S5 are distinctu andv are adjacent irH (m). Thus,H (m) contains a subgraph
isomorphic toG’ (which is non-orientable). This contradicts the orientabilityHbfm), and
hence we conclude that is not a 0-extension. ]

Lemmas2—4 cover all cases wheHl (m) is not a framegcompleting the proof ofhe ‘only
if’ part of the theorem.

4. PROOF OF THE'IF’ PART

The proof is based on the explicit construction of the tight span of the path metric of a frame
given in [9]. We review that construction, starting with necessary definitions.

An extensiond’ of a metricd on X to a (possiblyinfinite) setV 2 X is calledtight if no
other extension ofl to V is coordinatewise less than or equatto This is equivalent to the
property that for anyk, y € V, there ares, t € X such thad’(s, x) + d'(x, y) + d’(y,t) =
d(s, t).

It is shown in [8] (and independently in [6]) that for every metric spé¥ed), there exists
a unique metric spacg& (d) = (X, §) such thats is a tight extension ofl and any tight
extension(V, d’) of d is isometrically embeddable i (d), in the sense that there exists a
mappingy : V — X with the identity onX satisfyingd’(x, y) = 3(y(x), y(y)) for all
X,y € V. The space/ (d) is called thetight span(or injective envelope, offx-space) of
(X, d). WhenX is finite, X can be represented as a polyhedral complex of dimension at most
| X]/2; see [6].

WhenH = (X, E) is a frame, the tight spaff (dy) = (X, §) of its path metric is a
two-dimensional complex obtained in the following way. letA; B) denote the complete
bipartite graph with part&\ and B. We call a maximal subgrapk (A; B) of H abi-cliqueif
|Al, |B] > 2. SinceH is orientable, any bi-cliqu& (A; B) satisfies mif|A|, |B|} = 2. AsH
is bipartite and does not includ€; ; as an induced subgraph, it easily follows that:

the intersection of two bi-cliques ¢ is either empty,
or a single node, or a single edge. 4.1)

Therefore, every 4-cycle dfl is contained in precisely one bi-clique. Note thaery edgee
of H which is not a bridge is contained in a 4-cycdsbelongs to an isometric cycle, and by
Proposition2(i) all isometric cycles oH hawe length 4.

To construct the ground sé& = Xy, we turn each edge into a homeomorphic copy of
the segmenf0,1] ¢ R®. Each 4-cycleC = (v, v1, vo, v3, vo) (considered as a graph) is
extended to a two-dimensional diB€. Formally, D€ is a homeomorphic copy of the square



722 H.-J. Bandeltet al
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FIGURE 4. Creation of a folder.

[0,1] x [0, 1] C R?, the nodesy, v1, v2, v3 are identified with the points (0,0), (0,1), (1,1),
(1,0), respectively, and the edges with the corresponding segme@tandl another 4-cycle
C’ = (uop, Uz, Uy, U3, Ug) have three nodes in common, say,= u; fori = 0,1,2, we
identify the corresponding triangular halvesi and DC". More precisely, assuming that
vo, V1, U2 are represented in both discs by (0,0), (0,1), (1,1), respectively, we identify each
point in D€ coordinatized by, ) for 0 < &€ < < 1 with the corresponding poiri§, 1)
in D€', As a result, every bi-cliqu& = K(A; B) with A = {s, 2} andB = {t3, ..., t}
is turned into the spack (K), called thefolder of K, homeomorphic to the space obtained
by gluing togethek copies of the trianglé¢(&é, n) : 0 < &€ < n < 1} along the sidd(«, «) :
0 < a < 1}; see Figurel for k = 5. By 4.1, eachDC lies in one folderand twooverlapping
folders intersect in a node or an edge. This gives the desiret.set

The segment = F(e) (of length 1) associated with a bridgeof H carries its natural
metric; for convenience is also referred to as a bridge af. Each folderF = F(K) ob-
tained from a bi-cliqué&K of H is endowed with the metri&x inherited from the participating
(overlapping) squares. More precisely, any two pointy of F belong to at least one disc
D€ (for some 4-cycleC in K) with coordinatesx = (£, n) andy = (&, /). Thensg (X, y)
is defined to be thi-distances — £'| + | — 1'|; this number is the same for all disE&x°
containingx, y. So eachSg is well defined, and moreover, any two points (on a segment)
shared by different folderB andF’ are at the same distance with respedtg@andsg . The
desired intrinsic metrié = §y on X is defined in a natural way: fot,y € X, §(X,y) Iis
the infimum of the value8(P) = 8, (X0, X1) + - - - + 8F, (Xr—1, X) over all finite sequences
P = (X=X, X1,...,% = Y) in which each paiK;j_1, X; belongs to the same folder or the
same bridgd= . One can show thatcoincides withsg within each folder or bridgé .

THEOREMB ([9]). For aframe H, the metric spacety, 8y ) is precisely the tight span
T(dn).

We will use a generalization of this theorem given in [10] where the class of finite met-
rics with two-dimensional tight spans is completeharacterized. More precisely, consider a
modular metriom on X such thatH (m) is a frame. LetOq, ..., Ok be the orbits ofH (m).

We know thatm is constant within each orb®;, saym(e) = h; for all e € O;. Note that
all edges of a bi-cliqu& = K (A; B) with |A| + |B| > 5 are projective and, therefore, they
belong to a common orbit. On the other handKifis a 4-cycle, it may happen that the two
pairs of opposite edges belong to distinct orbits. Accordingly, we introduce a rf{8toio the
folder F = F(K) of a bi-cliqueK or on a bridgeF as follows.

() If K is a bi-cligue whose edges belong to one and the same ©yrpthen for each 4-
cycleC in K and pointsx, y € D€, defines?(x, y) = hisg(x, y) (i.e., s is obtained
by uniformly stretching the metri€= by a factor ofh; in ‘all directions’).
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(i) If K is abi-clique given by a 4-cyclevg, v1, v2, v3, vo) With vov1 € Oj andviv, € O;
(i # J), then forpointsx = (§,7n),y = (§',n") of F, defines¥(x, y) = hj|§é — &'| +
hiln — n'| (i.e., 8% is obtained by stretchingr by a factor ofh; in ‘vertical direction’
and by a factor ohj in ‘*horizontal direction’).

(iii) If e = uv is a bridge with{e} = O;, say, therthe segmenE = F (e) of length 1 with
its metricdg is stretched by the factor &, that is,S’,}‘ = hjdF.

These local metrics determine the intrinsic mesfiton the complext’y m) in an analogous
fashion as fosy above.

THEOREMC ([10Q]). If m is a modular metric such that #in) is a frame, theriZ (m) is
(XH(m), 8™).

(See also [4] for another proof.) Note that in [10] this theorem was proved for rational-valued
metrics; however, it remaingalid for real-valued metrics by standard rational approximation
and compactness arguments. Indeed, take an infinite seqtiertge. . . of positive rational-
valued functions on the edges bf = H (m) such that eacld; is constant within each orbit
of H and the sequence of metrioy = dy 4,1 = 1,2, ..., converges ton. Since the tight
spans7 (m;) have the same ground sE&g, one can see that the metrit$ converge to some
metricé on Xy. That(Xy, ) is indeed the tight span ofi follows from the obvious fact that
for every tight extensiom’ of m, there are tight extensions o 's which converge tan'.

We are now ready to show thatis minimizable, arguing in a way similar to [9]. Consider
any extensiorm’ of m to a finite superse¥ of X. We wish to show that there exists a O-
extensionm” of m to V such that everyn’-shortestX-path onV is m”-shortest. Them”
decomposest (by (2.2)), implying that every extreme extensiomofs a 0-extension, i.em
is minimizable(by (2.1)). Clearly we may assume that is coordinatewise minimal, i.eny’
is a tight extension ofm. Therefore, we may regakd as a subset of the ground sét= Xy m)
of the tight spar? (m) andn’ as the restriction of™ to V.

We construct a mapping : X — X which is identical onX and brings every™-shortest
X-path onX’ to anm-shortest path oX. Choose a feasible orientation bBf = H (m). Then
every bi-cliqueK of H has a unique node = vk such that all edges df incident tov are
oriented towards (if K = K({s1, S}; {t1, ..., t}) withr > 3, thenv is eithers; or s,). For
X € X, defineg as follows:

() if x € X, theng(x) = x;
(i) if x is aninterior point on an edge = yz € E (i.e.,x # vy, z) ande is orientedfrom y
to z, theng (X) = z;
(iii) if x is aninterior point of the folderF (K) for a bi-cligueK of H (i.e., x is notin the
boundaryK of F(K)), then¢(x) = vk.

(This mapping can be interpreted as follows. The orientation ahduces a partial order
< on X. The restriction of this order to any bi-cliqu¢ is extended to the foldefF (K) in
a natural way, by assuming that the smallest nodk @ coordinatized as (0,0) in the discs
of all 4-cycles ofK. This turnsF (K) into a complete modular lattice. Also the orderis
extended in a natural way within each bridgeXof Then¢ maps any poink of a folder or
bridge F to the smallest point fronX N F which is greater than or equal ¥oand, therefore,
the interior of F is mapped to the unique top point Bf)

LEMMA 5. Let P = (Xp, X1, ..., Xx) beasM-shortest X-patlon X'. Theng (P) = (¢ (Xo),
¢(X1), ..., »(Xk)) is an m-shortest path on X.
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PrROOF We may assume that each pajr1, X; belongs to a common folder bridge,
because wean always connect _; andx; by as™-shortest path in which each consecutive
pair satisfies this property.

We use induction on the distance between the egds of P in the graphH. The assertion
is trivial if dy (X0, Xk) < 1 (in casedy (Xg, Xk) = 1 all intermediate pointgy, ...xx_1 of P
lie on the edgepxk). Also the assertion easily follows by inductionRfis splittable which
means that some intermediate pointRfs in X — {Xg, Xk}. S0 assume thaty (Xg, Xx) > 2
and thatP is not splittable. Then none of the intermediate points lies on a bridge.

Consider the maximal initial subpafty = (X, X1, ..., Xgq) of P which is entirely con-
tained in some foldeF (K). Thenxq lies on the part of the boundary &f(K) formed by
the edges oK not incident toxg. Moreover, since the patRy is §™-shortest, it is con-
tained in the discD® for some 4-cycleC = (vo, v1, vo, v3, vg) in K. We may assume
that xo = vo, that xq lies on the edge (segment)v, of D€, and thatvg, v1 have the
coordinates (0,0) and (0,1), respectively. Ther=0&(xg) < &(Xx1) < --- < &(Xgq) and
0 =nxp) < n(xp) < --- < nXg) = 1, where(¢(x), n(x)) are the coordinates of a point
x in D€. By the construction of, any point of D¢ is mapped by to some node o€.
Considering the possible orientations®f one can see that in all cases for any € D,
if £(x) < &(y) andn(x) < n(y), then&(p(x)) < &@(y)) andn(@(x)) < n(g(y)). There-
fore, £(¢(X0)) < --- < E(@(Xg)) andn(¢(Xo)) < --- < n(p(Xg)), i.e., the pathp(Po) is
8M-shortest.

So we can delete the elemenis. . ., Xxq—1 from P, obtaining the path®’ = (xo, Xq, . .., Xk)
such thas™(P’) = §M(P) ands™ (¢ (P")) = §M(¢(P)). Recall thaip (xo) = vo and¢ (xq) €
{v1, v2}. Insertv, betweerxp andxq in P’, which results in the patR = (Xo, v1, Xq, - - ., Xk)

satisfyingd™(R) = §™(P’) ands™(¢(R)) = §M(¢(P’)). Sincedy (Xo, v1) = 1 anddy (Xo,
Xk) > 2, the pointvy of R is different from bothxg, k. Hence,R is a splittables™-shortest
path. By the above argument, we haV®& R) = m(xg, Xk), and the result follows. O

By this lemma, the metrien’ (being the restriction o™ to V) is decomposed by the
0-extensiomm” of m, defined bym”(x, y) = m(¢ (x), ¢(y)) for x, y € V. Thus,m is mini-
mizable. This completes the proof of the theorem.
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