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SUMMARY

microRNAs (miRNAs) bind to Argonaute (Ago)
proteins and inhibit translation or promote deg-
radation of mRNA targets. Human let-7 miRNA
inhibits translation initiation of mRNA targets
in an m7G cap-dependent manner and also ap-
pears to block protein production, but the mo-
lecular mechanism(s) involved is unknown and
the role of Ago proteins in translational regula-
tion remains elusive. Here we identify a motif
(MC) within the Mid domain of Ago proteins,
which bears significant similarity to the m7G
cap-binding domain of eIF4E, an essential
translation initiation factor. We identify con-
served aromatic residues within the MC motif
of human Ago2 that are required for binding to
the m7G cap and for translational repression but
do not affect the assembly of Ago2 with miRNA
or its catalytic activity. We propose that Ago2
represses the initiation of mRNA translation by
binding to the m7G cap of mRNA targets, thus
likely precluding the recruitment of eIF4E.

INTRODUCTION

microRNAs (miRNAs) and short interfering RNAs (siRNAs)

are �22 nucleotide (nt) noncoding RNAs that regulate

gene expression by binding to recognition elements (such

as miRNA recognition elements—MREs) in their RNA tar-

gets (reviewed in Ambros [2004], Bartel [2004], and Mello

and Conte [2004]). miRNAs and siRNAs assemble with

Argonaute proteins in effector complexes known as RNA-

induced silencing complexes (RISCs) or miRNPs (Ham-

mond et al., 2001; Mourelatos et al., 2002; Martinez et al.,

2002; Hutvagner and Zamore, 2002; Tomari and Zamore,

2005). Argonaute proteins are a large family of�95 Kda p-

roteins that contain two signature motifs known as PAZ

and PIWI and are found in most organisms (Carmell

et al., 2002). Further division of Argonaute proteins in
two subfamilies termed Ago and PIWI families is based

on sequence similarities between the founding members

of each subclass, the AGO1 protein from Arabidopsis

and the PIWI protein from Drosophila melanogaster, re-

spectively (Carmell et al., 2002). Ago proteins bind directly

to miRNAs and to siRNAs and are the core protein compo-

nents of RISCs/miRNPs (Hammond et al., 2001; Mourela-

tos et al., 2002; Martinez et al., 2002; Hutvagner and

Zamore, 2002; Tomari and Zamore, 2005; Murchison and

Hannon, 2004; Meister and Tuschl, 2004).

The molecular function of miRNAs and siRNAs depends

on which Ago protein they bind to and on the degree of

complementarity with their cognate MREs. If the comple-

mentarity of a miRNA or siRNA with its target mRNA is ex-

tensive and the miRNA assembles with catalytically active

Ago proteins, the target mRNA is cleaved at a position

across from the middle of the guide miRNA or siRNA

(Elbashir et al., 2001; Hutvagner and Zamore, 2002; Liu

et al., 2004; Meister et al., 2004). Biochemical, genetic,

and crystallographic studies of Ago proteins have shown

that the PIWI domain of Ago proteins adopts an RNase

H fold (Song et al., 2004; Parker et al., 2004; Yuan et al.,

2005) and in certain Ago proteins such as mammalian

Ago2 provides the endonuclease activity that catalyzes

miRNA- and siRNA-directed mRNA cleavage (Liu et al.,

2004; Meister et al., 2004).

Partial complementarity between miRNA and MREs

leads to translational repression and/or accelerated deg-

radation of the targeted mRNA, but the mechanism of this

regulation is not well understood. In human HeLa cells, the

let-7 miRNA inhibits the initiation of translation of a reporter

construct bearing MREs for let-7 in its 30-UTR and leads to

sequestration of the repressed mRNA in processing bod-

ies (PBs) in a cap-dependent manner (Pillai et al., 2005).

PBs are cytoplasmic bodies enriched in mRNA decay

enzymes, where translationally repressed mRNAs are

localized (Sheth and Parker, 2003). In PBs mRNAs can

undergo decapping and degradation (Sheth and Parker,

2003). There is evidence that some miRNA or siRNA-tar-

geted mRNAs can also be sequestered in PBs (Liu et al.,

2005b; Sen and Blau, 2005; Pillai et al., 2005). Under cer-

tain conditions, this sequestration can be reversible, as in
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the case of human hepatoma Huh7 cells, where miR-122

inhibits translation initiation of its endogenous CAT-1

mRNA target and sequesters it to PBs (Bhattacharyya

et al., 2006). Interestingly, this inhibition is reversed by

stress, which leads to release of the CAT-1 mRNA from

PBs and its recruitment to polysomes (Bhattacharyya

et al., 2006). In these instances, the targeted mRNA is

not destabilized or undergoes a secondary, usually limited

degradation (Bhattacharyya et al., 2006; Pillai et al., 2005).

Human let-7 miRNA also appears to block production of

a reporter protein that is expressed from a construct con-

taining the 30-UTR of lin-41 (which contains two MREs for

let-7), on actively translating ribosomes (Nottrott et al.,

2006). Interestingly, the stability of the targeted mRNA

may be influenced by the structure of the miRNA:MRE

heteroduplex. In HeLa cells, MREs for let-7 in the 30-UTR

of reporter constructs that contain a single bulge when

base-paired with let-7, are potent translational repressors

but do not destabilize the targeted mRNA (Kiriakidou et al.,

2004; Schmitter et al., 2006). In contrast, MREs that con-

tain two opposing loops when base-paired with let-7, in

addition to translational repression, lead to degradation

of the targeted mRNA. This is proposed to be a secondary

consequence of translational repression (Schmitter et al.,

2006).

In C. elegans, the lin-4 miRNA cosediments with its

mRNA target lin-14 in polysomes during repression, sug-

gesting that inhibition of translation may occur at a step

after initiation (Olsen and Ambros, 1999), although more

recent reports showed significant degradation of lin-14

mRNA during lin-4-mediated repression (Bagga et al.,

2005). Inhibition of translation after initiation by trans-

fected siRNAs has also been demonstrated in human cells

(Petersen et al., 2006). However, another group using the

same siRNAs and reporter constructs found that the inhi-

bition was at the level of translation initiation (Humphreys

et al., 2005). Finally, independently of translational repres-

sion, destabilization of mRNAs targeted by miRNAs may

also occur (Rehwinkel et al., 2005; Wu et al., 2006; Giral-

dez et al., 2006).

The protein complexes mediating miRNA-dependent

translational repression are not well defined. Ago proteins

are the leading protein candidates due to their engage-

ment with miRNAs. Artificial tethering of human Ago pro-

teins to the 30-UTR of reporter constructs leads to inhibition

of translation initiation without affecting the mRNA levels of

the reporters (Pillai et al., 2004; Pillai et al., 2005). Other

proteins, such as GW182, the decapping enzyme complex

Dcp1 and Dcp2, and RCK/p54, a general translation inhib-

itor, can also participate in miRNA-dependent translational

repression and mRNA degradation. (Liu et al., 2005a,

2005b ; Rehwinkel et al., 2005 ; Chu and Rana, 2006).

The 50 end of eukaryotic mRNAs is modified by the ad-

dition of a 7-methyl guanosine cap (m7GpppN; m7G cap;

where N is any nucleotide) in a 50-50 triphosphate linkage.

Eukaryotic initiation factor 4E (eIF4E) binds the m7G cap

directly, and this interaction is essential for the initiation

of translation of most eukaryotic mRNAs (reviewed in
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Merrick [2004], Gebauer and Hentze [2004], and Richter

and Sonenberg [2005]). Regulation of translation initiation

is the most common target of translational control, and

preventing binding of eIF4E to the m7G cap is a commonly

employed cellular strategy to inhibit translation (Richter

and Sonenberg, 2005; Gebauer and Hentze, 2004).

In this study we present evidence that a subdomain

within the middle domain of Ago2 demonstrates m7G

cap binding activity and is required for translational re-

pression but not for assembly with miRNA or endonucleo-

lytic activity. We propose that Ago2 represses the initia-

tion of mRNA translation by binding to the m7G cap of

mRNA targets, thus likely precluding the recruitment of

eIF4E.

RESULTS

A Cap-Binding-like Domain (MC) within Ago2

We undertook a bioinformatics approach to study the pri-

mary structure of Argonaute proteins. BLAST searches of

the Swiss-Prot database showed that there was significant

similarity between a portion of the middle (Mid) domain of

human Argonaute 2 (hAGO2) encompassing amino acids

468–520, which we term the MC domain, with the human

eIF4E. The MC domain is present in all four human and

mammalian Agos, in Agos from chordates (such as zebra-

fish), in Drosophila AGO1, and in C. elegans ALG-1 and

ALG-2. This domain is not found in Ago proteins of plants,

archaea, or fission yeast, in Drosophila AGO2 and in most

members of the C. elegans Ago protein family, with the ex-

ception of ALG-1 and ALG-2. In addition, the MC domain is

absent from proteins of the PIWI family (Figure 1 and our

unpublished data).

Biochemical and crystallographic analyses of m7G cap-

binding proteins show that the most important determi-

nants of cap recognition are p-p stacking interactions be-

tween the methylated base of the cap (m7G) and the side

chains of two protein aromatic residues. In the case of

eIF4E the m7G is sandwiched between the side chains

of two tryptophan residues, W56 and W102 (numbering

refers to the murine and human eIF4E) (Marcotrigiano

et al., 1997). Substitution of these tryptophan residues

with phenylalanines still supports cap binding but with re-

duced affinity (Altmann et al., 1988). In human 4EHP, an

eIF4E homologous protein with orthologs in nematodes

(IFE-4) and plants (nCBP), the m7G is sandwiched be-

tween the side chains of a tyrosine (Y78) and a tryptophan

residue (W124) (Rom et al., 1998). In cap-binding protein

20 (CBP20), the m7G is sandwiched between the side

chains of two tyrosine residues (Y20 and Y43 of human

CBP20) (Calero et al., 2002). In VP39, a vaccinia virus pro-

tein, the m7G is sandwiched between the side chains of

a tyrosine (Y22) and phenylalanine (F180) residues (Hodel

et al., 1997; Hu et al., 1999). It is interesting to note that

although CBP20 and VP39 do not show any homology

with eIF4E, they bind the cap by using the same strategy:

stacking interactions between aromatic residues and

the m7G.



Figure 1. Similarity between the MC

Domain of Ago Proteins and the m7G

Cap-Binding Domain of eIF4E

(A) Indicated sequences were aligned using

CLUSTALW. Arrows indicate the two trypro-

phan residues (W56 and W102) of eIF4E that

bind to the m7G cap and the conserved phenyl-

alanines (F) of Ago proteins. The two phenylal-

anines of hAgo2 (F470 and F505) that were mu-

tated to valines or tryptophans are underlined.

Accession numbers are listed in parentheses;

(*) indicates identical and (#) indicates similar.

(B) Alignments of cap-binding domains of

eIF4E homologs.
The similarity between the MC domain of Ago proteins

and eIF4E encompasses the m7G cap-binding domain

of eIF4E and is centered around W56 and W102, the two

tryptophan residues of eIF4E that are crucial for m7G bind-

ing. In Ago proteins these tryptophans are replaced by two

phenylalanines (F470 and F505), conserved aromatic res-

idues (Figure 1). This similarity between the cap-binding

domain of eIF4E and Agos prompted us to ask whether

Ago proteins might bind to the m7G cap.

Specific Interactions between Ago2

and a Cap-Analog Resin

To test whether human Ago2 associates with the m7G cap,

we transfected human 293T cells with vectors expressing

HA-tagged, wild-type Ago2 or mutant Ago2F470V;F505V

(Ago2-F2V2) where the two phenylalanines (F470 and

F505) of the Ago2 MC domain were substituted with va-

lines. The overexpressed, wild-type, and mutant Ago2 pro-

teins were purified with immunoaffinity chromatography
using agarose beads with covalently bound anti-HA anti-

body, followed by acidic elution of the HA-tagged proteins,

neutralization, and dialysis (Figure 2A). The eluted proteins

were then tested for binding to m7GTP sepharose or GTP-

sepharose. The binding buffer included heparin to elimi-

nate nonspecific interactions between the basic Ago2

protein and the negatively charged m7GTP or GTP. After

extensive washes, retained proteins were analyzed by

NuPAGE electrophoresis and western blotting. As shown

in Figure 2B, Ago2 (lane 2), but not Ago2-F2V2 (lane 7),

bound to the m7GTP sepharose. To further characterize

the specificity of this interaction, we carried out m7GTP

sepharose-binding reactions including m7GpppG cap an-

alog as a competitive inhibitor or nonmethylated GpppG.

As shown in Figure 2B, the presence of the methylated

cap analog competed with binding of Ago2 to the m7GTP

sepharose (lane 3), whereas the presence of nonmethy-

lated GpppG did not affect retention of the Ago2 to the

m7GTP sepharose (lane 4); wild-type Ago2 protein did not
Figure 2. Human Ago2 Binds to m7GTP

Sepharose, and This Interaction Is Abol-

ished by Mutations of the Two Conserved

Phenylalanines of the MC Domain in

Ago2-F2V2 Mutant

(A) Wild-type human lN-HA-Ago2 or point

mutant lN-HA-Ago2F470V;F505V (lN-HA-Ago2-

F2V2) was immunoaffinity purified and eluted.

(B) Purified proteins were incubated with

m7GTP sepharose, a cap analog resin, in the

presence or absence of m7GpppG competi-

tive inhibitor, or nonmethylated cap analog

(GpppG), or they were incubated with GTP se-

pharose. Lanes 1 and 6 show 5% of input frac-

tion used for binding. Bound proteins were

analyzed by Western blot with 16B12 anti-HA

monoclonal antibody.
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bind to nonmethylated GTP sepharose (lane 5). Ago2-

F2V2 mutant did not bind to m7GTP sepharose or GTP

sepharose under any conditions (Figure 1B, lanes 7–10).

Taken together these results demonstrate that Ago2

associates specifically with m7G and that the two con-

served phenylalanines of the MC domain are required for

binding.

The MC Domain of Ago2 Is Required for Translational

Repression but Not for Endonucleolytic Activity

The Filipowicz lab has previously shown that tethering of

all human Ago proteins (Ago1–4) to the 30-UTR of a Renilla

Luciferase reporter represses translation without affecting

the mRNA levels of the reporter, and this is similar to the

inhibition of translation initiation by let-7 miRNA (Pillai

et al., 2004, 2005). We employed the same strategy (shown

in Figure 4A) to test whether mutations of the two phenyl-

alanines (F470 and F505) of the MC domain of human

Ago2 also abolish the inhibitory effect of Ago2 in transla-

tion. Briefly, the tethering assay involves the creation of

a fusion protein between Ago2 or Ago2-F2V2 and the lN

peptide, a 22 amino acid peptide derived from the l

phage, which binds with high affinity to its cognate RNA-

binding site, known as BoxB (Legault et al., 1998). Five

BoxB sites are placed in the 30-UTR of an RL reporter con-

struct (RL-5BoxB), and the effect of the fusion proteins to

the reporter is assessed in cotransfection experiments (De

Gregorio et al., 1999; Pillai et al., 2004, 2005). An Ago2

construct that does not contain the lN peptide serves as

negative control, and an HA epitope placed at the amino

terminus of Ago2 or Ago-F2V2 serves as a tag to detect

the proteins by western blot and for immunoprecipitation

experiments.

First, we wanted to test whether the lN and HA tags

and more importantly the mutations of the two phenylala-

nine residues in Ago-F2V2 affected the activity of the

fusion proteins. Pillai et al. have previously shown that

lN-HA-Ago2 was catalytically active (Pillai et al., 2004).

We transfected HeLa cells with HA-Ago2, lN-HA-Ago2,

and lN-HA-Ago2-F2V2 constructs and performed immu-

noprecipitations with anti-HA antibody beads. We then

tested whether the immunoprecipitated proteins were

able to cleave a radiolabeled RNA target complementary

to the endogenous let-7 miRNA (let7-TP target, shown in

Figure 3A). As positive control, we used beads containing

endogenous human Ago2 protein obtained after immuno-

precipitation with the 2A8 anti-Ago monoclonal antibody.

We used anti-HA immunoprecipitates from mock-trans-

fected HeLa cells as negative control. As shown in Fig-

ure 3B, HA-Ago2, lN-HA-Ago2, and lN-HA-Ago2-F2V2

were able to cleave the let7-TP RNA target. These findings

indicate that the transfected proteins, including the Ago2-

F2V2 mutant, are able to assemble with endogenous let-7

in HeLa cells into catalytically active Ago2/miRNA ribonu-

cleoprotein complexes. Thus, the two point mutations in

Ago2-F2V2 did not perturb the folding or structural prop-

erties of Ago2.
1144 Cell 129, 1141–1151, June 15, 2007 ª2007 Elsevier Inc.
Next, we transfected HeLa cells with HA-Ago2, lN-HA-

Ago2, and lN-HA-Ago2-F2V2 along with RL-5BoxB and

firefly luciferase (FL; as normalization control) and quanti-

tated the levels of normalized RL/FL using standard lumi-

nometric assays. As shown in Figure 4B, lN-HA-Ago2

led to a�4-fold repression of RL-5BoxB, as previously re-

ported (Pillai et al., 2004, 2005). In contrast, lN-HA-Ago2-

F2V2 was unable to repress the expression of RL-5BoxB.

We next tested the protein levels of the transfected Ago2

constructs by probing HeLa cell lysates with anti-HA anti-

body and also with anti-b-tubulin antibody, as loading

control. As shown in Figure 4C, all transfected Ago2 pro-

teins were expressed in similar levels. Finally, we assayed

the mRNA levels of RL-5BoxB by Northern blotting using

radiolabeled riboprobes against RL and against FL (as

normalization control). As shown in Figure 4D, the mRNA

levels of RL-5BoxB were similar between the samples

that were transfected with HA-Ago2, lN-HA-Ago2, or

lN-HA-Ago2-F2V2. We also tested whether translation

initiated at an internal ribosome entry site (IRES), and

thus bypassing the cap, was subjected to repression by

Figure 3. lN-HA-Ago2-F2V2 Assembles with Endogenous

let-7 miRNA and Contains an Active Endonuclease Domain

(A) Schematic of the RNA target (let7-TP) and the base-pairing with let-

7a (blue); the [50-32P] of pCp is shown in red. Cleavage site is indicated

with red lightning bolt.

(B) The 30-end radiolabeled let7-TP RNA target was incubated with

beads containing indicated immunoprecipitated proteins; mock refers

to mock-transfected cells (negative control); 2A8 is an anti-Ago mono-

clonal antibody and served as positive control. The products of the

reactions were analyzed on 20% denaturing polyacrylamide gel.

Nucleotide sizes of the radiolabeled marker (M) are shown on the left.



Figure 4. lN-HA-Ago2 Represses Trans-

lation in an m7G Cap-Dependent Manner,

but lN-HA-Ago2 F2V2 Is Unable to

Repress Translation

(A) Schematic of the lN-tethering assay, the

capped RL-5BoxB reporter, and the Ago2

constructs used.

(B) HeLa human cells were cotransfected with

Renilla Luciferase RL-5BoxB bearing 5BoxB-

binding sites for lN in the 30-UTR, along with

firefly luciferase (FL; as a normalization control)

and the indicated Ago constructs. Results

shown are average values (with standard devi-

ations) of normalized RL/FL activities obtained

from six separate experiments.

(C) Protein levels of indicated HA-tagged Ago

proteins were analyzed by western blots (WB)

of lysates from transfected cells; b-tubulin

served as normalization control.

(D) mRNA levels of RL-5BoxB and FL (as a nor-

malization control) were analyzed by Northern

blot (NB) of lysates from transfected cells using

radiolabeled riboprobes and quantitated with

storage phosphor autoradiography. The ratio

of RL-5BoxB mRNA to FL mRNA is shown

under each lane.

(E) Schematic of the uncapped, IRES-driven,

reporter mRNA (EMCV-RL-5BoxB), and the

Ago2 constructs used.

(F) 293 human cells were first transfected with

the indicated Ago constructs and then trans-

fected with uncapped EMCV-RL-5BoxB mRNA

and FL mRNA (as a normalization control). Re-

sults shown are average values (with standard

deviations) of normalized RL/FL activities ob-

tained from four separate experiments.
tethered Ago2. As shown in Figures 4E and 4F, the trans-

lation of transfected reporter RNA containing the IRES of

the encephalomyocarditis virus (EMCV RL-5BoxB) was

not repressed by tethered Ago2.

These results demonstrate that translational repression

by Ago2 requires an m7G cap and cancellation of the cap

binding activity of Ago2 by mutations of the two conserved

phenylalanines (F470 and F505) of the MC domain abol-

ishes the effect of Ago2 on translation. The mRNA levels

of the reporter are not affected. Furthermore, these muta-

tions do not affect the ability of Ago2-F2V2 to assemble

with miRNAs or its catalytic activity. Thus, we have effec-

tively dissected the inhibitory activity of Ago2 in translation

from its endonucleolytic activity.

The MC Domain of Ago2 Mediates Inhibition

of Translation Initiation

We next analyzed the polysome profiles of RL-5BoxB

mRNA in HeLa cells transfected with HA-Ago2, lN-HA-

Ago2, or lN-HA-Ago2-F2V2. Cytoplasmic lysates from

transfected HeLa cells were subjected to sedimentation

on 10%–50% sucrose gradients in the presence of cyclo-

heximide (to preserve the association of translating ribo-

somes with mRNAs). The gradients were divided in 12

equal-volume fractions, and the position of soluble, light

particles, 40S subunits, monoribosomes, and heavier
C

sedimenting polyribosomes was monitored with continu-

ous A254 measurements during fractionation. Total RNA

was isolated and equal-volume aliquots were fractionated

by electrophoresis (Figure S1 shows the ethidium bro-

mide-stained gels) and analyzed by Northern blots using

radiolabeled riboprobes against RL-5BoxB mRNA or

DNA probes against endogenous b-actin mRNA. The sed-

imentation of b-actin mRNA is an accurate indicator for the

position and integrity of polysomes, since almost all b-

actin mRNA is actively translated. As shown in Figure 5A,

a significant fraction of RL-5BoxB mRNA was shifted to

the light fractions in the presence of lN-HA-Ago2, as pre-

viously reported Pillai et al. (2005), indicating a translation

initiation block. In contrast, in the presence of HA-Ago2 or

lN-HA-Ago2-F2V2, most of RL-5BoxB mRNA is found

toward the bottom of the gradient, cosedimenting with ac-

tively translating polysomes (Figures 5B and 5C). These

results (quantitation shown in Figure 5D) indicate that

mutations abolishing the cap-binding activity of Ago2

are also unable to negatively regulate translation of its

mRNA target.

Specific Aromatic Amino Acids in the MC Domain

of Ago2 Mediate Translational Repression

We next asked whether a single-valine mutation of the MC

domain of Ago2 (F470) would be sufficient to cancel the
ell 129, 1141–1151, June 15, 2007 ª2007 Elsevier Inc. 1145



Figure 5. lN-HA-Ago2-F2V2, Unlike

Wild-Type lN-HA-Ago2, Cannot Inhibit

Translation Initiation

(A)–(C) Polysomal profiles from HeLa cells that

had been cotransfected with Renilla Luciferase

RL-5BoxB (bearing 5BoxB-binding sites for

lN in the 30-UTR), along with lN-HA-Ago2 (A),

lN-HA-Ago2-F2V2 (B), or HA-Ago2 (C) were

analyzed by sucrose gradient sedimentation.

RNA was extracted from each fraction and

analyzed with probes for RL-5BoxB and en-

dogenous b-actin on Northern blots (NB).

(D) Quantitation of mRNA distribution plotted

as percent of total radioactivity present in

each lane.
translational regulatory activity of Ago2 and whether the

translational repressive activity of Ago2 would be affected

by substitution of one or both phenylalanines of the MC

domain (F470 alone or F470 and F505) by tryptophans

(mimicking the cap-binding domain of eIF4E, which utilizes

tryptophans to engage the cap). Using the tethering assay

described above, we transfected HeLa cells with lN-HA-

Ago2, lN-HA-Ago2-F1V1(Ago2F470V), lN-HA-Ago2-F2V2

(Ago2F470V;F505V), lN-HA-Ago2-F1W1(Ago2F470W), or lN-

HA-Ago2-F2W2(Ago2F470W;F505W) along with RL-5BoxB

and FL plasmids. As shown in Figure 6A, both lN-HA-

Ago2-F1V1 and lN-HA-Ago2-F2V2 were unable to repress

the translation of RL-5BoxB, whereas lN-HA-Ago2-F1W1

and lN-HA-Ago2-F2W2 restored translational regulatory
1146 Cell 129, 1141–1151, June 15, 2007 ª2007 Elsevier Inc.
activity, as compared to the wild-type lN-HA-Ago2. The

lN-HA-Ago2-F2V2 and lN-HA-Ago2-F2W2 mutants

were also tested in human 293T cells with similar results

(Figure 6B). These findings highlight the importance of

the two aromatic residues of the MC domain of Ago2 in

translational repression and support a model (Figure 7) in

which the MC domain of Ago2 protein exerts translational

repression via interaction with the m7G cap.

DISCUSSION

Our findings support a model where the MC domain of

Ago2 represses mRNA translation by binding to the m7G

cap of mRNA targets. We propose a model where binding
Figure 6. lN-HA-Ago2-F1V1 Single Mu-
tant Is Unable to Repress Translation

while Substitution of Phenylalanines

by Tryptophans Restores Translational

Repressing Activity of Ago2

(A and B) HeLa (A) or 293T (B) human cells were

cotransfected with Renilla Luciferase RL-

5BoxB bearing 5BoxB-binding sites for lN in

the 30-UTR, along with firefly luciferase (FL; as

a normalization control) and the indicated

Ago2 constructs. Results shown are average

values (with standard deviations) of normalized

RL/FL activities obtained from ten (A) or nine (B)

separate experiments. Protein levels of indi-

cated HA-tagged Ago proteins were analyzed

by western blots (WB) of lysates from trans-

fected cells; hnRNP-A1 served as normaliza-

tion control.



of the m7G cap by Ago2 precludes the recruitment of eIF4E

(Figure 7). In this model, the miRNA acts as a specificity de-

terminant to deposit the Ago2 protein onto mRNA targets

and provides a simple and direct way to explain inhibition

of translation initiation as seen by mammalian miRNAs

and first proposed by the Filipowicz lab (Pillai et al.,

2005). Additional mechanisms, such as inhibition of protein

production on actively translating ribosomes or ribosome

dropoff during elongation, and additional factors such as

GW182, Dcp1, Dcp2, and RCK/p54, may function with

Ago proteins and miRNAs for optimal repression in vivo.

An important feature of miRNA-directed translational

repression is its apparent cooperativity: increasing the

number of MREs in the 30-UTR of an mRNA target en-

hances translational repression (Doench et al., 2003; Bar-

tel, 2004; Pillai et al., 2005). Cooperativity is also seen when

multiple MREs for different miRNAs are found in the 30-UTR

of the same mRNA target, arguing that common factors,

notably Ago proteins, bound to all miRNAs are responsible

for the enhanced translational repression (Krek et al.,

2005). Indeed, this cooperativity is accurately recapitu-

lated in experiments with tethered Ago2; increasing the

number of BoxB sites in the 30-UTR of the reporter leads

to enhancement of the translational repression by lN-

HA-Ago2 (Pillai et al., 2004). We propose that multiple

MREs, within the same mRNA target, increase the number

of Ago2 molecules bound to the mRNA, thus increasing the

probability that they will interact with the m7G cap and aug-

ment translational repression by limiting availability of the

m7G cap to eIF4E. In this model, Ago2 binds to m7G cap

less efficiently than eIF4E. Therefore, optimal repression

Figure 7. Proposed Mechanism of Translational Repression

by Ago2

miRNA-guided deposition of Ago2 to an mRNA target leads to binding

of the MC domain of Ago2 to the mRNA cap (m7G) and thus exclusion

of eIF4E and inhibition of translation initiation.
C

by Ago2 and thus optimal eIF4E competition would require

multiple Ago2 molecules. Weak Ago2 binding to the m7G

cap also makes biological sense, since an Ago2 protein

with high affinity to the m7G cap would lead to generalized

and strong translational inhibition. Our model is also con-

sistent with weak translational repression of mRNA targets

that bear single MREs. Indeed, the vast majority of mRNA

targets contain a single MRE for any given miRNA and the

level of translational repression is typically modest (usually

1.5- to 2-fold repression) (Poy et al., 2004; Kiriakidou et al.,

2004; Stark et al., 2005; Farh et al., 2005). Such modest

and noncomplete repression may also explain why many

miRNAs cosediment with actively translating, endoge-

nous, mRNAs in polysomes (Nelson et al., 2004; Kim

et al., 2004; Maroney et al., 2006). Lastly, our findings do

not exclude additional mechanisms of miRNA and Ago

regulation, perhaps in the presence of additional factors

such as inhibition of protein production on actively trans-

lating ribosomes (Olsen and Ambros, 1999; Petersen et al.,

2006; Nottrott et al., 2006) or ribosome dropoff (Petersen

et al., 2006) during elongation or degradation of mRNAs

(Rehwinkel et al., 2005; Wu et al., 2006; Giraldez et al.,

2006).

An important observation is that the MC motif is not de-

tected in Ago proteins from organisms that do not contain

miRNAs, or do not use miRNAs for translational repres-

sion. Specifically, all mammalian Ago proteins and certain

Ago proteins from nematodes and flies, where transla-

tional repression by miRNAs has been demonstrated,

contain the MC domain, and thus these Ago proteins

may be capable of repressing translation. The MC domain

is present in Drosophila AGO1, which is required for

miRNA function, but not in Drosophila AGO2, which func-

tions predominantly in siRNA pathways (Kataoka et al.,

2001; Okamura et al., 2004), although more recent studies

show overlapping functions of Ago1 and Ago2 pathways

in flies (Meyer et al., 2006). The MC domain is present in

C.elegans ALG-1 and ALG-2 Ago proteins but absent

from the remaining 25 members of the C.elegans Argo-

naute protein family, consistent with the finding that there

are distinct RNAi-related pathways in nematodes, with

ALG-1 and ALG-2 proteins participating in the microRNA

pathway and all other nematode Argonaute proteins being

associated with exo- or endo-RNAi pathways (Yigit et al.,

2006). Finally, the MC domain is absent from Ago proteins

in organisms that do not have miRNAs such as fission

yeast and Archaea. Although the MC motif is not found

in Archaeal Agos, the structures of the P. furiosus and

A. aeolicus Ago proteins show that a major portion of the

Mid domain is accessible and thus may be capable of in-

teracting with other factors (Song et al., 2004; Yuan et al.,

2005). The MC domain is also not present in PIWI proteins,

which are almost exclusively expressed in the germline

(reviewed in Kim [2006]). Notably, tethering of HIWI, a hu-

man PIWI protein, in the 30-UTR of RL-5BoxB, is unable to

repress RL translation (Pillai et al., 2004). In contrast, teth-

ering of all human Ago proteins (Ago1–4) in the 30-UTR of

RL-5BoxB results in strong repression of RL translation
ell 129, 1141–1151, June 15, 2007 ª2007 Elsevier Inc. 1147



(Pillai et al., 2004). These studies along with the finding

that translational repression is unaffected in Ago2 null

mouse embryonic fibroblasts (Liu et al., 2004) also show

that the endonuclease activity of mammalian Ago proteins

is not required for translational repression. In flies, PIWI

proteins associate with repeat-associated siRNAs (Vagin

et al., 2006; Saito et al., 2006). Mammalian PIWI proteins

do not assemble with miRNAs or siRNAs but bind to

slightly larger RNAs termed piRNAs (Aravin et al., 2006;

Girard et al., 2006; Lau et al., 2006; Grivna et al., 2006a;

Watanabe et al., 2006). The mouse MIWI protein can asso-

ciate with m7GTP sepharose, suggesting that MIWI pro-

teins may also function in translation (Grivna et al., 2006b).

However, since the MC domain is absent from the MIWI

protein, it is possible that MIWI contains another cap-

binding motif or associates with the cap-analog resin indi-

rectly, via interactions with another cap-binding protein.

However, the biochemical function of MIWI proteins and

of piRNAs is unknown, and it is difficult to ascertain the

functional consequences of this interaction at this point.

Finally, the absence of the MC motif from plant Agos is in-

triguing and suggests that plant miRNAs may not be capa-

ble of repressing translation through interactions with the

cap (but other mechanisms cannot be excluded). So far

translational repression by miRNAs in plants has only

been implicated for the control of very few mRNA targets

(Aukerman and Sakai, 2003; Chen, 2004; Gandikota et al.,

2007), while most known plant miRNAs show extensive

complementarity with their targets, directing target mRNA

cleavage (Bartel, 2004; Schwab et al., 2005; Bonnet et al.,

2006).

EXPERIMENTAL PROCEDURES

Constructs and Generation of Point Mutants

The RL-5BoxB, lN-HA-Ago2, and HA-Ago2 constructs were a gener-

ous gift from R. Pillai and W. Filipowicz. pGL3 plasmid expressing FL

was purchased from Promega. Site-directed mutagenesis was per-

formed using the Quickchange XL kit (Stratagene). EMCV-RL-5BoxB

was generated by cloning the 5BoxB sequence in the 30-UTR of

EMCV-RL plasmid (a gift from R. Pillai and W. Filipowicz). Details are

provided in the Supplemental Experimental Procedures.

Cell Culture, Transfections, Luciferase Assays,

and Western Blots

Details are provided in the Supplemental Experimental Procedures.

Immunopurification of lN-HA-Ago2 and lN-HA-Ago2-F2V2

and m7GTP Sepharose Bindings

293T cells (2 3 107) were transfected with 16 mg of appropriate Ago2-

expressing plasmid (lN-HA-Ago2 or lN-HA-Ago2-F2V2). The next

day, the cells from each transfection were split 1:1 (in four 100 mm

dishes) and the cells were harvested 48 hr posttransfection. Immu-

noaffinity purification and elution of proteins was performed as previ-

ously described (Mourelatos et al., 2001). Briefly, the cell pellet was re-

suspended in lysis buffer (20 mM Tris-HCL at pH 7.5, 200 mM NaCl,

2.5 mM MgCl2, and 0.5% Triton X-100 plus protease inhibitors) lysed

by sonication and clarified. The supernatant was used for immunopre-

cipitations with 100 ml of anti-HA agarose resin (16B12 covalently

bound to the agarose matrix, Covance). The resin was then washed

extensively with the same buffer, except that the NaCl concentration

was raised to 500 mM. The final wash was with 20 mM Tris-HCL,
1148 Cell 129, 1141–1151, June 15, 2007 ª2007 Elsevier Inc.
100 mM NaCl, 2.5 mM MgCl2, and 1 mM DTT. Captured HA-tagged

Ago2 proteins were eluted with 0.1 M glycine at pH 2.5 and neutralized

with 1 M Tris-HCL at pH 8.0 and dialyzed against phosphate-buffered

saline (PBS). Eluates (20 ml) were incubated with 10 ml bed volume of

m7GTP sepharose (GE Healthcare) or with 10 ml bed volume of GTP-

sepharose (Axxora) in 200 ml of binding buffer (20 mM Tris-HCL, 100 mM

NaCl, 2.5 mM MgCl2, 1 mM DTT, and 1 mg/ml heparin) for 1 hr at

4�C using constant rotation. The beads were washed four times with

800 ml of 20 mM Tris-HCL, 100 mM NaCl, 2.5 mM MgCl2, and 1 mM

DTT, and the proteins were eluted with NuPAGE sample buffer (Invitro-

gen). As a competitive inhibitor, 75 mM of cap analog (m7GpppG; New

England Biolabs) was added to the binding reaction were indicated;

nonmethylated GpppG (NEB) was also used at 75 mM. Proteins were

analyzed by electrophoresis in 4%–12% NuPAGE (Invitrogen) and

visualized by western blot using the anti-HA monoclonal antibody

16B12 (Covance).

Cellular Fractionation, Polysome Analysis, and Northern Blots

These were performed as previously described (Pillai et al., 2005; Nel-

son et al., 2004), with few modifications. Forty-eight hours posttrans-

fection, cycloheximide (final 100 mg/ml) was added to the cells 5 min

prior to harvest to arrest translation elongation. For each gradient,

the cells from two 100 mm plates were washed with PBS containing

100 mg/ml cycloheximide, trypsinized (again in the presence of

100 mg/ml cycloheximide), combined in one 15 ml Falcon tube, and

washed twice with ice-cold PBS containing 100 mg/ml cycloheximide

and the cell pellet was lysed with 600 ml of lysis buffer (20 mM Tris-

HCL at pH 7.5, 200 mM NaCl, 5 mM MgCl2, 0.5% Triton X-100,

100 mg/ml cycloheximide, 0.1 U/ml Rnasin, complete EDTA-free prote-

ase inhibitors; Roche) on ice by passing the cells four times through

a 25G needle. The lysate was clarified by centrifugation at 14,000 g

for 10 min at 4�C. A 50 ml aliquot was removed for total RNA isolation,

and the clarified supernatant was loaded on 10%–50% sucrose gradi-

ents (prepared in a buffer containing 20 mM Tris-HCL at pH 7.5,

200 mM NaCl, and 5 mM MgCl2). All ultracentrifugations were carried

with a SW41 rotor at 4�C at 36,000 rpm for 2 hr. Twelve fractions were

collected with a Biocomp collector, and the A254 absorbance was

monitored with a UVM-II monitor (GE healthcare) using a Dataq DI-

158U USB data acquisition interface (Dataq) connected to a PC and

visualized using WinDaq software (Dataq). Total RNA was isolated

from each fraction using Trizol-LS (Invitrogen). The RNA pellet from

each fraction was digested with three units of RQ1 RNase-free DNase

I (Promega) for 15 min at 37�C and was then extracted with phenol/

chloroform. The RNA pellet was resuspended in 12 ml of Millipore

H2O, and one-half was used for Northern blots.

To generate riboprobes for hRL and FL, the cDNA inserts from RL-

5BoxB plasmids and pGL3 plasmids were amplified with PCR, using

reverse primers that contained the T7 RNA polymerase promoter

sequence. Primer sequences were the following for hRL: Forward,

hRL-F, 50-ATGGCTTCCAAGGTGTACGACCCCGAG; Reverse, hRL-

T7-R, 50-TAATACGACTCACTATAGGGTTACTGCTCGTTCTTCAGCA

CGCGCTC. Primer sequences were the following for FL: Forward,

FL-F, 50- ATGGAAGACGCCAAAAACATAAAGAAA; Reverse, FL-T7-

R, 50-TAATACGACTCACTATAGGGTTACACGGCGATCTTTCCGCCC

TTCTT. The PCR products were gel purified, and 200 ng of each

was used as template with the Strip-EZ T7 RNA kit (Ambion). In vitro

transcription was performed according to the manufacturer’s instruc-

tions with the following exceptions: 11 ml of [a-32P]UTP at 3000 Ci/

mmol and 2 ml of 67 mM cold UTP was used per reaction. To generate

radiolabeled DNA probe for b-actin, 30 ng of b-actin cDNA (Ambion)

was used in a random priming reaction with 5 ml of [a-32P]dCTP at

3000 Ci/mmol using the Ready-To-Go DNA labeling beads (GE Health-

care). RNA was denatured with glyoxal (Ambion), resolved on 1%

glyoxal-agarose gels, and electroblotted onto Hybond-N+ membranes

(GE Healthcare) using the Transblot SD apparatus (Biorad); electro-

blotting was with 0.53 TBE, at 20 V constant for 1 hr per gel transfer.

Membranes were blocked with Ultrahyb (Ambion) and hybridized



overnight with probes diluted in Ultrahyb at 68�C (riboprobes) or at

44�C (DNA probes for actin). Membranes were washed twice, 30 min

each with 23 SSC, 0.1% SDS at room temperature and twice, 1 hr

each, with 0.1X SSC, 0.1% SDS at 68�C (riboprobes) or at 44�C

(DNA probes for actin). Quantitation of signal was performed with stor-

age phospor autoradiography using a Storm 860 (GE Healthcare).

Stripping of the membranes was performed according to Ambion’s

instructions.

Immunoprecipitations and Cleavage Assays

These were performed essentially as described in (Kiriakidou et al.,

2005). For immunoprecipitation of endogenous Ago2 protein, 2 ml of

2A8 ascites was used with 20 ml of protein-G agarose (Invitrogen)

and HeLa cell lysate from one 100 mm dish. For immunoprecipitations

of HA-tagged Ago constructs, lysate from two 100 mm HeLa dishes

transfected with appropriate Ago2-expressing plasmid as described

above was used with 20 ml bed volume of anti-HA (16B12)-conjugated

agarose beads (Covance). Cells were lysed in 20 mM Tris-HCL at pH

7.5, 200 mM NaCl, 2.5 mM MgCl2, 0.5% Triton X-100, and 0.1 U/ml

RNasin, complete EDTA-free protease inhibitors, as described above.

The beads were washed extensively with the same buffer except that

the NaCl concentration was raised to 600 mM. The final washes were

with 20 mM HEPES-KOH at pH 7.5, 100 mM KCl, and 0.5 mM DTT.

Preparation of radiolabeled target complementary to let-7 and cleav-

age assays were performed as previously described (Kiriakidou

et al., 2005). RNA from cleavage assays was resolved using 20%

UREA-PAGE and visualized by autoradiography.

Supplemental Data

Supplemental Data include one figure and Supplemental Experimental

Procedures and can be found with this article online at http://www.cell.

com/cgi/content/full/129/6/1141/DC1/.
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