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Abstract

We give general intersecting brane solutions without assuming any restriction on the metric in supergravity coup
dilaton and antisymmetric tensor fields in arbitrary dimensionsD. The result is a general class of intersecting brane solut
which interpolate the non-extreme solutions of type 1 and 2. We also discuss the relation of our solutions to the know
brane solution.
 2004 Elsevier B.V.

Understanding classical solutions of supergravities in eleven and ten dimensions is an important su
the current particle physics. These are the low-energy effective theories of string and M theories. An im
class of solutions in such theories are the extended objects called branes[1–4], which have played significan
role in our study of non-perturbative effects in strings and field theories realized on the branes. In particu
extreme solutions give rise to non-extreme black holes and thus are very important in studying the prop
realistic black holes. Various supersymmetric and non-extreme solutions, and their intersections have bee
so far[5–18].

It has been known that there are two possible ways to construct non-extreme solutions, classified as ty
2 in Ref.[12]. Type 1 has the metric

(1)ds2 = e2A dx2
p+1 + e2B

(
dr2 + r2 dΩ2

d̃+1

)
,

where the dimension of the spacetime is given asD = p + d̃ + 3 and there is no restriction on the functionsA and
B except that they are functions ofr only. The usual extreme solutionsare obtained under the condition[5]

(2)(p + 1)A + d̃B = 0,

which can be understood as ‘no-force’ or BPS condition.By type 1 non-extreme solutions, we mean that
restriction(2) is removed.
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The metric for type 2 solutions is taken as

(3)ds2 = e2A
(−f dt2 + dx2

p

) + e2B
(
f −1 dr2 + r2 dΩ2

d̃+1

)
,

with the restriction(2). Here the functionf gives the non-extreme extension.
There have been many works on these two kinds of non-extreme solutions separately[3–19], but to the bes

of our knowledge neither clarification of the connection of these solutions nor attempt at interpolating these
classes of solutions have been made. In view of the importance of both these solutions, it is interesting to ex
there are more general solutions that include both classes of solutions and hence interpolate these in the
limits of the parameters. The purpose of this Letter is to show that this is indeed possible by deriving co
intersecting brane solutions without the restriction(2). We also discuss their relations to other known solutions

The method adopted here is a simple generalization of that developed by one of the present authors s
ago[15] for the type 2 solutions. There the field equations were solved with a simplifying ansatz which gene
the condition(2). What we show here is that it is in fact possible to solve the field equations without this a
and the result is a very general class of solutions that involve additional integration constants, and their ap
choices give both the solutions of type 1 and 2.

Let us start with the general action for gravity coupled to a dilatonφ andm differentnA-form field strengths:

(4)I = 1

16πGD

∫
dDx

√−g

[
R − 1

2
(∂φ)2 −

m∑
A=1

1

2nA!e
aAφF 2

nA

]
.

This action describes the bosonic part ofD = 11 orD = 10 supergravities; we simply dropφ and putaA = 0 and
nA = 4 for D = 11, whereas we setaA = −1 for the NS–NS 3-form andaA = 1

2(5− nA) for forms coming from
the R–R sector.1 To describe more general supergravities in lowerdimensions, we should include several scalar
as in Ref.[3], but for simplicity we disregard this complication in this Letter.

From the action(4), one derives the field equations

Rµν = 1

2
∂µφ∂νφ +

∑
A

1

2nA!e
aAφ

[
nA

(
F 2

nA

)
µν

− nA − 1

D − 2
F 2

nA
gµν

]
,

�φ =
∑
A

aA

2nA!e
aAφF 2

nA
,

∂µ1

(√−geaAφFµ1···µnA

) = 0,

(5)∂[µFµ1···µnA
] = 0.

The last equations are the Bianchi identities.
We take the following metric for our system:

(6)ds2
D = −e2u0f dt2 +

p∑
α=1

e2uα dy2
α + e2B

[
f −1 dr2 + r2 dΩ2

d̃+1

]
,

whereD = p+ d̃ +3, the coordinatesyα (α = 1, . . . , p) parametrize thep-dimensional compact directions and t
remaining coordinates of theD-dimensional spacetime are the radiusr and the angular coordinates on a(d̃ + 1)-
dimensional unit sphere, whose metric isdΩ2

d̃+1
. Since we are interested in static spherically-symmetric soluti

all the functions appearing in the metric as well as dilatonφ are assumed to depend only on the radiusr of the
transverse dimensions.

1 There may be Chern–Simons terms in the action, but they are irrelevant in our following solutions.
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If the resulting metric has null isometry, say, in the directiony1, we can incorporate the boost charge b
well-defined step[8,20]. Since this is quite straightforward, we simply concentrate on the diagonal metric(6).

For background field strengths, we take the most general ones consistent with the field equations and Bian
identities. The background for an electrically chargedqA-brane is given by

(7)F0α1···αqA
r = εα1···αqA

E′ (nA = qA + 2),

whereα1, . . . , αqA stand for the compact dimensions. Here and in what follows, a prime denotes a derivativ
respect tor.

The magnetic case is given by

(8)FαqA+1···αpa1···ad̃+1 = 1√−g
e−aAφεαqA+1···αpa1···ad̃+1r Ẽ′ (nA = D − qA − 2),

wherea1, . . . , ad̃+1 denote the angular coordinates of the(d̃ +1)-sphere. The functionsE andẼ are again assume
to depend only onr.

The electric background(7) trivially satisfies the Bianchi identities butthe field equations are non-trivial. On th
other hand, the field equations are trivial but the Bianchi identities are non-trivial forthe magnetic background(8).

In the above metric(6), the functionf is introduced to describe the type 2 non-extreme solutions. Here we
define non-vanishing function

(9)
p∑

α=0

uα + d̃B = lnX,

to describe type 2 non-extreme extension. In Ref.[15], the field equations(5) were solved with the simplifying
ansatz that the combination(9) vanishes. Although this was the only assumption there, we show here that it
mandatory and that the field equations(5) can be solved in a wider context without such ansatz.2

In order to solve the field equations(5), we need the Ricci tensors for our metric(6). The non-zero componen
are

R00 = e2(u0−B)f 2
[(

u0 + 1

2
lnf

)′′
+

(
f ′

f
+ X′

X
+ d̃ + 1

r

)(
u0 + 1

2
lnf

)′]
,

Rαβ = −e2(uα−B)f

[
u′′

α +
(

f ′

f
+ X′

X
+ d̃ + 1

r

)
u′

α

]
δαβ (α,β = 1, . . . , p),

Rrr = −
(

B + 1

2
lnf + lnX

)′′
−

p∑
α=0

(u′
α)2 − d̃(B ′)2 +

(
X′

X
− d̃ + 1

r

)
B ′

− f ′

2f

(
2u′

0 + f ′

f
+ X′

X
+ d̃ + 1

r

)
,

(10)Rab = −f

[
(B + ln r)′′ +

(
f ′

f
+ X′

X
+ d̃ + 1

r

)
(B + ln r)′

]
gab + d̃

r2gab,

wheregab is the metric for(d̃ + 1)-sphere of radiusr.
For both cases of electric(7) and magnetic(8) backgrounds, we find that the field equations(5) are cast into

(11)

(
u0 + 1

2
lnf

)′′
+

(
f ′

f
+ X′

X
+ d̃ + 1

r

)(
u0 + 1

2
lnf

)′
= 1

f

∑
A

D − qA − 3

2(D − 2)
SA(EA

′)2,

2 This deformation was also considered in Ref.[17] for a single brane and in[18] for intersecting branes in pp-wave spacetime. There
functionf (r) in the metric was put to 1.
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(12)uα
′′ +

(
f ′

f
+ X′

X
+ d̃ + 1

r

)
uα

′ = 1

f

∑
A

δ
(α)
A

2(D − 2)
SA(EA

′)2 (α = 1, . . . , p),

(
B + 1

2
lnf + lnX

)′′
+

p∑
α=0

(u′
α)2 + d̃(B ′)2 −

(
X′

X
− d̃ + 1

r

)
B ′ + f ′

2f

(
2u′

0 + f ′

f
+ X′

X
+ d̃ + 1

r

)

(13)= −1

2
(φ′)2 + 1

f

∑
A

D − qA − 3

2(D − 2)
SA(EA

′)2,

(14)f

[
(B + ln r)′′ +

(
f ′

f
+ X′

X
+ d̃ + 1

r

)
(B + ln r)′

]
− d̃

r2
= −

∑
A

qA + 1

2(D − 2)
SA(EA

′)2,

(15)r−(d̃+1)X−1(rd̃+1f Xφ′)′ = −
∑
A

εAaA

2
SA(EA

′)2,

(16)
(
rd̃+1XSAEA

′)′ = 0,

whereA denotes the kinds ofqA-branes and we have defined

(17)SA ≡ exp

(
εAaAφ − 2

∑
α∈qA

uα

)
,

and

(18)δ
(α)
A =

{
D − qA − 3
−(qA + 1)

for

{
yα belonging toqA-brane andα = 0,

otherwise,

andεA = +1 (−1) corresponds to electric (magnetic) backgrounds. For magnetic case we have dropped the
from EA(r). Eqs. (11), (12), (13) and (14)are the 00,αα, rr andab (angular coordinates) components of t
Einstein equation inEq. (5), respectively. The last one is the field equation for the field strengths of the electr
backgrounds and/or Bianchi identity for the magnetic ones.

FromEq. (16), one finds

(19)rd̃+1XSAEA
′ = cA,

wherecA is a constant. With the help ofEq. (19), Eq. (11)can be rewritten as

(20)

[
rd̃+1f X

(
u0 + 1

2
lnf

)′]′
=

∑
A

D − qA − 3

2(D − 2)
cAE′

A,

which can be integrated to give

(21)fX

(
u0 + 1

2
lnf

)′
=

∑
A

D − qA − 3

2(D − 2)
cA

EA

rd̃+1
+ c0d̃

r d̃+1
,

wherec0 is an integration constant. Similarly, we find thatEqs. (12) and (15)give

fXuα
′ =

∑
A

δ
(α)
A

2(D − 2)
cA

EA

rd̃+1
+ cαd̃

rd̃+1
(α = 1, . . . , p),

(22)fXφ′ = −
∑
A

εAaA

2
cA

EA

rd̃+1
+ cφd̃

rd̃+1
,
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wherecα (α = 1, . . . , p) andcφ are again integration constants. We find fromEq. (14)the result

(23)fX(B + ln r)′ − d̃

r d̃+1

∫
rd̃−1X dr = −

∑
A

qA + 1

2(D − 2)
cA

EA

rd̃+1
+ cbd̃

rd̃+1
,

wherecb is another integration constant. Theseequations involve an unknown functionX(r) and appear intractable
However,X(r) is not an independent variable but is given by(9). We now show thatX(r) and f (r) can be
determined from a constraint and that other functionsuα(r) (α = 0, . . . , p), φ(r) andB(r) can then be solve
consistently together with the electric (magnetic) backgroundEA(r).

Using the definition ofX(r), we can combineEqs. (11), (12) and (14)appropriately to derive the constrai
satisfied byX(r) andf (r):

(24)
X′′

X
+

(
3

2

f ′

f
+ 2d̃ + 1

r

)
X′

X
+ 1

2

f ′′

f
+ (3d̃ + 1)

2r

f ′

f
+ (f − 1)

f

d̃2

r2 = 0.

Note that there are terms independent ofX. SinceX andf can be regarded as independent functions, it is na
to set theX-independent part to 0:3

(25)f ′′ + (3d̃ + 1)

r
f ′ + 2(f − 1)

d̃2

r2 = 0.

Solving this second order differential equation givesf (r) = (1 − µ1

rd̃
)(1 − µ2

rd̃
) with two integration constantsµ1

andµ2. It turns out, however, that the parameterµ2 can be absorbed if we redefine the coordinate asr̃ d̃ = rd̃ − µ2
andµ1 is shifted byµ2.4 So we can simply putµ2 = 0 without loss of generality and set

(26)f (r) = 1− µ

rd̃
,

which characterizes the type 2 non-extreme extension. UsingEq. (26)in Eq. (24), we find

(27)X(r) = 1− (ν − 1)
(f 1/2 − 1)2

2
√

f
,

whereν is yet another integration constant. The choiceν = 1 reduces the solution to type 2 non-extreme ca
Thus this parameterν introduces another direction of non-extremality. Note that the functionX should contain
in general two arbitrary constants, one of which is eliminated by the requirement of asymptotic flatnessuα(r)

(α = 0, . . . , p), φ(r), B(r) → 0 for r → ∞ requiresX(r) → 1.
UsingEqs. (14), (21), (22), (23) and (27)in (13)yields(∑

A

D − qA − 3

2(D − 2)
cA

EA

rd̃+1
− 1

2
f ′X + c0d̃

r d̃+1

)2

+
p∑

α=1

(∑
A

δ
(α)
A

2(D − 2)
cA

EA

rd̃+1
+ cαd̃

rd̃+1

)2

+ d̃

(
−

∑
A

qA + 1

2(D − 2)
cA

EA

rd̃+1
+ 1

r

[
ν − (ν − 1)f 1/2 − f X

] + cbd̃

rd̃+1

)2

3 There is the freedom of reparametrization of the coordinates in the metric(6). Thisf (r) corresponds to a choice of gauge without any l
of generality. This choice is useful to make the interpolation between the solutions of type 1 and 2 manifest.

4 This shift is not a symmetry of the system, and it may appear strange thatµ2 can be absorbed by this. We have actually solved all
field equations keepingµ1 andµ2 and found that the parameterµ2 could be eliminated by this shift after cancellation of various factors.

example, if we putf (r) = f1(r)f2(r) into Eq. (24)with fi(r) = 1− µi

rd̃
(i = 1,2), we getX = 1−(ν −1)

(f
1/2
1 −f

1/2
2 )2

2
√

f1f2
. After the shift, we find

f1(r) = (1− µ1−µ2˜ )f2(r), andf2(r) drops out ofX(r), givingEq. (27). The same observation is also made for the solutions found in Ref.[13].

r̃d
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+ 1

2

(
−

∑
A

εAaA

2
cA

EA

rd̃+1
+ cφd̃

rd̃+1

)2

+ f ′X
(∑

A

D − qA − 3

2(D − 2)
cA

EA

rd̃+1
− 1

2
f ′X + c0d̃

r d̃+1

)

− fX

(
f ′

f
+ 2

X′

X

)(
−

∑
A

qA + 1

2(D − 2)
cA

EA

rd̃+1
+ 1

r

[
ν − (ν − 1)f 1/2 − fX

] + cbd̃

rd̃+1

)

+ fX2
[
f ′′

2
+ f

(
X′

X

)′
+ d̃ − 1

2r
f ′ +

(
f ′

2
− f

r

)
X′

X
− (f − 1)

d̃

r2

]

(28)= 1

2
f X

∑
A

cA

rd̃+1
EA

′.

This equation must be valid for functionsEA of r.
With the help ofEqs. (26) and (27), theEA-independent part ofEq. (28)yields a constraint condition amon

the constants introduced above:

(29)
p∑

α=0

c2
α + d̃c2

b + 1

2
c2
φ − d̃ + 1

2d̃

(
ν − 1

2

)
µ2 = 0,

where we have redefinedcb by a constant shift (cb → cb − µν

2d̃
). TheEA-dependent part ofEq. (28), on the other

hand, can be rewritten as

(30)
∑
A,B

[
MAB

cA

2
+

(
rd̃+1f X

(
1

EA

)′
+ c̃A

EA

)
δAB

]
cB

2

EAEB

r2d̃+2
= 0,

where

(31)MAB =
p∑

α=0

δ
(α)
A δ

(α)
B

(D − 2)2 + d̃
(qA + 1)(qB + 1)

(D − 2)2 + 1

2
εAaAεBaB,

and

(32)c̃A = 2d̃

p∑
α=0

δ
(α)
A

D − 2
cα − 2d̃2cb

qA + 1

D − 2
− d̃εAaAcφ.

Note that forν < 1/2, Eq. (29)tells us thatcα = cb = cφ = µ = 0, and this does not give non-trivial solutio
The same is true forν = 1/2. Hence we restrict ourselves toν > 1/2. SinceMAB is constant,Eq. (30)cannot be
satisfied for arbitrary functionsEA of r unless the second term inside the square bracket is a constant. Subs
Eqs. (26) and (27)into this differential equation, one obtains the solution

(33)EA(r) = NA

1− βA(1− g−αA)
,

whereβA andNA are integration constants, and

(34)g(r) =
∣∣∣∣ f 1/2 − ρ

ρf 1/2 − 1

∣∣∣∣, αA = 2

d̃
√

2ν − 1µ
c̃A,

where parameterρ is defined as

(35)ρ ≡ ν − 1

ν + √
2ν − 1

.
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by
Eq. (30)has two implications if we take independent functions for the background fieldsEA(r). In this case,
first puttingA = B in Eq. (30), we learn that

(36)
cA

2
= c̃A(βA − 1)

NAMAA

≡ c̃A(βA − 1)

NA

D − 2

∆A

,

where∆A is given in

(37)∆A = (qA + 1)(D − qA − 3) + 1

2
a2
A(D − 2).

By use ofEqs. (26), (27), (33)–(37), we integrateEqs. (21)–(23)to obtain the results

u0(r) = −
∑
A

D − qA − 3

∆A
lnHA + 2c0√

2ν − 1µ
lng − 1

2
lnf,

uα(r) = −
∑
A

δ
(α)
A

∆A

lnHA + 2cα√
2ν − 1µ

lng (α = 1, . . . , p),

φ(r) =
∑
A

εAaA
D − 2

∆A

lnHA + 2cφ√
2ν − 1µ

lng,

(38)B(r) =
∑
A

qA + 1

∆A

lnHA + 2cb√
2ν − 1µ

lng + 1

d̃

(
1

2
lnf + lnX

)
,

whereHA(r) is given by

(39)HA(r) = NAE−1
A gαA = [

1− βA

(
1− g−αA

)]
gαA,

and the integration constants are fixed by the requirement that the metrics approach to 1 asymptotically.
UsingEq. (38), one can write down the expression forSA(r) as

(40)SA(r) = N2
AE−2

A fgαA .

Now, usingEqs. (19) and (36), we can determine the normalization constantNA as

(41)N2
A = 2(βA − 1)

βA

(D − 2)

∆A

.

We also have

(42)
p∑

α=0

cα + d̃cb = 0,

from the relation(9). By use of this relation,̃cA in Eq. (32)can also be written as

(43)c̃A = d̃

(
2

∑
α∈qA

cα − εAaAcφ

)
.

Our metric and background fields are thus finally given by, after putting all the warp factors etc. that we get
solving the Einstein equations,

ds2
D =

∏
A

H
2qA+1

∆A

A

[
−

∏
A

H
−2D−2

∆A

A g4c0/(
√

2ν−1µ) dt2 +
p∑

α=1

∏
A

H
−2

γ
(α)
A
∆A

A g4cα/(
√

2ν−1µ) dy2
α

+ (
fX2)1/d̃

g4cb/(
√

2ν−1µ)
(
f −1 dr2 + r2 dΩ2

d̃+1

)]
,
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(44)EA(r) = ±
√

2
βA − 1

βA

D − 2

∆A

H−1
A gαA,

where we have defined

(45)γ
(α)
A =

{
D − 2
0

for
{

yα belonging toqA-brane,
otherwise.

The second condition following fromEq. (30)is MAB = 0 for A �= B. As shown in Ref.[15], this leads to the
intersection rules for two branes. IfqA-brane andqB-brane intersect over̄q (� qA,qB ) dimensions, this gives

(46)q̄ = (qA + 1)(qB + 1)

D − 2
− 1− 1

2
εAaAεBaB.

For eleven-dimensional supergravity, we have electric 2-branes, magnetic 5-branes and no dilatonaA = 0. The rule
(46) tells us that 2-brane can intersect with 2-brane on a point(q̄ = 0) and with 5-brane over a string(q̄ = 1), and
5-brane can intersect with 5-brane over 3-brane(q̄ = 3), in agreement with Refs.[9,10].

The solutions(44) are the general intersecting branes which interpolate non-extreme solutions of type 1
As mentioned before, forν = 1, we haveX = 1, g = f 1/2 and the above solutions give generalized non-extr
solutions of type 2 withp + m + 2 parameterscα (α = 0, . . . , p), cb, cφ , βA (A = 1, . . . ,m) andµ restricted by 2
constraints(29) and(42). If we further choosec0 = µ

2 , cb = − µ

2d̃
, cα = cφ = 0 (α = 1, . . . , p), they reduce to the

known solutions (see, for example,[15]).
It appears that they no longer give non-extreme solutions of type 1 if we putµ = 0 since then the non-extrem

functionX in (27) becomes 1. However, we can manage to derive such solutions as follows. Consider th
sendingµ to zero. If we keep the combination

(47)
ν − 1

8
µ2 ≡ r2d̃

0 ,

finite, we get non-trivial functions

(48)X(r) = 1−
(

r0

r

)2d̃

, g(r) = 1− (r0/r)d̃

1+ (r0/r)d̃
.

It is then easy to see that the solutions reproduce the non-extreme ones of type 1 discussed in Ref.[18].
It would be instructive to explicitly give the single brane case. The metric is

ds2
D = H

2(p+1)
∆

[
H−2D−2

∆

(
−g4c0/(

√
2ν−1µ) dt2 + g4cu/(

√
2ν−1µ)

p∑
α=1

dy2
α

)

(49)+ (f X2)1/d̃g4cb/(
√

2ν−1µ)
(
f −1dr2 + r2dΩ2

d̃+1

)]
,

where we have setc1 = c2 = · · · = cp ≡ cu, c̃ = d̃[2c0 + 2pcu − εacφ], and the other quantities∆,H(r) andα are
given in (37), (39) and(34) with the subscriptA (which is irrelevant for a single brane) removed andq replaced
by p, respectively. There are five independent parameters in the above single brane metric. Namely we ha
integration constantsc0, cu, cb, cφ , β , ν andµ restricted by the two constraints fromEqs. (29) and (42).

Our single brane solution includes that of Ref.[17] as a special case which is a four parameter solution. I
consider the limitµ → 0 keepingEq. (47)finite, our solution(49) reduces to a single brane case withX(r) and
g(r) in Eq. (48), andα = 1

2d̃r d̃
0

c̃, with constraints

(50)c2
0 + pc2

u + d̃c2
b + 1

2
c2
φ − 4

d̃ + 1

d̃
r2d̃
0 = 0,
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and (42). This solution contains four independent parameters (c0, cu, cb, cφ , β and r0 restricted by the two
constraints). It is easy to transform our solution to the complete solution of[17] with redefinition of parameters.

To summarize, we have given very general intersecting brane solutions without assuming any restrictio
metric such as(2). The result is a general class of the brane solutions which interpolate the non-extreme solu
type 1 and 2, which are expected to give further insight into the non-perturbative effects in string and field th
The method we use is a simple generalization of the one in Ref.[15], which can also be applied to time-depend
cases as well[21]. It is gratifying to find that the method is so useful.

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research Nos. 12640270 and 02041. Y
also acknowledges the support from the National Natural Science Foundation of China under grant No. 10275

References

[1] A. Dabholkar, G. Gibbons, J.A. Harvey,F. Ruiz Ruiz, Nucl. Phys. B 340 (1990) 33.
[2] G.T. Horowitz, A. Strominger, Nucl. Phys. B 360 (1991) 197.
[3] H. Lü, C.N. Pope, E. Sezgin, K.S. Stelle, Nucl. Phys. B 456 (1995) 669, hep-th/9508042.
[4] M.J. Duff, H. Lü, C.N. Pope, Phys. Lett. B 382 (1996) 73, hep-th/9604052.
[5] M. Duff, R.R. Khuri, J.X. Lu, Phys. Rep. 259 (1995) 213, hep-th/9412184.
[6] V.D. Ivashchuk, V.N. Melnikov, Class.Quantum Grav. 18 (2001) R87, hep-th/0110274.
[7] M.J. Duff, J.X. Lu, Nucl. Phys. B 416 (1994) 301, hep-th/9306052.
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