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Abstract

We give general intersecting brane solutions without assuming any restriction on the metric in supergravity coupled to a
dilaton and antisymmetric tensor fields in arbitrary dimensibng he result is a general class of intersecting brane solutions
which interpolate the non-extreme solutions of type 1 and 2. We also discuss the relation of our solutions to the known single
brane solution.

00 2004 Elsevier B.V. Open access under CCRY license.

Understanding classical solutions of supergravities in eleven and ten dimensions is an important subject in
the current particle physics. These are the low-energy effective theories of string and M theories. An important
class of solutions in such theoriesedahe extended objects called braiis4], which have played significant
role in our study of non-perturbative effects in strings and field theories realized on the branes. In particular non-
extreme solutions give rise to non-extreme black holes and thus are very important in studying the properties of
realistic black holes. Various supersymmetric and non-extreme solutions, and their intersections have been studied
so far[5-18]

It has been known that there are two possible ways to construct non-extreme solutions, classified as type 1 and
2 in Ref.[12]. Type 1 has the metric

2 2A 2 2 2 2 2
dsc=e dxp+1+e B(dr +r d“Q(ZJrl)’ (1)

where the dimension of the spacetime is givetas p + d + 3 and there is no restriction on the functiohsnd
B except that they are functions obnly. The usual extreme solutioase obtained under the conditif]

(p+1)A+dB=0, (2)

which can be understood as ‘no-force’ or BPS conditiBy.type 1 non-extreme solutions, we mean that the
restriction(2) is removed.
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The metric for type 2 solutions is taken as

ds? =P (= fdi® +dx]) + 2P (frar? +r2d 22 ), 3)
with the restriction2). Here the functiory gives the non-extreme extension.

There have been many works on these two kinds of non-extreme solutions sep@at®ly but to the best
of our knowledge neither clarification of the connectiontége solutions nor attempt at interpolating these two
classes of solutions have been made. In view of the importance of both these solutions, it is interesting to examine if
there are more general solutions that include both classes of solutions and hence interpolate these in the particula
limits of the parameters. The purpose of this Letter is to show that this is indeed possible by deriving complete
intersecting brane solutions without the restrict{@ah We also discuss their relations to other known solutions.

The method adopted here is a simple generalization of that developed by one of the present authors some time
ago[15] for the type 2 solutions. There the field equations were solved with a simplifying ansatz which generalizes
the condition(2). What we show here is that it is in fact possible to solve the field equations without this ansatz,
and the result is a very general class of solutions that involve additional integration constants, and their appropriate
choices give both the solutions of type 1 and 2.

Let us start with the general action for gravity coupled to a dilgt@ndm differentn 4-form field strengths:

[ sy k= 5002 - 3 5 e @

1 m
2]
167Gp et 2n4!
This action describes the bosonic partot= 11 or D = 10 supergravities; we simply drepand putay, = 0 and
na =4 for D =11, whereas we sety = —1 for the NS—NS 3-form ands = %(5 —ny) for forms coming from
the R—R sectot. To describe more general supergravities in logienensions, we should ihae several scalars
as in Ref[3], but for simplicity we disregard this complication in this Letter.
From the actior{4), one derives the field equations

2 na—1 5
eaA¢|:nA(FnA)uu ) FnAg/”]’

1
2ny!

1
Ryv = 50,0006 + XA:

— A axp 2
0= 2 i

8H1(\/__geaA¢FlLl"'MnA) =0,
O Frayopin )1 = 0. ®)

The last equations are the Bianchi identities.
We take the following metric for our system:

P
dsp=—e?0fdi?+ ) Pedyl+ e [frdr? +r2d 22 ], (6)
a=1
whereD = p+d +3, the coordinates, (@ =1, ..., p) parametrize the-dimensional compact directions and the

remaining coordinates of the-dimensional spacetime are the radiuand the angular coordinates orida+ 1)-
dimensional unit sphere, whose metridi@ﬁ g Since we are interested in static spherically-symmetric solutions,

+
all the functions appearing in the metric as well as dilagoare assumed to depend only on the radiug the
transverse dimensions.

1 There may be Chern—Simons terms in the action, but they are irrelevant in our following solutions.
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If the resulting metric has null isometry, say, in the directian we can incorporate the boost charge by a
well-defined ste8,20]. Since this is quite straightforward, we simply concentrate on the diagonal rg@tric

For background field strengths, we take the most geloeies consistent with the field equations and Bianchi
identities. The background for an electrically charggebrane is given by

F0a1~~~ot,,Ar = €ap-ay, E' (ng= qa+2), (7
whereas, ..., o4, stand for the compact dimensions. Here and in what follows, a prime denotes a derivative with
respect to-.

The magnetic case is given by
1 -

POt apiig o = p=aad gy g B (ny = D — g — 2), ®)

v~

whereay, ..., a;, , denote the angular coordinates of ther 1)-sphere. The functions andE are again assumed
to depend only om.
The electric backgroun@) trivially satisfies the Bianchi identities btite field equations are non-trivial. On the
other hand, the field equations areii but the Bianchi idatities are non-trivial fothe magnetic backgrour(8).
In the above metri€6), the functionf is introduced to describe the type 2 non-extreme solutions. Here we also
define non-vanishing function
p
Y ug+dB=InX, (9)
a=0
to describe type 2 non-extreme extension. In RE3], the field equation§s) were solved with the simplifying
ansatz that the combinati@) vanishes. Although this was the only assumption there, we show here that it is not
mandatory and that the field equatiqB$can be solved in a wider context without such angatz.
In order to solve the field equatiofs), we need the Ricci tensors for our metf&). The non-zero components

are
Roo=e2(uoB)f2|:<uo+ Inf) (J} —I—%—I—#)(wo—i—%h’]]v)},

fX d+1
R(,g:—ez(”“B)f[ug—i—(]; )M&i|5a/3 (e, B=1,...,p),

1 " 1\2 T n/\2 X' C?+1 /
R,r=—<B+EInf+InX> —‘;)(ua) —d(B) +(Y_ )B

,

f/ f/ X/ d_"_l

2f<2 O+7+_+ r >,
/ X/ 3 3

ab=—f[(B+lnr)”+(f +—+di)(B+lnr)]gab+ dzgab, (10)

f

whereg, is the metric ford + 1)-sphere of radius.
For both cases of electr{@) and magneti¢8) backgrounds, we find that the field equati¢dare cast into

X d+1 1 " 1 D-qa-3 o
(uo+ |nf) (f-i-——i-—)(uo-l-émf)—?;WSA(EA), (11)

2 This deformation was also considered in H&f7] for a single brane and if18] for intersecting branes in pp-wave spacetime. There the
function £ (r) in the metric was put to 1.
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7 ()
X d+1 1 8y 5
4 e i - /= — SAu(E = 17 ) ) 12
o +(f+X+ — e fZZ(D 5 SA(EA)” (@ p) (12)
1 L - X d+1 f! X d+1
B+ =1 InX '+dBY - (= ——= B +—|2up+ =+ =
(+2nf+n>+(;)(ua)+() < T GURR
1 "2 1 D —qa -3 "2
== ZN T TSL(EL)?, 13
2(¢>+f; 5D —3) SAED (13)
” f/ X' d +1 j qa + 1 N2
B +1 — 4+ — (B +I — = , 14
f[( +nr)+(f+X+ (B+Inr) P ZZ(D 2) (Ea) (14)
r*(t?+l)X*l(r(z+le¢/)/ - _ eAzaA SA(EA/)Z, (15)
A
(rd~+1XSAEA/)/ =0, (16)
whereA denotes the kinds af4-branes and we have defined
SA = exp(eAaA¢ -2 Z Ma>, (17)
aEGA
and
@ | D—ga—-3 vq belonging tag 4-brane ande =0,
ou = { —(ga+1 for {otherwise (18)

andes = +1 (—1) corresponds to electric (maetic) backgrounds. For magnetic case we have dropped the tilde
from E4(r). Egs. (11), (12), (13) and (14re the 00x«, rr andab (angular coordinates) components of the
Einstein equation ifEq. (5) respectively. The last one is the field etjoa for the field strengths of the electric
backgrounds and/or Bianchi identity for the magnetic ones.

FromEqg. (16) one finds

r(jJrlXSAEA/:CA, (19)
wherec, is a constant. With the help &q. (19) Eq. (11)can be rewritten as
; 1 T D—gs—3
d+1 qA /
X =In =Y ————~csE,, 20
[r ! (“”2 f” 22—z “Eh (20)
which can be integrated to give
1 ! D—qga—3 E4 cod
X =1 = - —, 21
! <MO+2nf) ; 2(D-2) cArd+1+rd+l (21)
wherecg is an integration constant. Similarly, we find tii&ds. (12) and (15jive
() bt
3y E4 cqd
X _ =1,...,p),
f M(x Z 2(D 2) rd+l + rd+1 (Ol p)
r_ EAAA E4 C¢d~
X0 ==3 reagat 22)

A
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wherec, (0 =1, ..., p) andcy are again integration constants. We find freop (14)the result

+1 E d
Y1 AL e (23)

d -
X (B In F— — dﬁle = — =
FX(B+Inr) rd+1 /r ' — 2(D=2) 4 pd+l 0 pd+1

wherec,, is another integration constant. Thesgiations involve an unknown functigh(r) and appear intractable.
However, X (r) is not an independent variable but is given (®). We now show thatX (») and f(r) can be
determined from a constraint and that other functiepé) (¢« =0, ..., p), ¢(r) and B(r) can then be solved
consistently together with the electric (magnetic) backgrabing-).

Using the definition ofX (r), we can combin&qgs. (11), (12) and (143ppropriately to derive the constraint
satisfied byX (r) and f (r):

X" (3f 2d+1\X 1f @d+) [ (f-Dd?
<2f+ r )— 2y T 77

Note that there are terms independenkofSinceX and f can be regarded as independent functions, it is natural
to set theX—independent part to 9:

v, Bd+1) a2
[+ =t - 1> (25)

—0. (24)

Solving this second order differential equation gives) = (1 — “—Jl)(l - “—g) with two integration constants;
r r - -

anduo. It turns out, however, that the parametercan be absorbed if we redefine the coordinat&as r¢ — >
andp1 is shifted byu,.* So we can simply put2 = 0 without loss of generality and set

"

r
which characterizes the type 2 non-extreme extension. USing26)in Eq. (24) we find
(f¥2-1?

2JF

wherev is yet another integration constant. The choice 1 reduces the solution to type 2 non-extreme case.
Thus this parameter introduces another direction of nontexmality. Note that the functioX should contain
in general two arbitrary constants, one of which is eliminated by the requirement of asymptotic flaiiess:

(¢=0,...,p),¢d(r), Blr) — 0forr — oo requiresX (r) — 1.
UsingEgs. (14), (21), (22), (23) and (2if) (13)yields

3 ) N 2
D—ga—3 E4 1 X cod 5(a Ex cad
(XA: 2(D -2 “ rd+1 2f " rd+ 1) " Z<Z 2(D — 2) A r‘?+l

] aatl ﬂ oz cbd
—|—d( 22(1) 5 S Ailv-e-r fX]+r{§+1>

XrH)=1-@w-12 (27)

3 There is the freedom of reparamettipa of the coordinates in the meti{6). This f (r) corresponds to a choice of gauge without any loss
of generality. This choice is useful to make the interpolation between the solutions of type 1 and 2 manifest.

4 This shift is not a symmetry of the system, and it may appear strange.3hedn be absorbed by this. We have actually solved all the
field equations keeping, and 2> and found that the parametgp could be eliminated by this shift after cancellation of various factors. For
P2
2 f1f2

f1(r)=(1- “{_3“2 ) fo(r), and f2(r) drops out ofX (r), giving Eq. (27) The same observation is also made for the solutions found ifF3f.
I

example, if we putf (r) = f1(r) f2(r) into Eq. (24)with f; (r) = 1— ”—5’ (i=12),wegetX=1-(v—1) . After the shift, we find
r
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1 €AdA E s Co D —qga— E A 1, Cod~

+§<_ — 2 CArd+1+ d+1) (Z 2(D —2) Ard+1_§fx+r&ﬁ)
L/ QA+1 EA :_L _ _ 1/2 de‘~
_fX<f )( ZZ(D 5¢ rd+l+r[v wv-1f fX]+r&+l>
Vi X/ d 1 / X,
+fxz[f7+f( ) + +(L—£>——(f— 1 2]
r
- d+1 (28)

This equation must be valid for functiods, of r.
With the help ofEgs. (26) and (27)the E 4-independent part dEqg. (28)yields a constraint condition among
the constants introduced above:

1 d+1 1\ ,
az;)c +dcb+26¢ 7( _E)“ =0, (29)

where we have redefineg by a constant shiftet, — ¢ — %). The E 4-dependent part diq. (28) on the other
hand, can be rewritten as

/ ~
caA di1 1 A cp EAER
Myp— 4 =
Z[ AB~ +( fX(EA> + EA)5A81| 2 2ir2 =0, (30)
A,B
where
p (@) o (@)
5476 ~(ga+1D(gp+1)
Mpp = B , 31
AB (D 272 (D—27 + 26AaA63aB (31)
and
4 (a)
— 242, 4 +1 - .
CA = D _ 2d“c D —> dEAaAC¢. (32)

Note that forv < 1/2, Eq. (29)tells us thatc, = ¢, = ¢4 = u = 0, and this does not give non-trivial solution.
The same is true for = 1/2. Hence we restrict ourselvesito- 1/2. SinceM 4 p is constantEq. (30)cannot be
satisfied for arbitrary functiong 4 of r unless the second term inside the square bracket is a constant. Substituting
Egs. (26) and (27into this differential equation, one obtains the solution

Ny

=T A= 49

whereB4 and N4 are integration constants, and

‘ aas = (34)
r)=|\—ms—— o0 = =———C4,
A PYEC NI
where parametes is defined as
v—1
p= (35)

v+ —1
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Eq. (30)has two implications if we take indepdent functions for the background fields (r). In this case,
first puttingA = B in Eq. (30) we learn that

ca_CaBa—1) _Ca(Ba—1)D-2

= = 36
2 NaMya Na Ay (36)
whereA 4 is givenin
1
Ax=(qa+D(D—qs =3+ Zai(D -2 (37)
By use ofEgs. (26), (27), (33)—(37)ve integratdegs. (21)—(23)o obtain the results
D—qgs—3 2co 1
=—) ————INnHy+——Ing—<Inf,
uo(r) ; i i e P L
6;‘1) 2¢q
ug(ry=—>y —“—InHy+——1n a=1,...,p),
o(r) ;AA it e ne ( p)
D—-2 2C¢
r)= ) €pa INHy + —1Ing,
o (r) ; Ada— A NeEs T 8
ga+1 2¢p 1(1 )
B(r)= NHy+—Ing+=(=Inf+InX), 38
(r)XA:AA Am'ugdzf (38)
whereH 4 (r) is given by
Hp(r) = NaE; g = [1— Ba(l—g™*4)]g™, (39)

and the integration constants are fixed by the requirement that the metrics approach to 1 asymptotically.
UsingEq. (38) one can write down the expression ¢ (r) as

Sa(r) = N3TE % fg*. (40)
Now, usingEgs. (19) and (36)wve can determine the normalization constéptas
_2Ba—1 (D=2

2
Nj b A (42)
We also have
p
Z Co + c?cb =0, (42)
a=0

from the relation(9). By use of this relatiorn; 4 in Eq. (32)can also be written as

Ga = d(z Y a- EAaAC¢). (43)
AEGA
Our metric and background fields are thus finally givgndfter putting all the warp factors etc. that we get by
solving the Einstein equations,

o
qa+l V( )

244+1 _pb=2 P _o¥a
ds% _ HHA Ap |:_1_[HA Ap g4co/(»,/2v—lu) dl2+ Z HHA Ap g4ca/(«/2v—1/1) dys
A A a=1 A

+ (sz)l/d.‘glk‘[,/(mu)(ffler + r2d95+l)j|7
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—1D -2
Ea(r)= i,lzﬂAﬂA A—AHglg“A, (44)

where we have defined

@ __[D—=2 vo belonging tog 4-brane
Ya = {O for {otherwise (49)

The second condition following frog. (30)is Msp = 0 for A # B. As shown in Ref[15], this leads to the

intersection rules for two branes.df;-brane and;z-brane intersect over (< ¢4, ¢g) dimensions, this gives

QZW—].—%GACZAGBCZB. (46)
For eleven-dimensional supergravity, we have electric 2-branes, magnetic 5-branes and ne ditatbrl he rule
(46)tells us that 2-brane can intersect with 2-brane on a ggiat 0) and with 5-brane over a string = 1), and
5-brane can intersect with 5-brane over 3-brape- 3), in agreement with Ref$9,10].

The solutiong44) are the general intersecting branes which interpolate non-extreme solutions of type 1 and 2.
As mentioned before, for = 1, we haveX = 1, ¢ = /2 and the above solutions give generalized non-extreme
solutions of type 2 wittp + m + 2 parameters, (¢« =0, ..., p), ¢, ¢y, Ba (A=1,...,m) andu restricted by 2
constraintg29) and(42). If we further chooseo = 5, ¢, = —%, ca=¢p=0(=1,...,p), they reduce to the
known solutions (see, for examp[&5]).

It appears that they no longer give non-extreme solutions of type 1 if we pu® since then the non-extreme
function X in (27) becomes 1. However, we can manage to derive such solutions as follows. Consider the limit
sendingu to zero. If we keep the combination

v—1 5
5 ni=rg’, (47)

finite, we get non-trivial functions
2d d
1-—
X()=1- (r—o) L=
r 1+ (ro/r)?

It is then easy to see that the solutions reproduce the non-extreme ones of type 1 discussdd&h. Ref.
It would be instructive to explicitly give the single brane case. The metric is

(48)

P
dS% = H% [H_ZDT_Z (_g460/(\/21/—1/1) dtz + g4Cu/(V 2v—1u) Zdy§>

a=1

+ (f X ghen V2L (=12 r2d.(2§+1)], (49)
wherewe haveset =co=---=cp=¢,, ¢ = d[2co + 2pcy — €acy], and the other quantities, H (r) andx are
given in(37), (39) and(34) with the subscriptd (which is irrelevant for a single brane) removed anceplaced
by p, respectively. There are five independent parameters in the above single brane metric. Namely we have seven
integration constants, c,, ¢p, ¢y, B, v andpu restricted by the two constraints frofys. (29) and (42)

Our single brane solution includes that of R@f7] as a special case which is a four parameter solution. If we
consider the limitu — 0 keepingEg. (47)finite, our solution(49) reduces to a single brane case wifly) and
g(r) in Eq. (48) anda = Klgé, with constraints

"o

- 1 5
&+ pc2 +dc? + Ec; —4— =2l =0, (50)
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and (42). This solution contains four independent parametegs &, ¢, ¢y, B andrq restricted by the two
constraints). It is easy to transform our solution to the complete solutifitvpivith redefinition of parameters.

To summarize, we have given very general intersecting brane solutions without assuming any restriction on the
metric such ag2). The result is a general class of the brane solutions which interpolate the non-extreme solutions of
type 1 and 2, which are expected to give further insight into the non-perturbative effects in string and field theories.
The method we use is a simple generalization of the one in[[Re}f.which can also be applied to time-dependent
cases as we[R1]. Itis gratifying to find that the method is so useful.
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