Cardinal characteristics for Menger-bounded subgroups

Heike Mildenberger

Universität Wien, Kurt Gödel Research Center for Mathematical Logic, Währinger street 25, 1090 Vienna, Austria

A R T I C L E I N F O

Article history:
Received 21 August 2007
Received in revised form 16 April 2008
Accepted 26 April 2008

M A R K E D A R T I C L E

MSC:
03E15
03E17
03E35
22A25

Keywords:
Menger-bounded group
Baer–Specker group
Dominating number
Reaping number

A B S T R A C T

Machura, Shelah and Tsaban showed in [M. Machura, S. Shelah, B. Tsaban, Squares of Menger-bounded groups, Trans. Amer. Math. Soc., in press, http://arxiv.org/pdf/math.GN/0611353, 2007] that under the condition, that a relative \(d'(P) \) of the dominating number is at least \(d \), for every \(k \) there are groups \(G \subseteq \mathbb{Z}^{\omega} \) whose \(k \)th power is Menger-bounded and whose \((k+1) \)st power is not. We show that the sufficient condition implies \(r \geq d \) and indeed can be replaced by \(r \geq d \). This result includes an affirmative answer to a question by Tsaban on a possibly weaker still sufficient condition. We show that it is consistent relative to ZFC that \(g \leq r < d \) and there are subgroups of the Baer–Specker group whose \(k \)th power is Menger-bounded and whose \((k+1) \)st power is not.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction and some estimates

Machura, Shelah and Tsaban [12] showed that under the condition, that a relative \(d'(P) \) of the dominating number is at least \(d \), for every \(k \) there are groups \(G \subseteq \mathbb{Z}^{\omega} \) whose \(k \)th power is Menger-bounded and whose \((k+1) \)st power is not Menger-bounded. The aim of this note is to give more information on the strength of this premise. We show that it implies \(r \geq d \), that the possibly weaker \(r \geq d \) is a sufficient condition as well, and that \(r \geq d \) is not a necessary condition.

First we recall some definitions.

Definition 1.1. The Baer–Specker group is \(\mathbb{Z}^{\omega} \) with pointwise addition. Let \(G \subseteq \mathbb{Z}^{\omega} \) be a subgroup. For \(g : \omega \to \mathbb{Z} \), we write \(\hat{g}(n) = \max\{|g(m)| : m \leq n\} \). Let \(k \in \omega \setminus \{0\} \). We say “\(G^k \) is Menger-bounded” or “\(G \) has Menger-bounded \(k \)th power” iff

\[
(\exists f \in \omega^\omega) \ (\forall F \in [G]^k) \ (\exists^\infty n) \ (\forall g \in F) \ (\hat{g}(n) \leq f(n)).
\]

This is syntactically the simplest of the equivalent characterisations given in [12, Theorem 5]. Menger-boundedness in a broader sense is defined for topological groups and also called \(\alpha \)-boundedness. We refer the reader to [2] for more information.

Now we recall the definitions of the possibly new family of cardinal characteristics \(\alpha(P) \) from [12] and of some relatives. A function from the natural numbers into the natural numbers is called weakly increasing if for all \(n < m \), \(f(n) \leq f(m) \). The set of all weakly increasing functions is denoted by \(\omega^{\omega} \). The set of all infinite subsets of \(\omega \) is denoted by \([\omega]^\omega \). The quantifier \(\exists^\infty \) means “there are infinitely many” and the dual quantifier \(\forall^\infty \) means “for all but finitely many.”
Definition 1.2.

(1) Let $\mathcal{P} = \{ A_n: n < \omega \}$ be a partition of ω into infinite sets. We call a family $\mathcal{F} \subseteq \omega^{\omega}$ good for $\mathfrak{d}_*(\mathcal{P})$ iff

$$(\forall h \in \omega^{\omega}) \ (\exists A \in \mathcal{P}) \ (\exists f \in \mathcal{F}) \ (\forall \omega \ n \in A) \ (f(h(n)) \geq h(n+1)).$$

We let

$$\mathfrak{d}_*(\mathcal{P}) = \min \{|\mathcal{F}|: \mathcal{F} \text{ is good for } \mathfrak{d}_*(\mathcal{P})\}.$$

(2) Let $A \in [\omega]^{\omega}$. We let

$$\mathfrak{d}_*(A) = \min \{|\mathcal{F}|: \mathcal{F} \subseteq \omega^{\omega} \land (\forall h \in \omega^{\omega}) \ (\exists f \in \mathcal{F}) \ (\forall \omega \ n \in A) \ (f(h(n)) \geq h(n+1))\}.$$

(3) Let $\mathcal{P} = \{ A_n: n < \omega \}$ be a partition of ω into infinite sets such that for every n there are infinitely many i such that $i, i+1 \in A_n$. We call a family $\mathcal{F} \subseteq \omega^{\omega}$ good for $\mathfrak{d}'(\mathcal{P})$ iff

$$(\forall h \in \omega^{\omega}) \ (\exists A \in \mathcal{P}) \ (\exists f \in \mathcal{F}) \ (\forall \omega \ n \in A) \ (f(h(n)) \geq h(n+1) \lor f(h(n+1)) \geq h(n+2) \lor n+1 \notin A).$$

We let

$$\mathfrak{d}'(\mathcal{P}) = \min \{|\mathcal{F}|: \mathcal{F} \text{ is good for } \mathfrak{d}'(\mathcal{P})\}.$$

(4) Let $A \in [\omega]^{\omega}$ be such that $(3^{\omega} i) \ (i, i+1 \in A)$.

$$\mathfrak{d}'(A) = \min \{|\mathcal{F}|: \mathcal{F} \subseteq \omega^{\omega} \land (\forall h \in \omega^{\omega}) \ (\exists f \in \mathcal{F}) \ (\forall \omega \ n \in A) \ (f(h(n)) \geq h(n+1) \lor f(h(n+1)) \geq h(n+2) \lor n+1 \notin A)\}.$$

Machura, Shelah and Tsaban’s sufficient condition for the existence of subgroups of \mathbb{Z}^ω whose kth power is Menger-bounded but whose $(k+1)$st power is not, is the following:

There is a partition $\mathcal{P} = \{ A_n: n < \omega \}$ of ω into infinite sets such that for every n there are infinitely many i with $i, i+1 \in A_n$ and $\mathfrak{d}'(\mathcal{P}) > \mathfrak{d}$.

(1.1)

There are numerous questions about modifications, e.g., we could also replace ω^{ω} by the set of all strictly increasing functions in the second appearance. We do not know whether the analogously defined cardinals might drop.

Some estimates for the cardinals are known: In [12] it is shown that for all \mathcal{P} that meet the conditions,

$$\max(\text{cov}(\mathcal{M}), b) \leq \mathfrak{d}'(\mathcal{P}) \leq \mathfrak{d}.$$

For the definitions of the cardinal characteristics \mathfrak{d}, $\text{cov}(\mathcal{M})$, u, τ, g and of “groupwise dense” we refer the reader to Blass’ handbook article [8].

In the International Conference on Set-Theoretic Topology in Kielce in August 2006 Tsaban asked whether the syntactically simpler family of cardinals $\mathfrak{d}_*(\mathcal{P})$ (see Definition 1.1(1)) enjoys similar properties. We do not know whether the cardinals do coincide, nor whether $\tau \geq \mathfrak{d}$ implies $(\exists \mathcal{P}) \ (\mathfrak{d}'(\mathcal{P}) = \mathfrak{d})$, however, we have the following main results.

Theorem 1.3. For every partition \mathcal{P} into infinitely many infinite sets we have $\mathfrak{d}_*(\mathcal{P}) = \min(\mathfrak{d}, \tau)$.

Hence $\tau \geq \mathfrak{d}$ is equivalent to $(\exists \mathcal{P}) \ (\mathfrak{d}_*(\mathcal{P}) = \mathfrak{d})$ and to $(\forall \mathcal{P}) \ (\mathfrak{d}_*(\mathcal{P}) = \mathfrak{d})$. Nevertheless we still formulate the following theorem with the help of $\mathfrak{d}_*(\mathcal{P})$. The condition $\mathfrak{d}_*(\mathcal{P}) \geq \mathfrak{d}$ (combined with $\mathfrak{d}_*(\mathcal{P}) \leq \tau$) is handier for the construction than working with $\tau \geq \mathfrak{d}$.

Theorem 1.4. “There is a partition $\mathcal{P} = \{ A_\ell: \ell \in \omega \}$ into infinite sets such that $\mathfrak{d}_*(\mathcal{P}) = \mathfrak{d}$ is a sufficient condition for the existence of subgroups of \mathbb{Z}^ω whose kth power is Menger-bounded but whose $(k+1)$st power is not.

Corollary 1.5. $\tau \geq \mathfrak{d}$ is a sufficient condition for the existence of subgroups of \mathbb{Z}^ω whose kth power is Menger-bounded but whose $(k+1)$st power is not.

In Section 2 we investigate the influence of \mathcal{P}, in Section 3 we show that $\mathfrak{d}_*(\mathcal{P}) \leq \tau$, in Section 4 we prove Theorem 1.3, in Section 5 we prove Theorem 1.4, and in the final section we show that $\tau \geq \mathfrak{d}$ is not a necessary condition, and we discuss some open questions.
2. The influence of the partition \mathcal{P}

It will be very convenient to know that $\mathcal{d}_*(\mathcal{P})$ does not depend on \mathcal{P}, and even better, for every $\mathcal{F} \subseteq \omega^{1\omega}$ we have that \mathcal{F} is good for $\mathcal{d}_*(\mathcal{P})$ iff it is good for any other $\mathcal{d}_*(\mathcal{P}')$.

Proposition 2.1. Let \mathcal{P} and \mathcal{P}' be partitions of ω into infinitely many infinite sets. For every $\mathcal{F} \subseteq \omega^{1\omega}$ we have that \mathcal{F} is good for $\mathcal{d}_*(\mathcal{P})$ iff it is good for $\mathcal{d}_*(\mathcal{P}')$. So $\mathcal{d}_*(\mathcal{P})$ does not depend on the choice of \mathcal{P}.

Proof. Let $\mathcal{P} = \{ A_n; \ n \in \omega \}$ and $\mathcal{P}' = \{ A'_n; \ n \in \omega \}$ be given. We show that $\mathcal{d}_*(\mathcal{P}) \leq \mathcal{d}_*(\mathcal{P}')$. We choose a strictly increasing function $e : \omega \to \omega$ such that for all n, $e[A_n] \subseteq A'_n$. In most cases e cannot be chosen as to be a bijection. We set $\bar{e}(n) = \min\{k; \ e(k) \geq n\}$, then $\bar{e}(e(n)) = n$.

Let \mathcal{F} be a family a that is good for $\mathcal{d}_*(\mathcal{P}')$. We claim that \mathcal{F} is also good for $\mathcal{d}_*(\mathcal{P})$. Let $h \in \omega^{1\omega}$ be given. We take $h' = h \circ \bar{e}$. This may be only weakly increasing. Then by the definition of \mathcal{F} being good for $\mathcal{d}_*(\mathcal{P}')$, there are some $A' \in \mathcal{P}'$ and some $f \in \mathcal{F}$ such that $∀n ∈ A' ((f \circ h \circ \bar{e})(n) ≥ (h \circ e)(n + 1))$. For each $k ∈ A$ we have $\bar{e}(e(k) + 1) = \bar{e}(e(k + 1)) = k + 1$. So $∀n ∈ A \subseteq e^{-1}(A') (f(h(k)) ≥ h(k + 1))$. □

So we have that $\mathcal{d}_*(\mathcal{P})$ does not depend on \mathcal{P}. We point out that Aubrey [1] works with a cardinal \mathcal{d}^* (the minimal cardinal of a finitely dominating family) and shows $\mathcal{d}^* = \min(\tau, \mathcal{d})$. $\mathcal{d}_*(\mathcal{P}) \leq \tau$ will be shown in Section 3. In Section 4 we show $\mathcal{d}_*(\mathcal{P}) \geq \min(\tau, \mathcal{d})$. So $\mathcal{d}_*(\mathcal{P}) = \mathcal{d}^*$.

Now let \mathcal{P} be as in the definition of $\mathcal{d}_*(\mathcal{P})$. Obviously $\mathcal{d}'(\mathcal{P}) \leq \mathcal{d}_*(\mathcal{P})$, because the disjunction in the definition of $\mathcal{d}_*(\mathcal{P})$ is weaker than the requirement in $\mathcal{d}_*(\mathcal{P})$.

For the $\mathcal{d}_*(\mathcal{P})$ the transition from one partition $\{ A_\ell; \ \ell \in \omega \}$ to another $\{ A'_\ell; \ \ell \in \omega \}$ is more difficult, since now we require from the reduction e that it preserves for all k ($\forall n ∈ A_k$ and $n + 1 ∈ A_k$) → ($e(n), e(n + 1) ∈ A'_k$ and $e(n + 1) = e(n + 1)$).

Definition 2.2. Let $A \subseteq \omega$ be infinite and coinfinite.

$$\|A\| = \sup\{n; (3^{\infty})k, (k, k + 1, \ldots, k + n - 1 \in A)\}$$

is between 1 and ω, inclusively. Now let $\mathcal{P} = \{ A_n; \ n < \omega \}$ and $\mathcal{P}' = \{ A'_n; \ n < \omega \}$ be two partitions of ω into infinite sets. We let $\mathcal{P} \leq \mathcal{P}'$ if $\exists A \subseteq \omega$ bijection such that for all $i \|A_i\| \leq \|A'_{\sigma(i)}\|$.

Proposition 2.3. If $\mathcal{P} \leq \mathcal{P}'$ then every family $\mathcal{F} \subseteq \omega^{1\omega}$ that is good for $\mathcal{d}'(\mathcal{P}')$ is also good for $\mathcal{d}_*(\mathcal{P})$, and hence $\mathcal{d}_*(\mathcal{P}) \leq \mathcal{d}'(\mathcal{P}')$.

Proof. Let $\|A_i\| \leq \|A'_{\sigma(i)}\|$. Let \mathcal{F} be a family that is good for $\mathcal{d}_*(\mathcal{P})$. We choose a strictly increasing function $e : \omega \to \omega$ such that for all n, $e[A_n] \subseteq A'_{\sigma(n)}$ and such that $k, k + 1 ∈ A_n$, $e(k) + 1 ∈ A'_{\sigma(n)}$. We set $\bar{e}(n) = \min\{k; e(k) \geq n\}$, then $\bar{e}(e(n)) = n$.

We claim that \mathcal{F} is also good for $\mathcal{d}_*(\mathcal{P})$. Let $h \in \omega^{1\omega}$ be given. We take $h' = h \circ \bar{e}$. Then by the definition of \mathcal{F} being good for $\mathcal{d}_*(\mathcal{P})$, there are some $A' \in \mathcal{P}'$ and some $f \in \mathcal{F}$ such that $∀n ∈ A' ((f \circ h \circ \bar{e})(n) ≥ (h \circ e)(n + 1))$. For each $k ∈ A$ we have $\bar{e}(e(k) + 1) = \bar{e}(e(k + 1)) = k + 1$ and the if $k + 1 ∈ A$, then $e(k + 1) = e(k) + 1 \in A'$. So $∀n ∈ A \subseteq e^{-1}(A') (f(h(k)) ≥ h(k + 1)) ∨ (f(h(k + 1)) ≥ h(k + 2) ∨ k + 1 \notin A')$. □

3. All $\mathcal{d}^*(\mathcal{P})$, $\mathcal{d}_*(\mathcal{P})$ are bounded by the reaping number

In [12] it is shown that if there is a \mathcal{P} such that $\mathcal{d}^*(\mathcal{P}) ≥ \mathcal{d}$ then for every $k ≥ 1$ there is a subgroup of ω^k such that \mathcal{C}^k is Menger-bounded but \mathcal{C}^{k+1} is not. In [7, Theorem 3.1] is shown that $\mathcal{d} \leq \mathcal{g}$ implies that for all subgroups of ω^ω whose square is Menger-bounded all their finite powers are Menger-bounded (also simultaneously). So $\mathcal{d} \leq \mathcal{g}$ implies $\mathcal{d}^*(\mathcal{P}) < \mathcal{d}$. Now we give a direct proof of a stronger statement. Let $A_0 \cup A_1 = \omega$. We read the definitions of $\mathcal{d}_*(\mathcal{P})$ and of $\mathcal{d}^*(\mathcal{P})$ in a natural way also for partitions of ω into finitely many infinite parts. Then of course we get larger or equal cardinals.

Theorem 3.1. $\mathcal{d}_*(\{A_0, A_1\}) ≤ \tau$ and $\mathcal{d}'(\{\omega\}) ≤ \tau$.

Proof. Let \mathcal{R} be a refining family of size τ. Refining means: $(\forall A \subseteq \omega^k) (\exists B \subseteq \mathcal{R}) (B \subseteq^* A \lor B \subseteq^* \omega \setminus A)$. For each $B ∈ \mathcal{R}$ we let $f_B : \omega \to \omega$ be defined by letting $f_B(n)$ be the nth element of B. We shall show that $(f_B; B \subseteq \mathcal{R})$ is a family \mathcal{F} as in the computation of $\mathcal{d}_*(\mathcal{P})$. We assume that the contrary is the case. So

$$(\exists h \in \omega^{1\omega}) (\forall B \subseteq \mathcal{R}) (\forall l \in [0, 1]) (\exists n \in A_{l^2}) (f_B(h(n)) < h(n + 1)).$$

We enumerate the infinitely many $n ∈ A_{l^2}$ with $f_B(h(n)) < h(n + 1)$ as $n_{l,k}^B$, $k ∈ \omega$. Now since $f_B(h(n_{l,k}^B)) ≥ h(n_{l,k}^B)$, we have that

$$f_B(h(n_{l,k}^B)) ≥ h(n_{l,k}^B).$$

(3.1)
We set $C_1 = \bigcup_{k \in \omega, \beta \in R} [h(n_k^B), h(n_k^C + 1)]$. Since $n_k^B, n_k^C \in A_k$ and since the $A_0 \cap A_1 = \emptyset$, we have and $C_0 \cap C_1 = \emptyset$. So (3.2) shows that the set $A = C_0$ is a counterexample to \mathcal{S}'s being refining.

Now we turn to $\mathcal{B}'(\langle \omega \rangle) \subseteq \mathcal{B}'$. We assume that $\mathcal{B}' \cap \mathcal{B}$ is not a family as in the computation of $\mathcal{B}'(A)$. Then

$$(\exists h \in \omega^{\ast\omega}) (\forall B \in \mathcal{B}) (\exists^\omega n) (f_B(h(n)) \neq h(n + 1) \land f_B(h(n + 1)) \neq h(n + 2)).$$

We enumerate the infinitely many n such that

$$f_B(h(n)) < h(n + 1) \land f_B(h(n + 1)) < h(n + 2)$$

as $n_k^B, k \in \omega$. Now we let $C_0 = \bigcup_{k \in \omega, \beta \in R} [h(n_k^B), h(n_k^C + 1)]$ and $C_1 = \bigcup_{k \in \omega, \beta \in R} [h(n_k^B), h(n_k^C + 1)]$. Then $C_0 \cap C_1 = \emptyset$ and

$$(\forall B \in \mathcal{B}) (B \cap C_0 \neq \emptyset \land B \cap C_1 \neq \emptyset).$$

So (3.2) contradicts \mathcal{S}'s being refining. \square

Only for the case of having only one part in the partition and only one inequality there is the opposite result, that $\mathcal{S}_\ast(\omega) \geq \tau$ is consistent. This is because $\tau < \mathcal{S}$ is consistent (see [9–11, 5]) and the following result, obtained by Boaz Tsaban and Petr Simon independently:

Theorem 3.2. $\mathcal{S}_\ast(\omega) \geq \mathcal{S}$.

4. $\mathcal{S}_\ast(\mathcal{P}) = \min(\tau, 2)$

For the proof we use the following partition order. Let $\Pi = (\pi_i; i \in \omega)$ for a strictly increasing sequence $\pi_i, i < \omega$, a partition of ω into the cells $\{\pi_i, \pi_{i+1}\}$. We say Π dominates Π' if each interval in Π, with finitely many exceptions, includes an interval in Π'. It is easy to see and shown in [8] that there is a family of \mathcal{S} interval partitions that every interval partition is dominated by a member of the family and that fewer than \mathcal{S} interval partitions do not suffice. Our first lemma is actually Simon's and Tsaban's theorem (with a different proof). For $X \subseteq [\omega]^{\omega}$, we define the next-function next(X, \cdot) to ω by next(X, n) = $\min[k \in X: k \geq n$].

Lemma 4.1. For every $\mathcal{F} \subseteq \omega^{\ast\omega}$, if $|\mathcal{F}| < \mathcal{S}$ then

$$(\exists h \in \omega^{\ast\omega}) (\forall f \in \mathcal{F}) (\exists^\omega n) (f(h(n)) \neq h(n + 1)).$$

Proof. Since \mathcal{F} is not dominating, there is some $g \in \omega^{\ast\omega}$ such that for every $f \in \mathcal{F}$ there are infinitely many n with $f(n) < g(n)$. Let for $f \in \mathcal{F}$, X_f be an infinite subset of $\{n: f(n) < g(n)\}$ such that for

$$(\forall n \in X_f) (g(n) \leq \text{next}(X_f, n)).$$

Identify the increasing enumeration of X_f with a partition $\Pi_f = (\pi_{f,n}; n \in \omega$ of ω. Then, by Blass' results, there is a partition Π such that for all $f, \Pi_f := (\pi_{f,n}; n \in \omega)$ does not dominate Π in the partition order, that means

for all f there are infinitely n such that there is no point π_j in $[\pi_{f,n}, \pi_{f,n+1})$.

Now take $h \in \omega^{\ast\omega}$ being the increasing enumeration of Π. Given $f \in \mathcal{F}$, take n, such that there is no point π_j in $[\pi_{f,n}, \pi_{f,n+1})$. and then take k such that k is the maximal k with $h(k) \leq \pi_{f,n}$. Now

$$f(h(k)) \leq f(\pi_{f,n}) < g(\pi_{f,n}) \leq \text{next}(X_f, \pi_{f,n}) = \pi_{f,n+1} \leq h(k + 1).$$

Since there are infinitely many n to start from, there are infinitely many such k. \square

Lemma 4.2. Let $|\mathcal{F}| < \min(\tau, \mathcal{S})$. Then there is a partition \mathcal{P} such that \mathcal{F} is not good for $\mathcal{S}_\ast(\mathcal{P})$.

Proof. Since $|\mathcal{F}| < \mathcal{S}$, be the previous lemma there is $h \in \omega^{\ast\omega}$ (if $f \in \mathcal{F}$) (if $f(h(n)) \neq h(n+1)$). Enumerate these n's as $X_f = \{\pi_{f,i}; i < \omega\}$. The family $X_f, f \in \mathcal{F}$, is not reaping, and hence there are an infinite set, call it A_0, and its complement, call it A_1, such that for all $f \in \mathcal{F}$, both sets $X_f \cap A_0$ and $X_f \cap A_1$ are infinite. Now we continue along these lines and partition A_1 into A_1, A_2, and then A_1, A_2, after ω steps, the partition $\mathcal{P} = \{A_\ell; \ell \in \omega\}$ is as required and the function $h \in \omega^{\ast\omega}$ witnesses that \mathcal{F} is not good for $\mathcal{S}_\ast(\mathcal{P})$. \square

So we have proved Theorem 1.3.

Remark 4.3. The partition \mathcal{P} in the proof of Theorem 1.3 depends on \mathcal{F} and this does not necessarily prove that $\tau > \mathcal{S}$ implies that there is single \mathcal{P} with $\mathcal{B}'(\mathcal{P}) = \mathcal{S}$.
5. The proof of Theorem 1.4

Lemma 5.1. Let $\delta < \min(0, \tau)$ and let $\Pi_f, \gamma < \delta$, be partitions of ω into finite intervals and let $\Pi_f = (\pi_f;i : i \in \omega)$. Then there are a partition $\mathcal{P} = \{ A_i : \ell < \omega \}$ of ω into infinite sets and a partition $\Pi = (\pi : i < \omega)$, such that for every infinite $\ell \in \omega$ for every $\gamma < \delta$ there are infinitely many $i \in A_\ell$ such that $[\pi_{\ell}, \pi_{\ell+1}]$ contains at least two points $\pi_{\ell,j}, \pi_{\ell,j+1}$.

Proof. Since $\gamma < \delta$ there is a partition $\mathcal{P} = (\pi : i < \omega)$ such that for every $\gamma < \delta$ there are infinitely many $i \in \omega$ such that $[\pi_{\ell}, \pi_{\ell+1}]$ contains at least two points $\pi_{\ell,j}, \pi_{\ell,j+1}$. Enumerate these i's as $\{ l_{\gamma,n} : n \in \omega \} = X_\gamma$. Since $\delta < \tau$, the family X_γ, $\gamma < \delta$, is not reaping, and hence there are an infinite family, call it A_0, and its complement, call it A_1, such that for all $\gamma < \delta$, both sets $X_\gamma \cap A_0$ and $X_\gamma \cap A_1$ are infinite. Now we continue along these lines and partition A_0 into A_1 and A_2. After ω steps, the partition $\Pi = (\pi : i < \omega)$ and the partition $\mathcal{P} = \{ A_i : \ell \in \omega \}$ are as required in the lemma. □

Proof of Theorem 1.4. Suppose the $\mathcal{F} \subseteq \omega^{1\omega}$ and $|\mathcal{F}| < \text{d}_\omega(\mathcal{P})$. Then $(\exists h \in \omega^{1\omega}) (\forall f \in \mathcal{F}) (\forall \ell \in \omega) (\exists m \in A_\ell) (f(h(m)) < h(m + 1))$. Fix such an h. Let $\langle m_{f, \ell,k} : k \in \omega \rangle$ enumerate these m's. Thin each $\langle m_{f, \ell,k} : k \in \omega \rangle$ out in order to get a sequence $\langle m_\ell,k : k \in \omega \rangle$ such that for all f, ℓ, k, $(m_\ell,k,k) < m_\ell,k+1$.

Since $|\mathcal{F}| < \text{d}_\omega(\mathcal{P}) \leq \text{d}_\omega(\mathcal{P})$, there are a partition $\langle \pi : i \in \omega \rangle$ and a partition $\mathcal{P}' = \{ A'_\ell : \ell \in \omega \}$ such that for all $\ell \in \omega$, $\langle \pi_{\ell,\pi_{\ell+1}} : i \in A'_\ell \rangle$ is not dominated by all the partitions $\langle m_{\ell,k}, k : k \in \omega \rangle$, $f \in \mathcal{F}$, $\ell \in \omega$, in the partition order. Set $j(i) = \pi_i$ and set $e(i) = \tau$ if $(i \in A'_\ell$ and $i \geq \tau$) otherwise set $e(i) = 0$ (that is, to react onto the matrix which is just used to build the vector). For technical reasons (i.e., for Eq. (5.7)) we need that $e(i) \leq \ell$. Then

$$(\forall f \in \mathcal{F}) (\forall \ell, r) (\exists n \in \omega)$$

$$e(n - 1) = r \land \text{next } m_{\ell,k} \text{ after } j(n) \text{ is } m_{\ell,k} \text{ the last } m_{\ell,k,k} \text{ strictly before } j(n + 1) \text{ is } k.$$
so that
\[C_{e_{\omega}}(n) : \left(\begin{array}{c} g_0^\omega(J_\omega(n)) \\ \vdots \\ g_k^\omega(J_\omega(n)) \end{array} \right) = \bar{0}. \] (5.8)

The remaining values of the functions \(g_i^\alpha \) are defined by declaring these functions constant on each interval \([J_\alpha(n), J_\alpha(n+1))\). By Eqs. (5.5) and (5.7)
\[\| g_0^\alpha(J_\alpha(n)), \ldots, g_k^\alpha(J_\alpha(n)) \| = \varphi_{\alpha,e(n)}(J_\alpha(n+1)) \] (5.9)
for all \(n \). We take \(G \) as the subgroup of \(\mathbb{Z}^\omega \) that is generated by \(\{ g_i^\alpha : i \leq k, \alpha < \omega \} \). We show that \(G \) is as required in the theorem.

\(G^{k+1} \) is not Menger-bounded. Let \(f \in \omega^\omega \). We take \(\alpha < \omega \) such that \(f \leq^* d_\alpha \). We fix \(m_0 \) such that for all \(m \geq m_0 \), \(f(m) \leq d_\alpha(m) \). Let \(n \) be such that \(m - 1 \in [J_\alpha(n), J_\alpha(n+1)) \). Then
\[\| g_0^\alpha(m-1), \ldots, g_k^\alpha(m-1) \| = \| g_0^\alpha(J_\alpha(n)), \ldots, g_k^\alpha(J_\alpha(n)) \| = \varphi_{\alpha,e(n)}(J_\alpha(n+1)) \geq d_\alpha(J_\alpha(n+1)) \geq d_\alpha(m) \geq f(m). \]

\(G^k \) is Menger-bounded. We take \(f(n) = n^2 \). We prove that \(\forall F \in [G]^k \) \((\exists n \in F) (\hat{g}(n) \leq f(n)) \). Fix \(F = \{ g_0, \ldots, g_{k-1} \} \). Then there is \(M \in \omega \) and there are \(\alpha_1 < \cdots < \alpha_m < \omega \) and matrices \(B_1, \ldots, B_M \in \mathbb{Z}^{k \times (k+1)} \) such that
\[\left(\begin{array}{c} g_0 \\ \vdots \\ g_{k-1} \end{array} \right) = B_1 \left(\begin{array}{c} g_{\alpha_1} \\ \vdots \\ g_{\alpha_m} \end{array} \right) + \cdots + B_M \left(\begin{array}{c} g_{\alpha_1} \\ \vdots \\ g_{\alpha_m} \end{array} \right). \] (5.10)

We prove by induction on \(m = 0, \ldots, M \), that there is a constant \(c_m \) and there are infinitely many \(j \) such that
\[\| \hat{g}_{0,m}(j), \ldots, \hat{g}_{k-1,m}(j) \| \leq c_m \cdot (j+1). \]
By the definition of our increasing chain of elementary submodels, then there is an infinite set of such \(j \)’s, call it \(J_m \), that is an element of \(M_{\alpha_m+1} \). By the definition of \(f \) this is sufficient. The case \(m = 0 \) is vacuous. We show how to step up from \(m - 1 \) to \(m \). Assume that
\[J_{m-1} = \{ j : \| \hat{g}_{0,m-1}(j), \ldots, \hat{g}_{k-1,m-1}(j) \| \leq c_{m-1} \cdot (j+1) \} \in M_{\alpha_{m-1}+1} \subseteq M_{\alpha_m} \]
is infinite. Hence also the function
\[g_{<c_{m-1}}(n) := \min\{ j : n \leq j \in J_{m-1} \} \] (5.11)
is well defined and in \(M_{\alpha_m} \). For each \(i \leq k \) and each \(n \) such that
\[e_{\alpha_m}(n-1) = m' \land B_m = C_{m'}. \] (5.12)
we get by Eq. (5.5)
\[|g_i^{\alpha_m}(j_{\alpha_m}(n-1))| \leq \varphi_{\alpha_m,e_{\alpha_m}(n-1)}(j_{\alpha_m}(n)) \leq \varphi_{\alpha_m}(j_{\alpha_m}(n)). \]
As \(\varphi_{\alpha_m} \) and \(j_{\alpha_m} \) are non-decreasing, and by Eq. (5.3) we can take also the \(n' < n \) into (as hidden in the \(\hat{g} \)'s) the latter inequality
\[|g_i^{\alpha_m}(j_{\alpha_m}(n'-1))| \leq \varphi_{\alpha_m,e_{\alpha_m}(n'-1)}(j_{\alpha_m}(n')) \leq \varphi_{\alpha_m}(j_{\alpha_m}(n)) \]
and get
\[\| g_0^{\alpha_m}(j_{\alpha_m}(n-1)), \ldots, g_k^{\alpha_m}(j_{\alpha_m}(n-1)) \| \leq \varphi_{\alpha_m}(j_{\alpha_m}(n)). \] (5.13)
By Eq. (5.1) and by our assumptions on \(M_{\alpha_m}, h_{\alpha_m}, e_{\alpha_m}, j_{\alpha_m} \),
\[I = \{ n : e_{\alpha_m}(n-1) = m' \land (\exists n'' < n' \in [j_{\alpha_m}(n), j_{\alpha_m}(n+1)) \)
\[(\varphi_{\alpha_m}(j_{\alpha_m}(n')) < h_{\alpha_m}(n'+1) \leq j_{\alpha_m}(n+1) \land g_{<c_{m-1}}(h_{\alpha_m}(n'')) = j < h_{\alpha_m}(n''+1) \leq j_{\alpha_m}(n+1) \} \] (5.14)
is infinite.
Let \(n \in I \). Then \(e_\eta(n) = m' \) and \(C_m = B_m \) and thus by Eqs. (5.6) and (5.8)
\[
B_m \cdot \begin{pmatrix}
\phi^{\alpha_0}_0(j_{\alpha}(n)) \\
\vdots \\
\phi^{\alpha_0}_k(j_{\alpha}(n))
\end{pmatrix} = B_m \cdot \begin{pmatrix}
\phi^{\alpha_0}_0(j_{\alpha}(n + 1) - 1) \\
\vdots \\
\phi^{\alpha_0}_k(j_{\alpha}(n + 1) - 1)
\end{pmatrix} = \vec{0}.
\]
By Eq. (5.10) for each \(i < k \),
\[
\phi_{i,m}(j_{\alpha}(n), j_{\alpha}(n + 1)) = \phi_{i,m-1}(j_{\alpha}(n), j_{\alpha}(n + 1)).
\]
As \(n \in I \), there is \(j \in J_{n-1} \) and there are \(n' < n'' \in [j_{\alpha}(n), j_{\alpha}(n + 1)] \) such that
\[
h_{\alpha}(n'' - j < h_{\alpha}(n'' - 1).
\]
From Eq. (5.13) we get
\[
\| \phi^{\alpha_0}_0(j_{\alpha}(n) - 1), \ldots, \phi^{\alpha_0}_k(j_{\alpha}(n) - 1) \| = \| \phi^{\alpha_0}_0(j_{\alpha}(n - 1), \ldots, \phi^{\alpha_0}_k(j_{\alpha}(n - 1)) \| = \| \phi^{\alpha_0}_0(j_{\alpha}(n)) \|
\leq \| \phi^{\alpha_0}_0(j_{\alpha}(n')) \| < h_{\alpha}(n' + 1).
\]
We want to show that \(j \in J_m \) for a suitable choice of \(c_m \) (not depending on \(j \)). Let \(p \in [0, j] \).
Case 1: \(p \geq j_{\alpha}(n) \). As \(j < h_{\alpha}(n' + 1) \),
\[
[j_{\alpha}(n), j + 1] \subseteq [j_{\alpha}(n), j_{\alpha}(n + 1)]
\]
and by Eq. (5.15) and the membership \(j \in J_{m-1} \)
\[
|\phi_{i,m}(p)| = |\phi_{i,m-1}(p)| \leq \phi_{i,m-1}(j) \leq c_{m-1}(j + 1)
\]
for all \(i < k \).
Case 2: \(p < j_{\alpha}(n) \). Let \(C \) be the maximal absolute value of a coordinate of \(B_m \). For all \(i < k \), by the definition of \(\phi_{i,m} \),
\[
|\phi_{i,m}(p)| \leq |\phi_{i,m-1}(p)| + (k + 1)C \max \{ |\phi^{\alpha_0}_i(p)| : i < k \}.
\]
As \(p < j_{\alpha}(n) \), \(i < j \in J_{m-1} \), \(|\phi_{i,m-1}(p)| \leq |\phi_{i,m-1}(j) \leq c_{m-1}(j + 1) \). Using \(p < j_{\alpha}(n) \) and Eq. (5.17) and \(\phi^{\alpha_0}_i \) being constant on \((j_{\alpha}(n) - 1), j_{\alpha}(n) \) and \(h_{\alpha}(n' + 1) \leq h_{\alpha}(n'') \leq j \), we get from Eq. (5.17)
\[
|\phi^{\alpha_0}_i(p)| \leq |\phi^{\alpha_0}_i(j_{\alpha}(n) - 1) \leq \| \phi^{\alpha_0}_i(j_{\alpha}(n) - 1), \ldots, \phi_k^{\alpha_0}(j_{\alpha}(n) - 1) \| = \| \phi^{\alpha_0}_i(j_{\alpha}(n)) \| < h_{\alpha}(n' + 1) \leq j
\]
for each \(i < k \). Together with Eq. (5.18) we have now
\[
|\phi_{i,m}(p)| \leq |\phi_{i,m-1}(p)| + (k + 1)C \cdot \max \{ |\phi^{\alpha_0}_i(p)| : i < k \} \leq c_{m-1}(j + 1) + (k + 1)C \cdot (j + 1).
\]
So we take \(c_m = c_{m-1} + (k + 1)C \). Since \(I \) is infinite, also \(J_m \) is infinite and this completes the inductive proof.

6. \(\tau \geq \delta \) is not necessary

We collect the lower bounds and the upper bounds on \(\mathfrak{d}(\mathcal{P}) \):
\[
\text{cov}(\mathcal{M}), b \leq \mathfrak{d}(\mathcal{P}) \leq \tau, \mathfrak{d}.
\]
There are models in which every lower bound is \(\aleph_1 \) and every upper bound is \(\aleph_2 \): On p. 384 in [4] a model of \(b = \text{cov}(\mathcal{M}) = \aleph_1 \) and \(\text{cov}(\mathcal{N}) = \aleph_0 = c = \aleph_2 \) is given: Start with a ground model \(V \models b, \text{cov}(\mathcal{M}) < \mathfrak{d} = \aleph_2 \) and then force with \(B(\aleph_2) \), adding \(\aleph_2 \) random reals. Also since \(\tau \geq \text{cov}(\mathcal{N}) \), we have \(\tau = \aleph_2 \) and by Theorem 1.3, \(\mathfrak{d}(\mathcal{P}) = \mathfrak{d} \). There are two possibilities for refining this choice by refining and modifying the choice the ground model:

First, there is model gotten by C.C.C. forcing, namely we start with two regular cardinals \(\nu < \delta \) and we get a model \(\nu = \tau = \omega < \mathfrak{d} = \delta \) as given in [11]. The notation in the following theorem is taken from the paper [11], and we also draw on [13]. For more details, the reader is referred to these two references.

Theorem 6.1. In the models of [11] there are groups with Menger-bounded \(k \)th power but non-Menger-bounded \((k + 1) \)st power.

Proof. Let \(r_\eta, \eta < \delta \), be the Cohen reals and let \(s_{\alpha}, \alpha < \nu \), be the Mathias reals as above. Let \(\mathcal{F}_p \) be the ultralatter by the latter. Since by [3, Proposition 19] and a modification of [13, Theorem 3.6], \(r_\eta, \eta < \delta \), is \(\leq \aleph_0 \) dominating, we know by [14] that \(r_\eta \circ \text{next}(s_{\alpha}, \cdot) \), \(\eta < \delta, \alpha < \nu \), is \(\leq \aleph_0 \) dominating.

Now we imitate a construction à la [12] along a layering \(M_\alpha, \alpha < \nu \), such that \(M_\alpha \subseteq V(\delta, h(\alpha)) \) for some increasing continuous function \(h : \nu \rightarrow \nu \), and \(M_\alpha \subseteq (\mathcal{H}(\chi), \epsilon) \) is neither dominating nor refining. In the step from \(\alpha \) to \(\alpha + 1 \), \(\phi_\eta, \alpha \) has to dominate \(r_\eta \circ \text{next}(s_{\alpha}, \cdot) \) for all \(\eta < \delta \), so that \(G^{k+1} \) will be dominating in the end.
For this aim we set $\psi_{\eta,\alpha} = r_\eta \circ \text{next}(s_{\alpha+1}, \cdot)$. Now the analog to the functions h_α, j_α, and e_α for the model $V(\eta, h(\alpha)+1)$ (which contains the functions $\psi_{\eta,\alpha}$, $\eta < \delta$) can be found in $V(\eta, h(\alpha)+1)$ for some $h(\alpha)+1 < \delta$, since $V(\eta, h(\alpha)+1)$ is neither refining nor dominating in $V(\delta, \nu)$. Then we define $g^{\eta,\alpha}$ for $\psi_{\eta,\alpha}, h_\alpha, j_\alpha,$ and e_α for each η separately, as in the original construction. The estimation, the G^k is Menger bounded, is conducted by induction on α. Now in one induction step finitely many $g^{\eta,\alpha}, \eta < R$, for some $R \in \omega$, have to be considered in the sums like (5.10). We take the maxima over the respective R functions before forming I as in (5.14). So in the end, $M_{\alpha+1}$ contains δ elements more than M_ω, but is still neither dominating nor refining. □

Since $b \leq d'(P) \leq d_*(P) \leq \tau$, in these models the new cardinal characteristics are pinned down as $d'(P) = d_*(P) = v$ and thus show that the sufficient condition is not necessary. We still can add random reals and get that the groups in the ground model are still k-Menger bounded and not $k+1$-Menger bounded. There are new examples of subgroups of 2^ω with bounded kth power and unbounded $(k+1)$st power in the extension by the random reals, because the random reals increase τ and hence make $d_*(P) = 0$.

Now we look at a second model of $\eta_1 = \text{cov}(\mathcal{M}) = b < \tau = d = \epsilon = \eta_2$: We start with a ground model V of $u < g$ gotten, e.g., by adding η_2 Miller reals [10] or Blass–Shelah reals [9] with countable support to a model of CH. In this model there are no groups with Menger-bounded kth power and not Menger-bounded $(k + 1)$st power. Thereafter we add η_2 random reals. Then $g = \eta_1$ (by [5]) and $\tau = \eta_2$ and $d = \eta_2$. So in this model there groups with Menger-bounded kth power and non-Menger bounded $(k+1)$st power added by forcing with random reals. We are interested whether $\tau \geq \delta$ implies $(3P)$ ($d'(P) = 0$) and hence we ask:

Question 6.2. What is the value of $d'(P)$ in this type of forcing extensions?

Separating the cardinal characteristics seems to be a challenge, because there is not much elbow room. However, since the non-existence result for $u < g$ mentioned in the beginning of Section 3 works only from $k = 2$ onwards, the following is most interesting:

Question 6.3. Does $u < g$ imply that there is no Menger-bounded subgroup of 2^ω whose square is not Menger-bounded?

It is well possible that $u < g$ is not enough for non-existence and that a deeper analysis of one of the forcings given in [9,11,5] (i.e., the three main forcings for $u < g$) or an entirely new forcing order could answer affirmatively:

Question 6.4. Is it consistent relative to ZFC that there are no Menger-bounded subgroup of 2^ω whose square is not Menger-bounded?

Similar questions on k-domination for various k, without groups, lead also into realm of $u < g$ versus “there are at least $k + 1$ near-coherence classes”, or $\tau \geq \delta$, or even $\tau \geq \epsilon$, and are considered in [6,7].

References

