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a b s t r a c t

Two variants of the Computational Order of Convergence (COC) of an iterative method for
solving nonlinear equations are presented. Furthermore, the way to approximate the COC
and the new variants to the local order of convergence is analyzed. The new definitions
given here does not involve the unknown root. Numerical experiments using adaptive
arithmetic with multiple precision and a stopping criteria are implemented without using
any known root.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Iterative methods for solving a nonlinear equation f (x) = 0, where f : D ⊆ R → R, usually consider a sequence {xn},
defined by

xn+1 = φ(xn), n ≥ 0, (1)
where φ is the iteration function. A sequence {xn} is said to converge to α with order of convergence ρ ∈ R, ρ ≥ 1, if there
exists a constant C ∈ R \ {0} such that

lim
n→∞

en+1
eρn
= C,

where en = xn − α is the error in the nth iterate. For one-step methods, like the one given in (1), the error equation is:

en+1 = Ceρn + De
ρ+1
n + · · · , (2)

where C and D are real numbers. The nonzero constant C is said to be the asymptotic error. The order of convergence of an
iterative method is the order of the corresponding sequence. If it is ρ, then the method approximately multiplies by ρ the
number of correct decimals after each iteration.
Next, we give the definitions of Computational Order of Convergence (COC) [1, 2000], Approximated Computational Order
of Convergence (ACOC) and Extrapolated Computational Order of Convergence (ECOC).

Definition 1 (Computational Order of Convergence, COC). The computational order of convergence (COC) of a sequence
{xn}n≥0 is defined by

ρ̄n =
ln |en+1/en|
ln |en/en−1|

, (3)

where xn−1, xn and xn+1 are three consecutive iterations near the root α and en = xn − α.
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After the work ofWeerakoon and Fernando [1], many other authors have considered the COC in their research. In [2–16] the
computation of COC is used in each of them. In all these papers the COC is used to test numerically the order of convergence
of the methods previously presented which order have been theoretically studied. One of the main drawback of the COC is
that it involves the exact root α, which in a real situation it is not known a priori. To avoid this, we introduce a variant of
COC, that does not use the exact root. Previously for several variables this concept was considered in [17,18].

Definition 2 (Approximated Computational Order of Convergence, ACOC). The approximated computational order of
convergence (ACOC) of a sequence {xn}n≥0 is defined by

ρ̂n =
ln
∣∣ên+1/ên∣∣

ln
∣∣ên/ên−1∣∣ , (4)

where ên = xn − xn−1.

Like in the ACOC to avoid formulae involving the exact root α, we begin with three consecutive iterates xn, xn−1, xn−2, and
using Aitken’s extrapolation procedure [19] we give the following approximation of α

α̃n = xn −
(1xn−1)2

12xn−2
, n ≥ 2, (5)

where 1 is the forward difference operator, 1xk = xk+1 − xk. Then, we can define a new approximation for the error
ẽn = xn − α̃n and a new computational order of convergence:

Definition 3 (Extrapolated Computational Order of Convergence, ECOC). The extrapolated computational order of convergence
(ECOC) of a sequence {xn}n≥0 is defined by

ρ̃n =
ln
∣∣ẽn+1/ẽn∣∣

ln
∣∣ẽn/ẽn−1∣∣ , (6)

where ẽn = xn − α̃n and α̃n is given by (5).

As we show later, for all sequence {xn} converging to α, with a starting point x0 close enough to α, the values of ρ̄n, ρ̂n and
ρ̃n converge, when n→∞, to ρ.
In numerical problems where a huge number of significant digits of the solution is needed it is required the use of methods
with a high order of convergence together with adequate arithmetics. There are different libraries in Fortran [20] or C [21]
working with a multiple precision arithmetic or symbolic manipulators, as Maple, that allow to work with an adaptive
arithmetic, that is to update the length of the mantissa at each step by means of the formula

Digits := [ρ × (− log |en| + j)] , (7)

whereρ is the order of convergence of themethod and [x] denotes the integer part of x. Notice that the length of themantissa
is increased approximately by the order of convergence ρ. We have numerically checked the value of j, by varying it between
1 and 5, in order to have enough accuracy in the computation of the iterates {xn}n≥0. We have realized that the minimum
value that guarantees all the significant digits required is j = 2. Consequently, hereof we consider j = 2 in formula (7).
In addition, to compute en, ên or ẽn with an appropriate number of figures, using Definitions 1, 2 or 3 wemust to enlarge the
mantissa in the computation of xn+1, xn, xn−1, . . .with at least four additional significant digits.

2. Computational Order of Convergence (COC)

A relationship between ρ̄n and ρ is derived. In fact, we prove that ρ̄n converges to ρ when en−1 → 0. That is ρ̄n ≈ ρ, in
the sense that limn→∞

ρ̄n
ρ
= 1.

Proposition 2.1. If ρ̄n is the COC defined in (3) and ρ is the order of convergence, then

ρ̄n ≈ ρ

∣∣∣∣1− Nn
ρ(lnMn + Nn)

∣∣∣∣ , where Mn =
∣∣∣C eρ−1n−1

∣∣∣ and Nn = ∣∣∣∣DC en−1
∣∣∣∣ (8)

and C and D are given in (2).

Proof. To prove (8) we express ρ̄n in terms of en−1. We denote Oq = O(e
q
n−1), and taking into account en+1 = C

ρ+1eρ
2

n−1 +

ρ CρD eρ
2
+1

n−1 + Oρ2+2, we have
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en+1
en
=
Cρeρ

2
−ρ

n−1 + ρC
ρ−1D eρ

2
−ρ+1

n−1 + Oρ2−ρ+2
1+ D

C en−1 + O2

= Cρeρ
2
−ρ

n−1 + (ρ − 1) C
ρ−1D eρ

2
−ρ+1

n−1 + Oρ2−ρ+2, (9)

and
en
en−1
= Ceρ−1n−1 + D e

ρ

n−1 + Oρ+1. (10)

From (9), (10) and using the equivalence ln(1+ x) ≈ x, for x closer enough to zero, yields

ρ̄n =
ln |en+1/en|
ln | en/en−1|

≈ ρ

∣∣∣∣∣ lnMn +
ρ−1
ρ
Nn

lnMn + Nn

∣∣∣∣∣ ≈ ρ
∣∣∣∣ 1− Nn

ρ(lnMn + Nn)

∣∣∣∣ ,
whereMn and Nn are defined in (8). �

Notice that for the calculus of the COC (3) and for updating the adaptive arithmetic process (7) it is necessary to know the
exact root α. In this case the following stopping criteria is applied:

|en| = |xn − α| < 0.5 · 10−η, (11)

where η is the number of correct decimals and 0.5 · 10−η is the required accuracy.

3. Approximated Computational Order of Convergence (ACOC)

A relationship between ρ̂n, and ρ is obtained. A new technique to update the number of significant digits in an adaptive
multi-precision arithmetic is given and a new stopping criteria is suggested.

Proposition 3.1. If we set en = xn − α and ên = xn − xn−1, then

en ≈ C1/(1−ρ)
(
ên
ên−1

)ρ2/(ρ−1)
, (12)

where ρ be the order of convergence and C is given in (2).

Proof. Now, we write ên/ên−1 in terms of en−2:

ên
ên−1
=
en − en−1
en−1 − en−2

=

Cρ+1 eρ
2

n−2 − C e
ρ

n−2 + O
(
eρ+1n−2

)
C eρn−2 + O

(
eρ+1n−2

)
− en−2

= C eρ−1n−2 (1+ O (en−2)) . (13)

Putting

en−2 = C−(ρ+1)/ρ
2
e1/ρ

2

n

(
1+ O

(
e1/ρ

2

n

))
, (14)

and substituting (14) in (13) we have

ên
ên−1
= C1/ρ

2
e(ρ−1)/ρ

2

n

(
1+ O

(
e1/ρ

2

n

))
, (15)

that can be expressed by e(ρ−1)/ρ
2

n ≈ C−1/ρ
2 ên
ên−1
, and the proof is completed. �

The result given in (12) allows us to substitute the error in (7) by a expression that does not involve the exact root. Indeed,
we implement the following adaptive multi-precision arithmetic scheme:

Digits :=
[
ρ3

ρ − 1
×

(
− log

∣∣∣∣ ênên−1
∣∣∣∣+ 2)] . (16)

Moreover, from (12) we propose the following stopping criteria, instead of (11):∣∣∣∣ ênên−1
∣∣∣∣ < 0.5 · 10−η(ρ−1)/ρ2 . (17)

Next result shows the relationship between the ACOC and the order of convergence of a sequence (1).



M. Grau-Sánchez et al. / Applied Mathematics Letters 23 (2010) 472–478 475

Proposition 3.2. If ρ̂n is the ACOC defined in (4) and ρ is the order of convergence, then

ρ̂n ≈ ρ

∣∣∣∣1− Nn−1
ρ(lnMn−1 + Nn−1)

∣∣∣∣ , where Mn−1 =
∣∣∣C eρ−1n−2

∣∣∣ and Nn−1 = ∣∣∣∣DC en−2
∣∣∣∣ (18)

and C and D are introduced in (2).

Proof. As in the proof of the previous proposition, we have

ên
ên−1
=
en − en−1
en−1 − en−2

=

Cρ+1 eρ
2

n−2 + ρC
ρD eρ

2
+1

n−2 + · · · − C e
ρ

n−2 − D e
ρ+1
n−2 + O

(
eρ+2n−2

)
C eρn−2 + D e

ρ+1
n−2 + O

(
eρ+2n−2

)
− en−2

= C eρ−1n−2 + D e
ρ

n−2 + O
(
eρ+1n−2

)
. (19)

In a similar way,

ên+1
ên
= Cρ eρ(ρ−1)n−2 + (ρ − 1)Cρ−1Deρ

2ρ+1
n−2 + O

(
eρ
2
−ρ+2

n−2

)
. (20)

From (19) and (20) we have

ρ̂n =
ln
∣∣ên+1/ên∣∣

ln
∣∣ên/ên−1∣∣ ≈ ρ

∣∣∣∣∣ lnMn−1 +
ρ−1
ρ
Nn−1

lnMn−1 + Nn−1

∣∣∣∣∣ ≈ ρ
∣∣∣∣1− Nn−1

ρ(lnMn−1 + Nn−1)

∣∣∣∣ ,
withMn−1 and Nn−1 defined in (18). This completes the proof. �

4. Extrapolated Computational Order of Convergence (ECOC)

A relationship between ρ̃n and ρ, a new technique to update the number of significant digits in an adaptive multi-
precision arithmetic and a new stopping criteria are given.

Proposition 4.1. If we put en = xn − α and ẽn = xn − α̃n, then

en ≈ Cσ ẽρ
2/(2ρ−1)
n , where σ =

ρ − 1
2ρ − 1

. (21)

Proof. Taking into account en−2 = C−1/ρ e
1/ρ
n−1(1+ O(e

1/ρ
n−1)), we write ẽn in terms of en−1:

ẽn =
(en − en−1)2

en − 2en−1 + en−2
=

C2 e2ρn−1 − 2C e
ρ+1
n−1 + e

2
n−1 + O(e

ρ+2
n−1 )

C eρn−1 − 2en−1 + C−1/ρe
1/ρ
n−1

(
1+ O(e1/ρn−1)

)
= C1/ρ e(2ρ−1)/ρn−1

(
1+ O(e2/ρn−1)

)
. (22)

Now, from (22) and en−1 = C−1/ρ e
1/ρ
n (1+ O(e1/ρn )), we get

ẽn = C1/ρ
[
C−1/ρ e1/ρn

(
1+ O

(
e1/ρn

))](2ρ−1)/ρ
·

[
1+ O

({
C−1/ρ e1/ρn

(
1+ O

(
e1/ρn

))}2/ρ)]
= C (1−ρ)/ρ

2
e(2ρ−1)/ρ

2

n

(
1+ O

(
e(2ρ−1)/ρ

2

n

))
. (23)

From (23), we have e(2ρ−1)/ρ
2

n ≈ C (ρ−1)/ρ
2
ẽn from which the proof immediately follows. �

Notice that (21) allow us to implement an iterative method (1) with a multi-precision adaptive arithmetic. We consider
instead of (7) the expression:

Digits :=

[
ρ3

2ρ − 1
×
(
− log |ẽn| + 2

)]
. (24)

In addition, as an alternative to (11), (21) provides the following stopping criteria

|ẽn| < 0.5 · 10−η(2ρ−1)/ρ
2
. (25)

The following result shows the relationship between the ECOC and the order of convergence.
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Proposition 4.2. If ρ̃n is the ECOC defined in (6) and ρ ≥ 2 is the order of convergence, then

ρ̃n ≈ ρ

∣∣∣∣1+ (2 ρ − 3)Nn−1 + Pn−1lnQn−1

∣∣∣∣ , (26)

where Qn−1 = |C2ρ−1 e
(2ρ−1) (ρ−1)
n−2 |,Nn−1 =

∣∣D
C en−2

∣∣ , Pn−1 = ρ|C−1Dρ en−2 + 2 C eρ−1n−2 |, and C and D are given in (2).

Proof. Now, we write ρ̃nin terms of en−2. To do that, we express ẽn and ẽn+1 in terms of en−2.

ẽn =
(en − en−1)2

en − 2en−1 + en−2
=

C2 e2ρn−2 − 2C D e
2ρ+1
n−2 + O

(
e2ρ+2n−2

)
en−2 − 2 C e

ρ

n−2 + O
(
eρ+1n−2

)
= C2 e2ρ−1n−2 + 2 C D e

2ρ
n−2 + O

(
e2ρ+1n−2

)
. (27)

Next, by (27) we deduce

ẽn+1 = C2 e
2ρ−1
n−1 + 2CDe

2ρ
n−1 + O

(
e2ρ+1n−1

)
= C2ρ+1 e(2ρ−1) ρn−2 + C2ρ D e(2ρ−1) ρ+1n−2 + O

(
e(2ρ−1) ρ+2n−2

)
. (28)

From (27) and (28), we have

ẽn+1
ẽn
= C2ρ−1e(2ρ−1) (ρ−1)n−2 + (2ρ − 3) C2ρ−2 D e(2ρ−1) (ρ−1)+1n−2 + O

(
e(2ρ−1) (ρ−1)+2n−2

)
. (29)

Consequently,

ẽn−1 =
(en−1 − en−2)2

en−1 − 2en−2 + en−3
=

e2n−2 − 2 C e
ρ+1
n−2 + O

(
eρ+1n−2

)
C−1/ρ e1/ρn−2 − 1/ρ C−1−2/ρ D e

2/ρ
n−2 − 2 en−2 + O

(
eρn−2

) ,
and then

ẽn−1 = C1/ρ e
(2ρ−1)/ρ
n−2 + 1/ρ C−1 D e2n−2 + 2 C

2/ρ e3−2/ρn−2 + · · · . (30)

From (28) and (31), we get

ẽn
ẽn−1

= C (2ρ−1)/ρe(2ρ−1) (ρ−1)/ρn−2 − C (2ρ−2)/ρ D e(2ρ−1) (ρ−1)/ρ+1/ρn−2 − 2 C2 e2(ρ−1)n−2 + O
(
e(2ρ

2
−2ρ+1)/ρ

n−2

)
. (31)

Finally, from (29) and (31), yields

ρ̃n =
ln
∣∣ẽn+1/ẽn∣∣

ln
∣∣ẽn/ẽn−1∣∣ ≈ ρ

∣∣∣∣ lnQn−1 + (2 ρ − 3)Nn−1lnQn−1 − Pn−1

∣∣∣∣ ≈ ρ ∣∣∣∣1+ (2 ρ − 3)Nn−1 + Pn−1lnQn−1

∣∣∣∣ ,
and the proof is complete. �

We point out that COC can be compute if n ≥ 1, ACOC if n ≥ 2 and ECOC if n ≥ 3. If we have a method of higher order of
convergence thenmulti-precision arithmetics is required andwill be used in the casewere necessary to obtainmany correct
figures.

5. Iterative methods and numerical results

We consider in this section three iterative methods, g2, g3 and g4 with 2nd, 3rd and 4th local order of convergence
respectively. Thesemethods are called Newton’s method, Chebyshev’s method [13,22,23] and Schröder’s method [24]. They
are defined by:

g2(x) = x− u(x), (32)

g3(x) = g2(x)−
1
2
L(x)u(x), (33)

g4(x) = g3(x)−
(
1
2
L(x)2 −M(x)

)
u(x), (34)
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Table 1
Test functions, their roots and their initial points.

Function α x0

f1(x) = x3 − 3x2 + x− 2 2.893289 2.5
f2(x) = x3 + cos x− 2 1.172578 1.5
f3(x) = 2 sin x+ 1− x 2.380061 2.5
f4(x) = (x+ 1) e−x − 1 0.557146 1.0
f5(x) = ex

2
+7x−30

− 1 3.0 2.94
f6(x) = e−x + cos(x) 1.746140 1.5
f7(x) = x− 3 ln x 1.857184 2.0

Table 2
Iteration number and higher bounds for ρ̄n−1, ρ̂n and ρ̃n .

f1 f2 f3 f4 f5 f6 f7 1ρ̄ 1ρ̂ 1ρ̃

g2 13 12 11 12 13 11 12 1.4 · 10−5 2.7 · 10−23 6.1 · 10−9

g3 9 8 7 8 9 7 8 1.3 · 10−7 2.7 · 10−34 4.2 · 10−12

g4 7 7 6 7 7 6 6 1.5 · 10−9 9.9 · 10−50 1.5 · 10−16

where

u(x) =
f (x)
f ′(x)

, L(x) =
f ′′(x)
f ′(x)

u(x) and M(x) =
f ′′′(x)
3! f ′(x)

u(x)2.

We have tested the preceding methods on seven functions using the Maple computer algebra system. We have computed
the root of each function for the same initial approximation x0. Depending on the computational order of convergence used,
COC (3), ACOC (4) or ECOC (6), the iterative method was stopped when the condition (11), (17) or (25) is fulfilled. Note that
in all cases η = 2200.
The set of test functions presented here were previously considered in [25]. Table 1 shows the expression of these functions,
the initial approximation, which is the same for all the methods and the root with seven significant digits.
Table 2 shows, for each method and function, the number of iterations needed to compute the root to the level of precision
described. Note that independently of using (7), (16) or (24) the number of necessary iterations to get the desired precision
is the same. In addition, the last three columns show an average for the error bounds produced in the computation of the
corresponding Computational Orders of Convergence (COC, ACOC or ECOC). For instance, considering the COC and Newton’s
method g2, let us denote 1ρ̄k the error committed in the computation of the COC for each function fk, k = 1, . . . , 7. We
calculate the average of these error bounds,

1ρ̄ =
1
7

7∑
k=1

|1ρ̄k| = 1.4 · 10−5.

Then we can write the corresponding COC for Newton’s method: ρ̄n−1 = ρ ± 1ρ̄. The rest of the 8th column contains the
average of the error bounds for the COC and methods g3 and g4. The 9th column shows the error bounds for the ACOC and
each function gj, j = 2, 3, 4 and the 10th column shows the error bounds for the ECOC and each function gj, j = 2, 3, 4.
Notice that we have ρ̂n = ρ ±1ρ̂ for the ACOC and ρ̃n = ρ ±1ρ̃ for the ECOC.
From these numerical tests, we can conclude that the ACOC produces the best approximations of the theoretical order of
convergence of an iterativemethod. Aswe can see in Propositions 2.1 and 3.2, both COC and ACOC have the same asymptotic
behavior, but ACOC has the advantage that it does not involve the expression of the root α we want to approximate that, in
real problems, is not know in advance.

Acknowledgement

The work was partially supported by the grant Ref. MTM2008-01952/MTM, Spanish Ministry of Science and Innovation.

References

[1] S. Weerakoon, T.G.I. Fernando, A variant of Newton’s method with accelerated third-order convergence, Appl. Math. Lett. 13 (2000) 87–93.
[2] M. Grau, M. Noguera, A variant of Cauchy’s method with accelerated fifth-order convergence, Appl. Math. Lett. 17 (2004) 509–517.
[3] A.Y. Ozban, Some new variants of Newton’s method, Appl. Math. Lett. 17 (2004) 677–682.
[4] C. Chun, Iterative methods improving Newton’s method by the decomposition method, Comput. Math. Appl. 50 (2005) 1559–1568.
[5] G.H. Nedzhibov, V.I. Hasanov, M.G. Petkov, On some families of multipoint iteratie methods for solving nonlinear equations, Numer. Algorithms 42
(2006) 127–136.

[6] J. Kou, Y. Li, A variant of Chebyshev’s method with sixth-order convergence, Numer. Algorithms 43 (2006) 273–278.
[7] C. Chun, Construction of Newton-like iteration methods for solving nonlinear equations, Numer. Math. 104 (2006) 297–315.
[8] C. Chun, A method for obtaining iterative formulas of order three, Appl. Math. Lett. 20 (2007) 1103–1109.
[9] J. Kou, Y. Li, X. Wang, Third-order modification of Newton’s method, J. Comput. Appl. Math. 205 (2007) 1–5.



478 M. Grau-Sánchez et al. / Applied Mathematics Letters 23 (2010) 472–478

[10] C. Chun, Some third-order families of iterative methods for solving nonlinear equations, Appl. Math. Comput. 188 (2007) 924–933.
[11] C. Chun, Construction of third-order modifications of Newton’s method, Appl. Math. Comput. 189 (2007) 662–668.
[12] C. Chun, On the construction of iterative methods with at least cubic convergence, Appl. Math. Comput. 189 (2007) 1384–1392.
[13] M. Grau-Sánchez, J.M. Peris, J.M. Gutiérrez, Accelerated iterativemethods for finding solutions of a systemof nonlinear equations, Appl.Math. Comput.

190 (2007) 1815–1823.
[14] T. Lukic, N.M. Ralevic, Geometric mean Newton’s method for simple and multiple roots, Appl. Math. Lett. 21 (2008) 30–36.
[15] C. Chun, A simply constructed third-order modifications of Newton’s method, J. Comput. Appl. Math. 219 (2008) 81–89.
[16] G.H. Nedzhibov, A family of multi-point iterative methods for solving systems of nonlinear equations, J. Comput. Appl. Math. 222 (2008) 244–250.
[17] A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth order quadrature formulas, Appl. Math. Comput. 190 (2007) 686–698.
[18] M.A. Noor, M. Waseem, Some iterative methods for solving a system of nonlinear equations, Comput. Math. Appl. 57 (2009) 101–106.
[19] A. Aitken, On Bernoulli’s numerical solution of algebraic equations, Proc. Roy. Soc. Edinburgh 46 (1926) 289–305.
[20] D.H. Bailey, Multiprecision translation and execution of fortran programs, ACM Trans. Math. Software 19 (3) (1993) 288–319.
[21] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, P. Zimmermann, MPFR: A multiple -precision binary floating-point library with correct rounding, ACM

Trans. Math. Software 33 (2) (2007) 1–15. Article 13.
[22] M. Grau, J.L. Díaz-Barrero, An improvement of the Euler–Chebyshev iterative method, J. Math. Anal. Appl. 315 (2006) 1–7.
[23] M. Grau-Sánchez, J.M. Gutiérrez, Some variants of the Chebyshev–Halley family with fifth-order of convergence, Int. J. Comput. Math. (2010), in press

(doi:10.1080/00207160802208358).
[24] E. Schröder, Über unendlich viele Algorithmen zur Auflösung der Gleichungen, Math. Ann. 2 (1870) 317–365.
[25] M. Grau-Sánchez, Improvement of the efficiency of some three-step iterative like-Newton methods, Numer. Math. 107 (2007) 131–146.

http://dx.doi.org/doi:10.1080/00207160802208358

	On some computational orders of convergence
	Introduction
	Computational Order of Convergence (COC)
	Approximated Computational Order of Convergence (ACOC)
	Extrapolated Computational Order of Convergence (ECOC)
	Iterative methods and numerical results
	Acknowledgement
	References


