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A comparative study is made of the various interpolation spaces generated with
respect to n-tuples or infinite families of compatible Banach spaces by real and
complex interpolation methods due to Sparr, Favini-Lions, Coifman—Cwikel-
Rochberg-Sagher-Weiss, and Fernandez. Certain inclusions are established between
these spaces and examples are given showing that in general they do not coincide. It
is also shown that, in contrast to the case of couples of spaces, the spaces generated
by the above methods may depend on the structure of the containing space in
which the Banach spaces of the n-tuple (n>3) or infinite family are embedded.
Finally a construction is given which enables the spaces of Sparr and Favini-Lions,
hitherto defined only with respect to n-tuples, to also be defined with respect to
infinite families of Banach spaces.  © 1987 Academic Press, Inc.

INTRODUCTION

Most of the developments in the theory and applications of interpolation
spaces in the past twenty years have occurred in the context of a couple of
Banach spaces 4, and A4, both continuously embedded in a Hausdorff
topological vector space %, which in fact can also be taken to be a Banach
space without loss of generality. There are several much studied construc-
tions for obtaining interpolation spaces with respect to the couple (A4,, 4,),
including in particular the real and complex methods [BL] which yield the
spaces (4, 4,)e,, and [A4,, 4,],, respectively.

A more exotic variant of this theory has a different point of departure,
namely an n-tuple (4,, 4,,.., A,) or even, more generally, an infinite family
{A(7)},cr of Banach spaces all of which are required to be continuously
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embedded in a “containing” Hausdorff topological vector space or Banach
space % as before. Using an appropriate generalization of the real or com-
plex (or some other) method one can obtain interpolation spaces with
respect to the n-tuple or infinite family, these being spaces 4 « % with the
property that all linear operators which are continuous on % and on each
A;, or on each A(y), are also continuous on A.

We refer, e.g., to [Sp, F1] and also further references cited in [Sp] for
more details concerning various types of real interpolation spaces defined
with respect to n-tuples, including a more precise formulation of their inter-
polation properties. Analogous material concerning the complex methods,
which have been defined for infinite families as well as n-tuples can be
found, e.g., in [Cl, C2, C3, Fa, F2, KNI, KN2, L, N, Sa]. Applications of
one of the complex methods can be found, e.g., in [Sa] (spectral properties
of convolution operators), [C1] (the Masani-Wiener theorem and
estimates for Beckner’s analytic semigroup of operators) and, at least
implicitly, in [Pi] (K-convex Banach spaces). See also [HRW, R1, RW1,
RW2]. We suggest that there are many further possible applications, for
example, in the study of the resolvents of a given operator which may be
considered as an analytic family of operators (cf. [Sa] and [C3,
Theorem 4.27).

The major part of this paper is devoted to a comparative study of the
various types of interpolation spaces mentioned above. We obtain certain
inclusions between them which generalize results already known in the
“classical” setting of a couple (4,, A,). But we also show that several
results in the setting of (4, 4,) do not extend to n-tuples or infinite
families. The trouble usually begins already for a 3-tuple (cf. [C3, Appen-
dix 1]) or even in one case, as we shall see, for a “2.19-tuple!” Our exam-
ples show that various methods which coincide in the context of couples
yield different spaces in general, that these spaces also depend on the struc-
ture of the containing space %, and furthermore, that in the interpolation
theorems alluded to above, we cannot dispense with the requirement that
the operator be well defined on %.

These results will be explicitly formulated in Section 1, together with a
recapitulation of the definitions of the various interpolation spaces to be
studied. A diagram at the end of that section summarizes relations between
these interpolation spaces.

The second purpose of this paper is to develop constructions which
enable the real method spaces of Sparr and the complex method spaces of
Favini-Lions, hitherto defined only with respect to n-tuples, to be obtained
also for infinite families of Banach spaces. We establish various elementary
properties of these new spaces, comparing them with those defined by the
complex method of [C3].

These latter results are given in Section 2. The remaining Sections 3-6
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contain proofs and detailed calculations related to results formulated in
Section 1. We have found it convenient to subdivide the rather voluminous
Section 4, which deals with various connections between real and complex
methods for n-tuples, into six subsections 4A, 4B,..., 4F.

1. DEFINITIONS AND STATEMENTS OF RESULTS FOR INTERPOLATION SPACES
GENERATED WITH RESPECT TO n-TUPLES OF BANACH SPACES

1.1. DeriniTION.  For any positive integer n a Banach n-tuple (or com-
patible Banach n-tuple) is an ordered set of n Banach spaces A=
(A, 4,,.., 4,) all of which are linearly and continuously embedded in a
Hausdorff topological vector space % which we shall call the containing
space. We remark that the specification of % and of the embedding of each
A; into % are essential parts of the specification of 4, as will be clear below
(see Theorem 1.32).

i. The K and J Spaces of Sparr

We begin by considering the real interpolation spaces generated with
respect to the n-tuple 4 by the J and K methods of Sparr. A detailed study
of these spaces can be found in [Sp]. They are of course generalizations of
the spaces (A4,, 4,), ,. We recall their construction in the course of the
following three definitions. (Similar spaces have also been studied by
Yoshikawa [Y] and other authors cited in [Sp].)

1.2. DerINITION. (i) For any given Banach n-tuple A4 let A(A)=
AynAd;0 - n A, with norm ||a| 4 z)=max,_,, , lall 4,- More generally,
for any n-tuple of positive numbers 7= (¢, t,,.., {,), we may equivalently

renorm A(A) by the J-functional

J(7,a; A)= max 1;]all for each ae 4(A4).
j=1l,..n

(ii) Let 2(A)=A4,+ A5+ -+ + A, with norm

lall £(z)=inf Z Ha,'“A},,
j=1
where the infimum is taken over all decompositions of a, a=37_,a; with
a;ed;, j=1,2,.,n 2(A4) is of course contained in #. More generally,
for any n-tuple 7 as above, we may equivalently renorm X(A) by the
K-functional

K(i,a; A)=inf ) tlla;] 4.

i=1
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1.3. DEFINITION. Let H” be the set of all n-tuples §=(6,, 0,,.., 8,) of
numbers in (0, 1) such that 3'7_, 6,=1. For each Banach n-tuple A, each
fe H", and each pe[l, 0] we let Ay .. be the space of all elements
ae X(A) for which the norm

l/p
||a||1,;',;,(=<L(f'9K(t_, a; A))* du(ﬂ) (1.4)

is finite. Here the symbol 7~9 stands for the product #; % ¢;%---¢-% and u
is the measure (dt, dt,---dt,_,)/(¢, 1, - t,_) supported on the set

E={(t;,tss t, 1, D[1;>0,j=1,2,.,n—1}cR".

1.5. Remark. Since the K-functional has the homogeneity property
K(Af,a; A)=AK({f, a; A) for each A>0 (where Af=(A1,, At,,..., A1,)) one
can replace u by other measures supported on other sets in R” and still
obtain the same norm. These matters are treated in detail in -Section 3
of [Sp].

1.6. DErINITION. Let 4, 0, p, u, and E be as in Definition 1.3. Then the
space Ay ,., is defined to consist of all those elements a e 2(A) which have
a representation of the form

a= JE u(?) du(f), (17)

where u(f) is a strongly Borel measurable 4(A) valued function on E which
is absolutely (i.e.,, Bochner) integrable on all compact subsets of E and
satisfies

(f (7007, u(f); A))? dy(t'))l/p< . (1.8)
E

The norm |lal| 4, is the infimum of the values of the integral (1.8) over all
such representations (1.7) of a.

1.9. Remark. (i) The integral (1.7) can be conveniently interpreted in
the weak sense, ie., <a, !> =, <u(f), ) du(f) for all le X(4) (cf. [Sp,
Remark 4.37).

(ii) Using the homogeneity of the J-functional one can replace u by
other measures supported on other sets in R” without changing the norm
on Ay ,.,, exactly as for Ay , x (cf. Remark L.5).

In the case of Banach couples 4= (A4,, A,) much use is made of the
important fact that the spaces A4, ,., and A, ,  coincide to within
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equivalence of norms. For n> 2 this result remains true for certain special
Banach n-tuples. However, in general it fails, as is shown by an example of
a Banach triple A =(4,, 4,, A;) due essentially to Yoshikawa. Instead we
have only the inclusion Ay ,.; = Ay ,.x. For details of these matters we refer
to [Sp], in particular Section 5 and p. 265. Yoshikawa’s counterexample
could be considered as somewhat “artificial” since it has the property that
A(A)= {0} and consequently also 4, , ,= {0}. We are thus left with the
question of whether the spaces 4, ,., and A4, ,.« coincide when, as is the
case in many “natural” examples, 4(A) is nontrivial or even dense in each
A, j=1,2,.,n

The following example and its corollary provide a negative answer to
this question.

1.10. ExampPLE. Let 6e H> . For each r >0 there exists a triple 4= A"
of two-dimensional Hilbert spaces such that V>rV, where V, and V
denote the volumes (areas) of the unit balls of A, and Ay, «, respec-
tively.

The details of the construction of 4" are given in Section 3.

1.11. COROLLARY. There exists a Banach triple A such that A(A) is
dense in A; for j=1,2,3, but Ag,., is strictly smaller than Ay, ..

A is obtained by a simple construction using direct sums of spaces from
the triples A" for an unbounded sequence of values of r (see Remark 3.14).
(i1). The Complex Interpolation Spaces of Favini-Lions

We next consider a generalization of the complex interpolation spaces
[A;, A5]s (see, e.g., [BL, Chap.4]) for Banach n-tuples. We shall use
essentially the same definition as suggested by Lions [L] which yields
spaces which have been studied in detail by Favini [Fa].

1.12. DEFINITION. Let A be a Banach n-tuple and let

Qz{z:(zl,zz,..., z,_1)eC" '|0<Rez;<]1,

n—1
i=L2.,n-1,0< Y Rczj<1}.

Jj=1

Let Q denote the closure (in C"~') of 2 and let 8Q;, j=1, 2,.., n, denote
the » components of the distinguished boundary of . Thus, for
j=12,..,n—1,

0Q,={zeQ|Rez;=1,Rez, =0, k # }
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and
0Q2,={zeQ|Rez,=0,k=1,2,..,n—1}.

Let s#(A4) denote the space of continuous bounded functions f:
Q — X(A) such that

(i) fis holomorphic in £,

(i) for each j=1,2,.., n the restriction of f to 0, is a continuous
and bounded 4, valued function which vanishes at infinity.

H#(A) is normed by
1/l secay=sup{lf(2)l 4| 2€ 092, j=1, 2,..., n}.
For each 0=(0,, 0,,.., 0,) e H". the space [A4]; is defined by
[41e={/(0,,0,,..0, 1) fe #(4)}
with norm
laligay =inf{ 1 e a)| (01, 025ey 0, 1) =a}.
1.13. Remark. A more symmetric formulation of this definition could

be obtained by replacing the domain @ by

Y. z;=1,Rez;e(0, 1),

i=1

Q.= {z= (21, 2350, 2,) € C"

j=12,., n}

whose distinguished boundary is the union of the sets

0Q, = {zeQ,|Rez;=1}, j=12..,n

Each fes#(A) corresponds to a unique function g: Q, — Z(A4) with
analogous properties, defined by g(z,,2;,..,2,)=8(21s 225 2,1,

! _Z;:ll Zj)=f(21, Zopees Zy_1):

1.14. Remark. Favini in fact uses a slightly different space of analytic
functions on Q, which we shall denote here by 3 (A4). It is defined and nor-
med exactly like #(A) except that || f(z)| 4; is not required to vamsh at
infinity on 0Q,. However, it is easy to see that [A]s={f(6,, 02, w6, )l
fe Jﬁ(A)} and lall [Z]g—mf{ "f”x’l(z) fE.Jﬁ(A), f06,,60,5,...0,_)) —a}
since, for each fe #,(4) and J >0, the function f;e # (A), where f5(z) =

G0 7y and Ifoll jeay <€~ 1"’||f||,t,,(,4) It is often more convenient
for us to use #(A) rather than #,(A4) in view of Lemma 1.16.
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It should also be pointed out that both Favini’s and our definitions differ
from Lions’ in that more stringent continuity conditions ((ii) above) are
imposed on the boundary values of functions in s#(A4) and #,(4). For a
discussion of different boundary conditions encountered in complex inter-
polation methods and an example showing that they may lead to different
interpolation spaces see [CJ].

Our first result concerning these spaces relates them to those of Sparr.

1.15. THEOREM. For every Banach n-tuple A and every 0 e H",
‘ZO, A [Z]g
and the norm of the inclusion mapping is at most 1.

Proof. See Subsection 4A.

(For a related result for n-tuples of Hilbert spaces see Theorem 1.24.)

The following lemma generalizes a result of Calderon [Ca, Sect. 9.27] and
can be proved via multiple Fourier series and a fairly straightforward
adaptation of arguments used in [Ca, Sect.23.2]. We have provided an
alternative somewhat more direct proof in Subsection 4B.

1.16. LEMMA. The set of all functions of the form

N
n—12 [y
g(z)=g(zl’229"'» znfl)::e&zj:lv z: e“l‘,-)ak
k—1

is dense in H(A), where §>0, N is any positive integer, 1,=
(’1'k,1’ )'k.2"-"lk,n7 1 ) € [R") l’ ()‘k) Z) = 27;11 '{k.jzj and ak € A(A)

It follows of course from this lemma that A4(A) is dense in [A4],. This
generalizes Teorema 9 of [Fa, p. 269].

iii. The “St. Louis” Spaces

We next relate the Favini-Lions spaces to a different kind of complex
interpolation spaces introduced by Coifman, Cwikel, Rochberg, Sagher,
and Weiss [Cl, C2, C3] which we shall call “St. Louis” spaces for the sake
of brevity. (Subsequent results concerning these spaces can be found in,
e.g, [CF, H1, H2, J2, R1, R2, RW1, RW2, RW3]; cf. also the spaces
introduced by Krein and Nikolova [KNI, KN2, N], ie, “Voronez”
spaces.) In fact the St. Louis spaces can be defined with respect to an
infinite family of Banach spaces. (See the above references and Sect. 2.)
However, at this stage we consider only the special case where they are
generated by a Banach n-tuple 4. Thus we use a simply connected domain
D in the complex plane whose boundary I is a rectifiable simple closed
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curve. We let I'={I'|, I',,.., I',} be an n-tuple of pairwise disjoint subsets
of I, each measurable (with respect to harmonic measure), and whose
union is I'. ¥ =%(A4, I') shall denote the space of 4(A4) valued functions
obtained by taking all finite sums of all functions of the form ¢(w) a where
ae 4(A) and o(w) is a scalar valued bounded analytic function on D. Thus,
for each ge %, the nontangential limit lim,, ., g(w)= g(y) exists for a.c.
yerl. Let & =%(4,T) denote the completion of ¥ with respect to the
norm gl gry=esssup{lg()ll 4 j=1, 2, myel}} Cleatly # is a
space of analytic 2(A) valued functions on D whose boundary values are in
A; for ae. ye I';. Now we can define the St. Louis spaces A[{], or (using a
notation more appropriate to the present context) A, for each fixed
{eD by

A r={fO1feF(4, D},

with norm |l 7., = inf{ I/l 5z | f€ F(A, ). f()=2}.

We shall denote harmonic measure on I” at a point (e D by P, ic., the
Poisson integral of a function f on I'is u({)= |, f() dP(y).

A relation between the St. Louis and Favini-Lions spaces is given by the
following theorem.

1.17. THEOREM (Peetre). Let A be a Banach n-tuple. Then for each
{ € D and each partition T = {I',, I',,.., I',} of I' as above

[Z]a < Z[c].r,

where 0= (0,,..., 0,) is defined by 0,=P/I}), j=1,2,.,n. The norm of the
inclusion mapping is at most 1.

The proof of this theorem is given in Subsection 4C.

For n=2 the spaces [A]; and A, r (with § and { related as above)
coincide with inequality of norms [C3, Theorem 5.17] and therefore, in this
case, the construction of St. Louis spaces is “rearrangement invariant” in
the sense that if I™* = {I'¥,.., I'*} is a second partition of I into disjoint
measurable subsets such that P(I'*)=P/(I,) for j=1,2,.,n, then
Appr«=Apr. Our next example shows that this “rearrangement
invariance” fails when n>3 (and even in a certain sense when » > 2.1834).

1.18. ExaMPLE. Let D be the unit disc and let its boundary I" be
divided into three arcs of equal length I'y, I';, I';. For each m>0 there
exists a triple of Banach spaces of analytic functions A™= (A7, A7, AT)
a_nd elements x,,€ A7 NAT N AY for which | x,,| A m| x,,| Ay where
I'={I, I, I's} and I'*={I,, I',, I'}. The spaces A7 may be taken to
be isometric images of the disc algebra or of the Hardy class H?(D) for any
pell, o).
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The details of this construction are given in Subsection 4D where the
reader may also find an example (Example 4.7) of an infinite interpolation
family {A(y)}, . of two-dimensional spaces which has similar properties.

1.19. COROLLARY. There exists a Banach triple A such that, for I and
T* as above, Aoy r# Aoy re-

The construction uses Example 1.18 and a simple direct sum procedure,
such as in Corollary 1.11 and Remark 3.14, In particular if we use /* direct
sums of spaces isometric to H*(D) we may obtain a triple of Hilbert spaces
with this property.

1.20. CoroLLaRY. The inclusion [A4]; < Ay 1 of Theorem 1.17 is strict
in general.

Proof. Suppose on the contrary that [4]y=A[.;r whenever 6=
(0y,..0,) and I'={I'\, I',,.., I',} satisfy P.(I';)=0,. Then for I', I'* and 4
as in the preceding corollary and 8=(4 4 1) we have Ao, r=[A4],=
Apoq.r+ Which is a contradiction.

1.21. Remark. The above examples also lead us to make some (rather
discouraging) observations concerning the duals of Favini-Lions spaces.
Favini showed [Fa, Teorema 10, p.272] that [A4], 45, A}]s<
[4,,A,, A;]; whenever A(A) is dense in 4,, A,, A; and [A4,, 4,, A5],.
(In fact, density in [A4,, A, A3]g is always assured by Lemma 1.16.)
At first sight, it would seem reasonable to conjecture, by analogy with the
description of the dual of [A4,, 4,]y, that the above inclusion is in
fact an equality, at least when the spaces A4; are reflexive. However, as we
show in Subsection 4D, Remark 4.8, such a result is not true in general
since for each m>(0 we can construct a triple of finite-dimensional
spaces Y=(Y,, Y,,Y;) and an element y such that |yl y.ys vs70/
[ Y1l vy vo. v27 > m. Despite this setback to characterizing such dual spaces
(or maybe because of it) Peetre (see [P2]) has succeeded in obtaining
a description of the dual spaces of the complex interpolation spaces of
Fernandez (see below and [F2]) which have a definition roughly analogous
to that of [4],.

© 1.22. QuesTioN. By Theorem 1.17 we in fact have [A]s< (\rA [y r for
every n-tuple A where the intersection is taken over the class of all decom-
positions of I, I'={I', I',,.., I',} for which P,(I'})=6,, j=1,2,.,n Do
these two spaces coincide? (By an obvious conformal map argument the
above intersection of St. Louis spaces will be the same whether we consider
{ fixed or variable.)
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The following theorem taken in combination with Theorems 1.15 and
1.17 provides an n-tuple analogue of the Lions—Peetre inclusions
(Ay, 45)p1c A, Ay]p= (4, 43)4., [BL, Theorem 4.7.1, p. 102].

1.23. THEOREM. (i) Let A= (A4, A,,.., A,) be a Banach n-tuple and
@e H" . Then

[ZJGC‘ZB,GO;K'

(i) If F'={I, T,,.,T,} is a partition of the rectifiable boundary I
of the simply connected domain D such that, for some point {e D, P,(I';})=0,
for j=1,2,.., n, then

Z[C],I"C ZG,G};K‘
The norms of the inclusion mappings in (i) and (ii} are both at most 1.

Proof. See Subsection 4E.

iv. The Case of n-tuples of Hilbert Spaces

If (4,,4,) is a couple of Hilbert spaces then the above inclusions
between real and complex interpolation spaces can be sharpened to yield
(A), A3)er=[Ay, A2]6. (See, e.g. [P1]). Analogously, in the case where
A=(4,, A,,.., 4,) is an n-tuple of Hilbert spaces, it might be expected that
we can obtain sharpened forms of Theorems 1.15 and 1.23. We shall
present one partial result in this direction.

1.24. THEOREM. Let A=(A,, A,,., A,) be a compatible n-tuple of
Hilbert spaces. Then for any §e H", ,

[4]),c 4 8.2;7
with continuous inclusion.

The proof, in Subsection 4F, implicitly contains the idea of identifying
Ay ., with a variant of the Favini-Lions space which is constructed replac-
ing #(4) by a similar space #*(4) normed by |fl 1=
-y Iaa, If @)%, dmyz))'* (m; is an (n—1)-dimensional Lebesgue
measure on dQ2;). We shall not pursue this idea systematically here. One
could also consider Favini-Lions type spaces corresponding to similar use
of #7(A) for other values of p. We are dealing here with vector ‘valued
analogues of spaces, H” spaces on tubes, for which there is a well-
developed theory (see [SW, Chap. II]; cf. alsoc [DGV].)

In the case n =2 all choices of p in the above construction yield the same
complex interpolation spaces (see, e.g., [P1]). It is natural to ask whether
this also happens if n> 3.
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Concerning possible relations between Ag,., or Ag,.x and the
corresponding St. Louis spaces, let us note that in view of Remark 3.15 the
space A, r cannot coincide with either of its real method analogues Ag .,
Ag . k- This could also be shown using an argument similar to that used to
prove Corollary 1.20. (Here again, as before, I'={I";, I',,.., I',} and 0,=
P(I';).) The estimates of Remark 3.15 suggest that it is plausible to conjec-
ture that Ag,., < A< Ag,.x- Another natural question, related to this
conjecture and the preceding question concerning Favini-Lions spaces and
their L? generalizations, is whether for an n-tuple of Banach spaces all of
Fourier type p (see [M2, M3, P1]) one can obtain

Ap psc A r<Ag pox-

v. The Real and Complex Interpolation Spaces of Fernandez

Fernandez [F1, F2] has introduced versions of the real and complex
methods for 2"-tuples. His methods are similar to the Sparr and
Favini-Lions methods defined above, but with the simplex replaced by an
n-cube. For simplicity we will only treat the case of four spaces here,
although the results easily extend to the general case. Following Fernandez’
notation we will denote Banach 4-tuples by 4 = (Ay, 4,9, Aoi» A1;)- Then
for t;,t,>0and a in A4(4) or 2(4) the J- and K-functionals of Fernandez
are defined, respectively, by

J(ty, 1y, a; Ay =max(|all a, tillall ay» 2llal 40 112200 )

and
K1, t5,a;A)

= inf (||aooHAoo+tl““‘llo”Am"‘t2||001HA01+t1’2“a11“,4“)-
a=ay + a1p + ag1 + a1y

Given 6,,08,e(0,1) and p,,p,e[l, 0] Fernandez defines the space
Apy.0,.p1.p0:0 t0 consist of all elements ae X(A4) which can be represented in
the form a=[g [& u(ty, 1,)(dt, diy/t,t,), where u(iy,t,) is a strongly
measurable 4(A4) valued function satisfying

* © dt, Up P2 gy \ Vp2
(J. [1502 (J (t;glJ(tl’ ts, u(ty, 12); A))P ) :l _3) < 0.
0 0 1 1

Similarly A4y, 4, ,,. . x consists of all ae Z(A) which satisfy

o o« dl Upir2 gy 1/p2
([ [ ([ o s anm )" 52) <o
0 0 t iy
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These spaces are normed in the obvious way.

For the definition of complex interpolation spaces Fernandez uses a
space H(A) of Z(A) valued continuous bounded functions f(z,, z,) defined
on the region in C?

S?={(x,+iy;, x2+ip)|0<x, €1,0<x, <1}

which are analytic in the interior and continuous bounded 4, ;, valued
functions of (y,,y,) when restricted to the corresponding component
{(ji+iy1, Ja+iy2)| y1, y2€ R} of the distinguished boundary of S?
(j,=0,1, j,=0,1). H(A) is normed by

”f”H(Z)'__SUp{“f(jl+iylajZ+iy2)l|Aj1j2|jlaj2=0’ 17 }’1, y26R}

and for 8,, 6,€(0, 1) the space [4;0,, 8,] consists of all elements of the
form a= f(8,, 8,) with an obvious quotient norm.

As above (cf. Example 1.10) we wish to investigate whether the J and K
spaces coincide in this context. An example has been given by Asekritova
[A] where they do not, but in her case (cf. the example of Yoshikawa men-
tioned above) 4(A4) = {0}. The complex method spaces of Fernandez have
also been studied by Dore, Guidetti, and Venni [DGV] who were led
independently, and for different purposes, to consider a counterexample
having some similarity with ours below.

We shall calculate the above spaces for certain values of the parameters
when the 4-tuple A4 is “diagonally equal”.

1.25. ExamPLES. Let A= (A, A1, Ao1s A1) satisfy Ag=A4,, = B,,
A= Ay = B, for any Banach couple (B,, B,). Then

[4;43]1=B,nB,, (1.26)
Aipipis=B10B,, (1.27)
bl __ dt dt, 8 ro (K(t a;B, B,)\"dt
-172 . p a1 ah _° > 1 B\t
L L ()R @i DS P-(o< max(1, 1) ) r
(1.28)
Aipape,w:x=Bi+ B, (1.29)

Aypapnas#Aipapar.x €xceptin some trivial cases.  (1.30)

For details of these calculations see Section 5.

1.31. Remark. Example (1.30) suggests that there is an inaccuracy in
[F1, Theorem 3.4]. Equivalence of the J and K methods of Fernandez
would imply, by an argument due to Milman {M1], that the real method
spaces of Fernandez could be obtained by reiteration of the real method for
couples.
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vi. Dependence on the Containing Space

The final and perhaps, at first sight, the most surprising phenomenon
which we shall discuss in this section exhibits the essential roles of the con-
taining space % both in determining the interpolation spaces generated by
a given n-tuple for n>3 and also in the formulation of interpolation
theorems.

For the sake of comparison we first remark that, if (4, 4,) and (B,, B,)
are Banach couples such that A, is isomorphic to B;, j=1,2, and the
isomorphism maps 7,: 4, - B, T,: A, —» B, coincide on 4, N A, and so
define an isomorphism of 4, " A4, onto B, n B,, then we can also extend
T, and T, to define a (consistent) isomorphism 7 between 4,+ A, and
B+ B, and deduce that [4,, A,], and (A4,, A,), , are isomorphic to
[B,, B,]y and to (B,, B,),,,, respectively. This seems completely obvious
(but we might begin to doubt it after reading what is to follow). We simply
let Ta=T,a,+ T,a, where a=a,+a,, a;e A, and show that Ta is
independent of the choice of decomposition a=a,; +a,.

This remark means, in other words, that we can embed A4, and 4, in dif-
ferent containing spaces # or ¥~ and, provided A4, and A4, always intersect
in the same way, these different embeddings will not change the inter-
polation spaces generated by (4, 4,).

For three or more spaces the situation is drastically different:

1.32. THEOREM. Let A=(A,, A,, A3) be a triple of Banach spaces con-
tinuously embedded in a Banach space % and let Ay, denote an interpolation
space generated by A using any of the methods discussed above and contain-
ing A(A) densely. Suppose further that A, contains an element a, which is
not in any of the spaces A\ + A,, A, + As, Ay + A,. Then there exists a
triple B=(B,, B,, B;) of Banach spaces, all embedded continuously in a
Banach space ¥, and a linear map S from A(B) to (4A) such that

sup [|Sbll 4,/1bll 5, =

be A(B)
despite the fact that for j=1, 2,3,
sup ||Sb|..,/Ibll 5=1

be A(B)
and indeed S is the common restriction to A(B) of three linear maps S;:
B, — A; which also agree on pairwise intersections and define isometries
between A; and B; and also between A;n A, and B, By for j,k=1,2,3.

Proof. See Section 6, which also contains some further related remarks.
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/‘ZG.p;K Aﬂ,q:K
‘Zﬂ.l;l Z6.[7;./ Zﬂ,q;! Zﬂ,oo;l(
T*_ (For Hilbert n-tuples
: when p > 2)
[4]s Apar
Favini-Lions St. Louis
Space Space

Fic. 1. Inclusions between various interpolation spaces generated with respect to an n-
tuple 4=(4,,.,4,) of compatible Banach spaces. The spaces in the first two lines are
generated by the J and K methods of Sparr, with 1 < p < g < co. Each solid line arrow points
from a given space towards another which contains it. All these inclusions are known to be
strict in general, and the inclusion maps are continuous. The dotted line arrow represents an
inclusion which holds when 4;, j=1, 2,.., n, are all Hilbert spaces and p > 2, but may fail to
hold otherwise. I'={I';, I'y,.., I',} is a partition of I, the boundary curve of a domain con-
taining z such that P(I'})=0,, j=1,2,..n

2. EXTENSIONS OF THE METHODS OF SPARR AND FAVINI-LIONS
TO THE CASE OF INFINITE FAMILIES OF BANACH SPACES.

As pointed out in [Cl1, p. 274], the construction of the St. Louis spaces
A[z] from a given interpolation family {A(y)},., may be likened to solv-
ing a Dirichlet problem where the values of the “boundary function” A(y)
and its “Poisson integral” A[z] are Banach spaces rather than numbers or
elements of some vector space. Developing this analogy further we could
say that, for a given n-tuple A4, the space A,.r can be considered as a sort
of “Poisson integral” at z of the “simple function” A(y)=2%7_, 4;x(7). We
shall start by thinking of the processes of calculating the spaces [A4]s,
Ay ,., and 4, .« also as processes akin to “integration” of the same simple
function A(y)=37_, A;xr(y). The mechanism which will enable us to
make the transition from these spaces to their new counterparts, defined for
infinite interpolation families {A4(y)},, will be reminiscent of the transi-
tion from integration of simple functions to integration of more general
functions.

In this context the curve I" used for constructing the St. Louis spaces can
just as well be replaced by an arbitrary measure space (I, &, Z) where Z is
a probability measure (corresponding to harmonic measure on I’ at z in
the case where I" is a curve).

We shall begin by restating some obvious things about integration and
(real valued) simple and measurable functions. The notions to be discussed

607/66/3-3
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and the notation for them have been chosen to permit an easy
generalization to a parallel “integration/interpolation” theory for
“functions” whose values are Banach spaces. This theory will yield the
constructions we require.

A. A Scalar or “One-Dimensional” Model of the Theory

Let Z be a probability measure on a g-algebra of subsets of an abstract
set I. Let A denote an arbitrary real valued function on I" which satisfies
the inequalities

0<A(Y)<U (2.1)

for all ye I where % is a fixed positive number.
By a partition of I" we shall mean a finite collection I'= {I'y, I',.., I',}
of disjoint measurable subsets of I, each of positive Z-measure, such that
([\U I';)=0. (The seemingly more natural requirement that I'=
F would lead to a technical problem as we shall see in a moment.)
Let 9’ denote the set of all such partitions. For each I'e 2 let 47 denote
the simple function which assumes the value sup, . A(y) on I’; for each I,
in I'. Similarly let 4, denote the simple function which assumes the value
inf, . A(y) on I';. Define the “upper and lower exponentiated sums” of
log 4 on I by

U4, T, Z)=exp L log A7(y) dZ(3)

and

L(4, T, Z)=exp jr log A7) dZ(y).

Clearly 0K L(A, T, Z)<U(4, T, Z)<%.

Now let 2, I' be partitions in 2 such that Q is a refinement of I” (mean-
ing of course that each ©; of Q is a subset of some I, of I'). We shall
denote this by the notation Q > I'. Obviously

L(4,3,Z)>L(4, T, Z) (2.2)

and
U4,2,2)<U, T, Z2). (2.3)

Clearly 2 is a directed set with respect to the partial ordering >. (This
would not be the case if we required I'={J]_, I';.) The estimates (2.2) and
(2.3) imply the existence of the generalized limits:

lim L(4, T, Z) = sup L(4, T, Z) (2.4)
TFez P
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and

lim U(4, T, Z)= 1nf U, T, Z). (2.5)
Te®

These are the exponential lower and upper integrals of log 4 with respect
to Z and it is convenient to denote them here by L(A4, Z) and U(4, Z),
respectively. Clearly L(4, Z)=U(4, Z) if and only if 4 is a measurable
function on (I, Z) in which case

L(4, Z)=U(4, Z) =exp fr log A(y) dZ(¥).

A trivial instance in which this occurs is when A4 is a simple function
assuming constant values on each set I'; of some partition I'e 2. In this
case we also have L(4,Q,Z)=U(4,Q,Z)=L(4, Z)=U(4, Z) for all
Qe with @>T, since of course A=A =Ap=A%=A.

B. Basic Definitions for the General Theory:
“Functions” Taking Values in a Class of Banach Spaces

Let us now consider the analogue of the above in the context of a
“function” 4 on I" whose “values” A(y) are each Banach spaces rather than
numbers. Here we shall define the “inequality” E < F between two Banach
spaces to mean that £ F and | x|| < || x| ¢ for each x € E. Thus we require
the existence of a fixed Banach space # such that A(y) <% for all ye[r.
(This is in fact the analogue of (2.1) since we of course have {0}<
A(y)<%.) We shall call a family of Banach spaces {A4(y)|y € I"} which has
this property a bounded family on I'. (This is of course reminiscent of the
notion of interpolation family as defined in [C3, Definition 2.1, p. 206].)

We next define “simple functions” A and AT for any I'=
{ry,ry,..,r,}e? by Arp(6)=inf,_ A(y) and 4 T(5) =sup, ., A(y) for all
del;and all j=1,2,.., n. Here inf, r,4(y) is the Banach space consisting
of all elements ae(), ., A(y) for which lallint, 4y = SUP; e 17 ||a||A(7, is
finite (it may in some cases be the trivial space {0} ) and sup, ., A(y) is the
Banach space consisting of elements ae % of the form a = I n u(y) (con-
vergence in %) where u(y)e A(y) for all yerl; and ¥, ||u(y)||,,(y)< 00.
This latter space is normed by ||a|[supye A0 = =inf}, ||u(y5|| Ay Where the
infimum is taken over all representations 2, er; u(y) as above for a.

The “ranges” of each of the “functions” A r and AT are compatible
n-tuples of Banach spaces, each with containing space #:

Ap(N)=(inf A(y), inf A(y),.., inf A(y)),
yerl yels yely

AT(I) = (sup A(y), sup A(y),..., sup 4(y)).

yeln yelz veET,
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We can now define three analogues of the exponentiated upper and lower
sums U(A, I, Z) and L(4, I, Z) corresponding, respectively, to the Sparr
K spaces, Sparr J spaces and Favini-Lions spaces. Thus, for each
pell, 0] and each I'={I", I,,.., [,} €2, define

§=06(I)=(8,,0,,.,0,) e H"

by setting
0,=2(r,), j=12.,n
and let
Ly (A, T, Z)= (AN, pix
and

Ly (A, T, Z)=(Ap())g, p.s
up to equivalence of norms (see below). We also take
Len(A. T, Z)=[AAD)]p

with equality of norms. The spaces Uy ,, U, ,, and Ug, are defined
analogously using the n-tuple A7(I") in place of A(I"). There is also a
fourth analogue corresponding to St. Louis spaces. In this case we must of
course assume that /" is a rectifiable simple closed curve constituting the
boundary of a domain D C. We shall take Z=P., to be harmonic
measure on [/ at some fixed point ze D. Then, as in the notation used
above in Theorem 1.17, we take

Ls. {4, I, P)=(AHD)) 11
and

USt.L(Aa I_—" P:) = (AF(F))[__]_r

with equality of norms. It will be convenient to collectively denote these
various spaces by the notation Ly(A4, I, Z) and Uy(A4, T, Z) where M
stands for any of the “methods” J,p, K,p, FL, or St.L and where it will
always be understood that if M =St.L then " and Z = P_ are necessarily of
the form specified above.

For completeness we shall also define all these spaces for the case n=1,
(F'={rI,}) by adopting the convention that for a “I-tuple” 4=(A4,) each
of the spaces [A ], (4)g, ,.x, and (A)g ., coincide with A4, with equality of
norms. (This is also automatically true for (4);.y.r.)
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C. Monotonicity of Ly, and Uy Spaces
with Respect to Refinement of Partitions of I’

The next and relatively lengthy step is to show that each of the above
spaces Ly, and U, satisfies the analogues of (2.2) and (2.3),

Ly(4, 3, Z)>Ly(4, T, Z), (2.6)
Unl(4, 3, Z2)<Uy(4, T, Z), (2.7)

for any bounded family {A(y)| yeI'} and any partitions Q, I'e 2 satisfy-
ing Q> I 1t suffices to do this in the case where I'={I", I';,.., I',} and
Q={Q,,Q2,,.,2,,,} with I,=2,0Q,,, and =2, for j=1,2,.,
n—1. We can then obtain the general result by successive applications of
this case, since the definitions of each of the spaces Ly(4, I, Z) and
Uwm(A4, I'. Z) and their norms are independent of the order in which we
label the sets in I".

Since Lg, (A, T, P.) is obtained by applying the construction in [C3,
Definition 2.3, p. 209] to the interpolation family {A(y)| ye I'} and since
for all yeI', Ap(y)< Ag(y) we immediately obtain that Lg, (4, T, P,) <
Lg, (4, @, P.). Similarly, since A7(y)> A%(y) for all ye I', we deduce that
USt.L(A, 'Q’ Pz) < USLL(A:' F, Pz)

To obtain (2.6) and (2.7) for Favini-Lions spaces we need the following
“reducibility” property of these spaces (see [Fa, p. 263] for a special case
of this resuit).

28. LemMA. Let E=(E,, E,,.., E,) be a compatible n-tuple of Banach
spaces. Define the compatible (n+1)-tuple F=(F,, F,,..,F,,,) by E;=F,
for j=1,2,..,n—1 and F,=F,, =E, with equality of norms. Then
for each a=(ay, 0z, 0, )€H ! and each corresponding f=
(oty, Appes Ay, 00, + 00, ) EH",

[Els=L[F]; (2.9)
with equality of norms.

Proof. Suppose first that ae [F]; and let f=f(z,, z5,.., 2,) € H(F)
with f(«,, a53,.., &,) =a. For any fixed z,, z,,..., z,_, all having zero real
part, f is a continuous bounded E, valued function of z, vanishing at
infinity on the line z,=1+if, —o0 <1< o0, corresponding to points in
0Q,, and also on the line z,=ir, — o0 << o0, corresponding to points in
08, . Since f is also a continuously bounded X(E) valued function of z,
on the strip §={z,|0<rez,<1} and analytic in {z,| O<rez, <1}, f
must equal the Poisson integral of its boundary values and thus be a con-
tinuous E, valued function of z, on all of §, which vanishes at infinity.
Furthermore,
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Sup Hf(izl’ it29---, itn—ls Zn)H E,
el

= sup [ f(ty, itz ity s JH D B, < Iy
teR,j=0,1

Therefore the function g = g(zy, 23, z,_ ) defined by

n—1
g(zlazz""’ anl):f<zl’2:2’znl’ oy (1 - Z :>i>/(an+an+l)>

j=1

is in the space H#'(E) and | gll 5 < 11l 4(r) Since g(o;, ayss &, )=
1oy, &,y 0,) = a it follows that [F],<= [E]; and indeed, by taking the
infimum over all functions f as above, we obtain that [F],<[E],.
Conversely, if ae [E]; and a= g(a,, 25,... %,_,) where ge #(E), let f
be defined simply by f(z,, Zay 2,) = g(2}5 Z25» 2, )- It is Obvious that

e #(F) and, furthermore, that [E},<[F],. §

We now apply Lemma 2.8 to the n-tuple E=A(I") where we also
choose &= 0(Q)=(Z(I'y), Z(T) sy Z(Tn_ 1) Z(2,), Z(2,,. ) so that f =
Iry=(Z(I,), Z(Ts),., Z(I,)). Since F,=F, =E,=inf . A(y)<
inf,. o A(y) for j=n,n+1 it follows that [Els=[Fl.<[A4g]: which is
precisely (2.6) for M=FL. A very similar argument yields (2.7) for
M =FL.

Before establishing (2.6) and (2.7) for spaces generated by the Sparr K
and J methods we first have to choose suitable norms for these spaces as
follows:

For any I'={I,I,,.,T,} with §=(0,,8,,.,0,) where 0,=Z(I)),
j=1,2,.., n, define

n 1/p
lal Lk_pm.f.m:(l’"l l—[ 0j> lall vy

and
. ip
lall vy pa.r.zy= (l’n l—[ 9}/) llall ATk

ji=1

for 1< p < oo. Similarly we take

n —1p
fall LifA T2y = <P,nkl H 9;) Ha“(AﬁI"))ﬂ,,.;/
j=1

and

n —p
||al|u,<p</4.r.2):(1"'“1 I1 9/> lall carcrya s
i=1
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where 1/p+1/p’=1. (The above expressions (p" '[]7_,60,)"” and

=1
(p'"'TI7_,0,)" "7 are taken to be 1 if p= o0 or p=1, resf)ectively. Note
that they also equal 1 for all values of p in the special case n=1.)

As before, the key step is to establish a “reducibility” property, namely
the following “quantitative” version of Proposition 6.3 of [Sp, p. 2707 (cf.

also [Y, Propositions 4.4 and 4.57]).

2.10. LeMMA. Let E, F, &, and f be as in the statement of Lemma 2.8 Let
1 < p< 0. Then the spaces Eg . and F; . coincide and, for all elements a
in these spaces,

nt Yp n+ 1 1p
<Pn—1<n aj) (Otn+an+1)> ”a||ffip;x=(p" l’[ aj> ||a||FM;K, (2.11)

j=1 i=t

Similarly the spaces Eg ,.; and F, ,.; coincide and

n—1 —1/p n+1 —1/p’
(P'"‘l < I1 %-) (o, + an+1)> 16l ., = (P'" I1 06;) 11l 7, ,.,
j=1 j=1
(2.12)
for all elements b of these spaces.

Proof. 1fn=1 then E=(E) and F= (E, E) and, in accordance with the
convention we have adopted above (see Subsect. B), the left-hand sides of
(2.11) and (2.12) equal ||a| z and ||b]| z, respectively. Since K(1, ¢, a; F)=
min(1, #)|al g, (2.11) follows by a straightforward integration. Note that for
calculating [|5]|f, ,, the optimal choice of decomposition b= [ u(r) di/t is
of the form u(t)= @(z) b where @(¢) is a nonnegative scalar function. Via
Hoélder’s inequality, we see that

inf(-[w (¢7* max(1, 1) @(1)” dt/t)>l/p/ro o(t) di/t
(4 4} .
= I/Uw [t*/max(1, t)]” dz/t)w = (Potya,)
0

and the infimum is attained for suitable @(z). Since J(1, ¢, u(r), F)=
max(1, ¢)||u(¢)] z, we obtain (2.12). Thus from here on we can assume that
nz2

Let us first deal with K spaces (cf. [Sp, pp.270,271]). For any
ae X(E)=2(F) and (¢, tay, t,4 1) €R%H! we clearly have

K(t,, ta, 1, a; F)=K(2,, tyyn t, ,min(t,, t,,,),a; E)
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and also

N S il I dt, dt
Ilallﬁi,,,;ﬁjo fo f []'] 179K, Ly Uy 1, G5 F)] t2 utial

0 2 Ly

for 1< p<oc (cf Definition 1.3 and Remark 1.5). We can now obtain
(2.11) by replacing the integration with respect to the variables ¢, and ¢, ,
in the above multiple integral by integration with respect to a single real
variable s in accordance with the identity:

dtn dtn +1

o oo .
J Lt e pmin, 1, 0175

0 n tn+l

=(“"+“"+1)Jw [s*(an+1n+lJ(p(s)]P§ (2.13)
0 s

Py 0y 4

which holds for any positive measurable function ¢(s). (To obtain (2.13)
simply split the double integration into separate calculations on the two
subsets where 7,<¢,,, and where ¢,>1¢, ,;, respectively.) We leave the
details of the easy case p= oo to the reader.

Now we return to the case of J spaces. This is essentially the dual of the
result for K spaces but we choose to give a direct proof. For any
be A(E)= A(F) we clearly have

J(tl’tz’ i3] n+l’b F) J(tl’tb * n—l’max(tna n+1) b E)

Suppose then that b€ F; ,.,. Then there exists a strongly measurable 4(F)
valued function u on the set {(1, 15, 5, t,.1)|2,>0, j=2,3,..,n+1}c
R~*! such that

o o'e) 12 dt N
b_—f J u(ty, ty,e, tnﬂ)_a...__n_
[

t2 tn+1

and the expression

] <) =
(J J [t;az...t;-znl+lJ(latZa---9 tn+l’u(t27 t3’--" tn+1);F)]p
0 0

1
xﬁ...dt"“) "

t2 tn +1
is arbitrarily close to ||b| 7, ,,- Define the function v on

{(1, L300 1) 1,>0, j=2,3,.,n} = R",
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by
tn ds
O(ty e t,) = L [6(tsyees By 15 Loy S)F U(Lagery Ly 15 S5 t0) ] e

Clearly (& [& v(t,...y t,)(dls/ty - dt,/t,)=b and also
J(1, t2a---a tn9 U(tz,..., tn)’ E)

tn .
<j [I(L, taps b wltays £ s 1 5); E)
0
—_ds
+J(1’ t2"--5 tns u(tZ,"'s tn— 12 S’ tn); E)] -;.
tn =
=j [I(L, by £,y 8, tlEgss £y 15 15 5); F)
1]

— _ds
+ I, gy by s Sy Ly U(tggy ty 15 8, 1,); F)] e

An application of Hdlder’s inequality on the measure space consisting of
two copies of [0, #,] shows that the preceding integral is dominated by

I =
U (17252040 J(1, ayy 1y S, 20y 1y, 8); F)]”
0

__ ds|e
FLs7 %t (1, £y by g5 8o by W(Lasees By 15 8, 2,)5 F)]”?

ty ) 1/p
XI:J~ [ta"p,saﬂﬂl"+sa,,l’tﬂn+ll7']_
n
0 A

for all pe[l, o). The second factor equals &**+i[(a,+a,, )/
®,%, .1 p 1", so an appropriate integration of the above estimates show
that be E; ,.,. By passing to an appropriate infimum we also have

@+ 2 )P UBN 5y, < (Poptne ) P NblRy,,  (214)

The preceding argument is essentially the same for p = .

Conversely, if beEg,, and b=[g (& ulty,.., t,)(dty/t;) - (dt,/t,)
with

@ proo © _
(j J L [15%2. t 2t ot oene ) J(A by, by, U(Eygens B,); E)]?
(A A"
t, ot

n
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arbitrarily close to ||| Egpp> then we define v by

On ¢%n+1
1% (%]

o
V(lypens tyy 1) = ( > u(ty,.., t,_,max(t,, t,, ) (2.15)

max(t,, £, )" o

for pe (1, o]. Using the identity

[ Sk 7 di, di,, .
max(f,, !, -
J‘ J (max(tna n+1)a"+1n+l> (p( ( +1)) tntn+l
(a, +a,
- “)j (2.16)
n+1

which is in fact a variant of (2.13) and which holds for any scalar or vector
valued absolutely integrable function ¢, we deduce that

dt, dtn o, +a,,
J' J' oty n+l) . +1=( l)b.

1
n+l pan“n—fl

Furthermore, if p > o,

L2, 1 2 I by 1, 0t £,41)5 F)]P
= [max(t,, t,, )~ 0J(1, t,,., 1, _{, max(s,, Losi)h
Ultys 1,1, Max(t,, t,,,)); E)J°
x( t;‘in{znﬁll )(p’-l)p
max(z,, 1, , )" !

(2.17)

Since (p'—1) p=p’ we can invoke (2.16) again, taking the first factor on
the “right-hand side” of (2.17) to be g(max(z,, , . ,)). After also multiply-
ing by (£;%---17%-1)” and integrating with respect to the remaining
variables, we obtam that be F, ., and

1
< an+an+1 ?
<=L bl
Fapu P,y

This shows that (2.14) is in fact an equality and establishes (2.12), com-
pleting the proof of the lemma for | < p < o0.

For p=co we simply use an alternative version of (2.17) where we
{necessarily!) do not raise to the power p. The case p =1 calls, however, for
a different definition of the function v(1,,..., f,, ;). Instead of (2.15) we take

(a +an+l)
pa an+l

Xiyrr{ta/tn 1)

u(tyy t,_,, max(t,, t )
210gr (2 n—1 ( n+l))

U(t2’ s tn+1)
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where r>1 is a fixed number. Since [& (& v(ts,.., 1,4 )dts/t5)
(dt,41/t,r1)=b we deduce that beF,, , and |b| g, is bounded by a
number arbitrarily close to

(L(re—=1)/a, + (r*»+' = 1)/a, . 1/210g r)|bll gy, -
We obtain (2.12) by letting r tend to 1 (cf. also (2.14)). |

Lemma 2.10 can now be used in an exact analogue of the simple
argument given above for Favini-Lions spaces to obtain the inclusions
(2.6) and (2.7) for M=K, p and M =J, p where 1 < p< 0.

D. Definitions and Elementary Properties of Interpolation Spaces
Obtained by “Integration” of the Infinite Family {A(y)|yeTI'}

We shall now define the “lower” spaces Ly(4, Z) and “upper” spaces
Uwnl4, Z) for M=FL, StL, J,p, or K,p. These correspond to the lower
and upper exponentiated integrals L(4, Z), U(4, Z) of our scalar model.
We set Lyy(4, Z)=supr., L4, I, Z) and U (4, Z)=infp., Uy(4, T, Z).
Analogously to the definitions above of inf,_, A(y) and sup, . A(y)
this means that Upy(4,Z) is the Banach space of all elements
ae\rep Unl4, I, Z) for which |la|yywu,zy=5uPrcs lalluyu.rz) <o,
and Ly (4, Z) is the Banach space of all elements ae% of the form
a=2Xr_,u(I') (convergence in %) where u(I") e L\y(A4, I, Z) for each I'e #
and X plu(D)lLyarzy <. Lm(4,Z) is normed by |afyyuz =
inf Xr_ ()| 1y 4.5.2z» Where the infimum is taken over all representations
2 r.»u(l) of the above sort for a.

Analogously to the scalar case where the relations (2.4) and (2.5) follow
from (2.2) and (2.3), we can now use (2.7) to obtain that |ally, 4.2 =
limp_, lallyyarz for all aeUy(4, Z). This could be expressed sym-
bolically by writing Upn(4, Z)=limp_, Uy(4, T, Z) (cf. (2.5)). The
analogous result for lower spaces, which corresponds in some sense to the
formula Ly(4, Z)=limp_,Ly(4, I, Z) (cf. (24)), is a little more
complicated and may be stated as follows:

For each aeLy(A4, Z) there exists a sequence (a,)y_,,

a,€ Urcs Lm(4, T, Z), such that a—a,| 42 —0 and
lim, , , (imp 5 @, 4 r 2)) = 1Al Lycaz) (2.18)

To establish (2.18) let us first introduce the notation Ay(4, Z)=
Ures Lm(4, I, Z) and ||b| 4, =infp_ 5 6]l Ly, r.z) fOr each be Ay(4, Z).
By (2.6) ||b||l 5y, =limp g bl Lyar.z) and Ay is clearly a normed space
satisfying Ay < Ly

Given aeLy(4, Z), for each positive integer n there is a decomposition
a=3Yr.pu,(l) for VY_hiCh Zres D Ly rzy S lallLya,z) + 1/n. We
define a,=%p .5 u,(I') where £, is a finite subset of 2 such that
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Zremw Ul Lyarzy<1/n. Thus Jla—a,llLy4.2,—0 and so _l.im,._.oo
lla,l EM(A.Z) = [lall Lm(A4,Z) But |a,l Lm(d.2) S ”an”AM S¥res ”un(r)”AM <
laliyes.z)+ 1/n, from which we see that the sequence (a,);., has the
properties required in (2.18).

2.19. Remark. The above argument also shows that the unit ball of A,
is a dense subset of the unit ball of L,,. However, in general, 4,, is not
complete and A, may be smaller than L, (see Remark 2.39). We do not
know whether the norms of A4,; and L, always coincide on A, (ie.,
whether L, is the completion of Ay).

The preceding discussion leads us to define “measurability” of the
“function™ A(y) as follows:

2.20. DerINITION. Let M be one of the methods FL, St.L, K,p, or J,p.
We shall say that a bounded family {A(y)|ye '} is M, Z measurable if
Ly(4, Z)=Uy(A4, Z). In this case we can use the notation Iy(A4, Z) for
Lu(4, Z)=Uy(4, 2).

We defer further discussion of M, Z measurability and the spaces
Iu(A4, Z) to Subsection F. We now consider interpolation properties of the
various spaces we have defined.

2.21. THEOREM. Let {A(y)|yeTI'} and {B(y)|yel'} each be bounded
Jfamilies of Banach spaces on I'. Let U and ¥~ denote the fixed Banach spaces
such that A(y)<U and B(y)< ¥ for all yeI. Let T be a bounded linear
operator from U into ¥~ whose restriction to A(y) is a map into B(y) with
1T 41861 < N(y) for all yeI. Suppose that N(y) is bounded above by a
positive constant and is measurable with respect to Z on I'. Then T maps
Ly(4, Z) into Ly(B, Z), Au(A, Z) into Ay(B, Z) and also Uy (A, Z) into
Uwm(B, Z), and in each case its norm does not exceed exp [ log N(y) dZ(y).

Proof. For each partition I'= {I'|, I'y,.., I',} € # and each j=1,2,.., n,
T maps inf, ., A(y) into inf,_, B(y) and also sup, ., A(y) into
sup, . B(y), in each case with norm not exceeding sup,., N(y)=N,.
Thus, according to whether M =FL, St.L, K,p, or J,p, we invoke the
interpolation theorem of [Fa, p.246; C3, p.216, Theorem 4.1(2); Sp,
p. 260; Sp, p. 262] and obtain that T maps Ly(4, I, Z) into Ly(B, T, Z)
and also Uy(4, T, Z) into Uy(B, T, Z), in each case with norm not
exceeding N9N% ... N%=exp [, log NT(y) dZ(y). (Here, as before, 0,=
Z(F/)’ j= 1, 2,..., }’l.)

Given any ¢> 0, if ae A4y(4, Z) choose a sufficiently fine partition I” so
that

exp fr log NT(y) dZ(y) < (1+¢) exp L log N(y) dZ(y)  (2.22)
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and also so that ||allp . r 2 < (1 +&)lall syazy Then TacLyu(B, T, Z)
and therefore Tae Ay(B, Z) with norm || Ta| 4,,s.z, not exceeding

Tl rz < (1 -+ oxp [ log N(3) dZ(r)1al aiazy

Alternatively if ae Ly,(A4, Z) we may write

a= Z u(Q), where Z ”“(g)" Lu(4.3,2) S (1+e¢)llall Lm(A.2Z)

ReP Qe

In view of (2.6) we may assume that each of the nonzero elements u($2)
appearing in the above sum corresponds to a partition Q satisfying 3> T
where I is chosen to satisfy (2.22). (If not, we simply “permute” the terms
of the sum Zu(Q2) so that each nonzero u(Q2) is now associated with a
possibly different partition which is a common refinement of 2 and I')
Since T is bounded from % into ¥, Ta=ZX 4., Tu(R2) (convergence in ¥")
and

Y ITu@) ysan< L oxp [ 1og N) dZ() 1@ yesez
Qe Qe? r

<(1+4¢)%exp fr log N(y) dZ(y)|all Lyca.zy

It follows that Tae Ly (B, Z) and satisfies the required norm estimate.

Finally, if aeUp(4,2Z) then, since exp |, N'(y)dZ(y)<
sup, . - N(y) < co, we have Tae Uy(B, Z). This time we shall choose T so
that (2.22) holds and also ||Ta|lyy .2 < (1 + e Tallyys,r.zy- The rest of
the proof is obvious. ||

2.23. Remark. One might expect that (cf. [C3]) it could perhaps be
possible to extend the construction of the spaces Ly(4, Z), Uy(4, Z) to
the case where A(y) <k(y) % (ie., k(y)l|allq4 < @l 4, for all ae A(y)) where
{rllog k(y)| dZ(y) < o0, and subsequently to also obtain a version of the
preceding theorem which requires only that [log* N(y) dZ(y) < co rather
than the boundedness of N(y). (cf. [C3, Theorem 4.1], cf. also [J2]). The
following simple example indicates that some problems can arise here:

Let a(y) be a real measurable function with a(y)>1. We shall take
A(y)=a(y)C (ie., one-dimensional space with (x| 4, =a(y)ix|). Thus
{A(y)|yeT} is a bounded family. If a(y) is bounded, then Ly=Uy=
el1o8 2 dZC (This can be shown by applying Theorem 2.21 with B(y)=C
to the cases where T is the identity operator from A(y) to B(y) or alter-
natively from B(y) to A(y).) However, suppose that ess sup a(y)=co but
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(rloga(y)dZ(y )< oo. Then, since inf, ., A(y)=(sup,., A(y)) C= {0} if
sup,. r, a(y) = o0, at least one of the spaces inf,_, 4(y) degenerates to {0}
for every I'= {Fl, . I} € 2. Consequently LM(A I,Z)={0}. (On the
other hand Uy(4, Z) = e!'°8e"9Z0C a5 before.) Considering the identity
operator T: B(y)— A(y) which has norm N(y)=a(y) we see that
Theorem 2.21 does not hold for unbounded N(y). It seems then that a suc-
cessful variant of the theory which applies to unbounded N(y) would
require a different definition of Ly (4, Z) or perhaps other postulates
relating to a nontrivial space </ contained in all 4A(y) (cf. the “log-intersec-
tion” space of [C3]; cf. also Theorem 2.41).

The inclusions (A4, 45)g; = [A;, A2ls= (A4, A3)s .., Which generalize
to the case of n-tuples as shown in Theorems 1.15, 1.17, and 1.23, can be
further extended to the context of bounded families. Indeed from the above
theorems for n-tuples it follows immediately that:

L;1(4, Z) < Lg(4, Z), Usi(4, Z)<Ug (4, Z),
Li(4, Z) S Lgoo(4, 2), UrL(4, Z)< Uy (4, Z),
Lec(4, P)< Lsci(4, Po), Ue(4, P.)<Us (4, P.),
Lon(4, P)SLgoo(4, Pr), Usild, P)SUg (4, P;).

One may aiso seek  generalizations of the inclusions
(A, Ay)e, = (A4, A3)g, which hold for 1< p<g<o0. We present some
partial results in this direction.

2.24. PROPOSITION. For any bounded family {A(y)| yeI} and any
probability measure Z on I', the inclusions

Ly (A, Z)<Lg (4, Z), Uk (A, Z)< U (4,Z2), (2.25)
and
L.I,I(Aa Z) < L./,p(Aa Z)’ U.I,I(A’ Z) g UJ.p(A> Z) (226)

hold for all p, 1 < p < 0.

Proof. To obtain (2.25) it suffices to show that, for any Banach n-tuple
A and for all ae A; .,

/p

naumx\( - ‘n 0) lall (2.27)

To establish (2.27) we begin with the inequality

min(sl/tb SZ/tzs'"’ sn/tn) K(tls t2""s tn’ a, ‘Z) <K(Sla S350y Sy A5 ;4_)
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(cf. [Sp, p.252]). Multiply both sides by [T/_, s %=1T7_, ;7 %s/1) "%,
raise them to the power p and integrate on the set E= {(s,, 55,..., S,)|
siy=1, 0<s;<00, j=2,.,n} with respect to du(5)= (dsy/s,)(dss/s3) "
(ds,/s,). We encounter the integral /= f eI, sj“"f min(l, s,,..., 5,}1°
(ds,/s,) -+ (ds,/s,) whose straightforward (if slightly tedious) calculation is
already implicit in Lemma 2.10 (see (2.11)). In fact if A(y}=C for all ye I
then Ly (A4, I, Z)=Uy(4, T, Z) for all I'e 2 and it follows from (2.6) and
(2.7) that Ly(4, T, Z)=L\(4, @, Z) for all Q> T. Thus, for M=K, p,
I'={I'} and 9={Q,,2,,.,Q,} with Z(Q,)=6, we obtain that
Il Lya.0.2) = Wl Lyca.r zy Since K(ty, ty,.., t,, 1) =min(¢, t,,..., t,) this is
equivalent to (p"~'[[/_, 8,)"”I'"?=1. Thus I=1/(p"~'T17_, 0;) and so
(2.27) and then also (2.25) follow immediately.

Rather than obtaining (2.26) by dualizing, we shall deduce if from the
inequality

n ~p
(p'"-l il e,-) lal s, < lal 25, (2.28)
j=1

which will now be established for all ae 4, ,.,. We represent each such a in
the form a = {; u(f) du(f) where [, F=°J(i, u(f); A) du({) is arbitrarily close
to |al 5,,,. (Here E and p are as above and the notation is thus a trivial
modification of that in Definition 1.6, (cf. Remark 1.9(ii).) It will be con-
venient to use the notation (cf. [Sp]) §/7=(s//t,, 5,/t,.., 5,/t,} and to
denote min(5)=min(s,, 5,,..., 5,), for each §= (s, S5,err §,), L=t s £,)
inR”.
We define the 4(A4) valued function.

o(i) = L [(/0)~° min(5/) 17 u(5) du(s).

From the calculation of [ above we have that [ o(f)du(i)=

(p'"~'T17_, 0,)" 'a. Furthermore,
i=00(4, v(7); A)

<[ 00, w(s); DD min(/))” du(s)
<[ 5706 w@); DHUED 7 min($/)17 " du(s)

(since min(§/f) J(f,u(5); A) < J(3, u(35); A).)
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By Young’s inequality we deduce that

(j (I, u(n;Z)”dum)W

1/p
<[ (705, us): A) duts) ( [ (= min(s)) =07 du(s)) .

E

m—1 n

This in turn implies that (p 1 0) " Mlall g, < llal 4,
([(p'—1)p1* ' T17_, 6,)" "7 which 1mmed1ately ylelds (2.28). 1

2.29. Remark. By considering the spemal case A,=A4,= =4, for
which K(t, {5, 1,, a; A)=min(zy, 1,,..., t,)]lall , and for which also
lallz,,,=(p"" 'TI}=16,)'" llall,, we see that the constants in the

inequalities (2.27) and (2.28) are best possible. It is natural to conjecture
that, analogously to (2.25) and (2.26), similar inclusions may hold between
the spaces L (4, Z) and Lk (A4, Z), etc. and also between the spaces
L, (A4,Z)and L, (4, Z), etc. for all 1 < p<q< 0. Here again the above
special case shows that the norm of the inclusion map cannot be less than
1. For an analogue of (2.27) for ¢ < o in the case of couples see [BL, p. 84,
note 3.14.47].

We can also consider the possibility of generalizing the inclusions
Ay ,.;<= A ,.x of [Sp, Proposition 5.1, p. 265]. An examination of the con-
stant appearing in the proof of that proposition shows that in fact it implies
L, (A, Z)<Lg ,(A4,Z) and U, (4, Z)< U, (A4, Z) for p=1 and p= 0.
We do not know whether this result is true for other values of p.

2.30. Remark. For some purposes in real interpolation of n-tuples A it
is convenient to replace the J- and K-functionals by their “/*” counterparts:

n 1/q
('z (hall))
1/q n
Kq(;a;2)=inf{(_z (t_,-ila,-HA,)") a=_Z aj}

for some ge [1, oo]. (For example, in Sect. 3 when dealing with a triple of
Hilbert spaces we take ¢ =2.)

For fixed n the spaces A p:s, and Ap . k, obtained using these modified
functionals coincide with A, ,, and Ag k> Tespectively, to within
equivalence of norms. However, if we wish to define infinite family versions
of these spaces Lyy(A4, Z), Uy(A, Z), Iy(A4, Z) where M=J,,p or K,p it
is necessary to change the constants in the definitions of Ly (4, I, Z) and
UnlA4, T, Z).

As in the cases M=K,p, M =J,p we are guided by the need for an

\
II
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analogue of Lemma 2.10 to hold so that Ly (4, T, Z)=U\(4,T, Z)=A4
isometrically if 4(y)= 4 is constant. It turns out that, for example, in the
case M=K, p we must take

n 1/p
”a”LKq_,,(A,r:Z)=<‘Im_lr(l’/q’)/n F(pG/q')) lal (AFTVbpiK,
i=1
and similarly for Uy ,(4, T, Z). (Note that apart from its other preceding
roles I here also stands for the Euler gamma function.)

E. An Example

Let us consider a simple example with weighted /' spaces. Specifically let
A(y) =Ly, With () 1l acy = Sia— 1 Xl Win(1), Where (w,,(7))5_, is @
sequence of positive measurable functions on I

To have a bounded family we shall require that inf,_ - w,(y) =u,, >0 for
each m. Thus we can take % =/} where u = (u,,)>_,. In order to avoid the
sort of problems encountered in Remark 2.21 we shall also require that
SUp, . r Wn(y)=1,,< oo for each m, and so /] < A(y) for all y where v=
(vm);?= 1°

We shall show that A(y) is M, Z measurable for each of the methods
M=FL, StL, J,1, and K,1 and that in each of these cases I\,(4, Z) =1}
where the weight sequence w={(w,)>_, is given by w,=
exp [ log w,,(y) dZ(y).

For each I'={I'\, I,,.., [,} €2 let u,(j )—infyer] w,(y) and v,,(j)=
SUp, ., Wm(y) for j=1,2,..n and denote u(j)= (u,,,(j))m L v(j)=
(vm())Z_,- Let Bp and B" be the n- tuples  (Zy), Ibzpn I4ny) and
(Bo1y Laayeess Loiny)» TESPECtively. Let 6= (6))7_, where 0= Z(I';). Then

lllis(ﬁf)ﬂ.l;lsLM(Aa r? Z)gLM(A’ Z)
<Uwm(4, Z)sUn(4, I, Z) SI—[ B g1k + (B )par

<l (2.31)

for each of the methods M =FL, StL, J.1, and K,1. (This follows from
Theorems 1.15 and 1.17 and the proof of Sparr discussed in Remark 2.29. If
M#£St. L and (I, Z) is not a contour equipped with harmonic measure
then (BT)(,,.r will be interpreted as (B);o; » where T={T,, T,.., T} isa
decomposition of the unit circle into disjoint arcs 7, of lengths 2nf),,
j=12.,n)

Our next step is to show that

By <(Br)g,.s (2.32)
(BT )[z],l‘slu(r), (2.33)

607/66/3-4
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and

[T 60BNo.1x<lir (2.34)
Jj=1
where o(I) = (v,())*_, and () =u,,(I))=_, are defined by v,,(I") =
[T, (0,0 u,(F)=TTr_ (1, ()% (It will be clear from subsequent
calculations or the case where u(j)=wv(j) that these inclusions are in fact
equalities. )

We first establish (2.32). Let the set E and the measure u be as in the
proof of Proposition 2.24. Let a =(a,, a4,.., a,) denote an (n— 1)-dimen-
sional multi-index where «; may assume both positive and negative integer
values. Suppose that x=(x,,)7_ €/} and let A>1 be a fixed number.
For each multi-index « define the set of integers

M, ={m| 3% <v,(j)o.(1)<A%*1, j=2,3,., n}
and the subset of £
E,={i=(Lty, ts,s t,) A7 7 <1, <A7%, j=2,3,.,n}.

We define a sequence valued function y(f)=(y,,(f))=_, on E by taking

Yl D)= X X £,{0)/(log 2)" ! for each me M ,. Clearly { y,(7) du(f) = x,, for

each m, meaning that [, y(f) du(i) = x. (The required absolute integrability

of y(7) on compact subsets of E (Definition 1.6) is assured since each such

subset is contained in the union of finitely many sets E, and on each of

these the constant value assumed by y(f) will be shown to be in 4(By).)
For each fe E, (so that t, = 1) we have

i%J(1, y(1); Br)

=(log 4)* ["I ( DIE v,,,(j))

s(logl)‘*”]—[ AE VU max P x| A7TAT (1)

j=2 - meM,

=(logl)‘*”1‘z?=26"’“ Z x| I‘[ 2%%, (1)

me M, j=2

<(log ) "4 Y (x| v.(T).

me My

Thus [, i7°J(f, p(7); Br) du(D) < 223 pr, 1%l 0(T). Summing over all
the possible values of « and bearing in mind that A can be chosen
arbitrarily close to 1, we obtain that xe (Br)s,., and ||x| B S x| By
proving (2.32).
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The inclusion (2.33) is a special case of a result of Hernandez (see
Sect. 6.1 of [H11]). It can also be easily established by using the maximum
principle to estimate the /' norm of the analytic /'-valued function &({)=
(Pl ENZ_ 1= (fulO) U0} . @({) is defined on the domain D bounded
by I by takmg JO)=( f,,,(C))m , to be a “good” representatwe in
FBT,T) of a (ﬁmtely supported) sequence x=(x,,) in (BT )z3.r> and
letting  U,(0)=TI7-, (u.())¥® where z({)=P/(I,)+iP(I;)~ with
Imz{z)=0 almost exactly as in the proof of Theorem 1.17 in Subsec-
tion 4C.

For the inclusion (2.34) let x = (x,,) € (B )g ,.x. Then

K(i, x;BT)= Y |x,,| min t;u,,())
m=1 j=1

and so

n

I 3=, 3 L ()~ L)) P i)

=[ % 11 )" min (1) ) [l i)

Em- 1j=1
= I|x“1'l'(r)/,l-ll 0_,
j=

(cf. the calculation of I in the proof of Proposition 2.24.) This establishes
(2.34).

Inclusions (2.31), (2.32), (2.33), and (2.34) now imply that, for M =FL,
StL, J,1, or K, 1,

I <Ipy<SLy(4, T, Z)< Ly(4, Z)< Uy(4, Z)
<Um4, T, Z)s <L (2.35)
It is also clear from the definitions of u(I), v(I'), and w that

Dp<iL<lyy forall T'e2. (2.36)

Thus our final step, which will establish M, Z measurability and show that
Iu(A4, Z)=1}, will be to show that

’!2; Lun < i‘:g Lirys (2.37)

where here as before inf and sup denote the uniformly bounded intersection
and hull, respectively, of the given collection of spaces.

607/66/3-4*
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For each m let (v% (7)) ., be a decreasing sequence of simple functions
and (1% (y))_, be an increasing sequence of simple functions both of which
converge to w,(y) for ae. yerl. Thus lim,_ _ exp [ log v (y)dZ(y)=
lim, , _ exp [,logu%(y) dZ(y) = w,,. The sets of constancy of uX, which have
positive measure constitute a partition in £, as do the sets of constancy of
v* with positive measure. Let I'(k, m) € 2 be a common refinement of these
two partitions and, for each integer v > 1, let I'(v) be a common refinement
of all the partitions I'(k, m) for k<v, m<v.

For each m and each v>m

exp [ log u3,(7) dZ() < un(T(¥)) < W,y < 0p(T(9)

<exp | logu;,(7) dZ(7).

Therefore, for each m,

lim u,(F(v))= lim v, (I'(v))=w,,. (2.38)

V— X vV — 00

Now let x=(x,,)z_,einfp_, [} with norm 1. Then it is clear from
the preceding that for each integer N TN_ |x.w,=
lim, |, SN _, %, un(l(v))<landso X7 _, |x,|w,<1. Fix¢>0and let
3" =(8")*_, be the sequence whose mth term is 1 and all others zero.
Then, for suitable integers v,, [6”|,. <(1+¢&)w,. Consequently,

.. s(Mvy))
writing x=>"_, x,,0™, we have

x€X

m
”x”supre//f,(f] < Z] “xm5 ”[lr(l‘lv,,,n< L+e
m=

This proves (2.37) and completes our discussion.

2.39. Remark. By considering a special case of the above example
we can see that in general the space Ay(A4, Z) is not complete. Let Z be
standard Lebesgue measure on /'=(0, 1) and

) {1, y=21/m
w =
o m- ", y<1/m.

Then w=(w,)%_,=(1/m)7_,. Note that every space A(y)=1,,,, equals
/' up to equivalence of norms. It is also easy to see that for any I'=
{Iy, Iy,., I} e each of the spaces inf, . - A(y) cc_)incides with /! up to
equivalence of norms and hence so does Ly(A, I, Z). It follows that
Au(4, Z) as a set equals I' #11 =L (4, Z).
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Furthermore, as we shall see,

[l || AM(4,2) = llx]| Lm(A,Z) (2.40)

for all xe Ay (A4, Z). Hence Ay(A, Z) is not complete. (To prove (2.40)
note first that it holds for all sequences x having finitely many nonzero
elements (e.g., use (2.35), (2.36), and (2.38)). Then for arbitrary xe Ay ="
let x" be the Nth truncation of x (x¥ =x, if n< N, x, =0 otherwise). Since
[x— x| 4y < Ix = x¥ s for all yeT it follows that [[x —x"|y, 4. and
X — x| 44,2 both tend to zero as N tends to oo (e.g., by Theorem 2.21)
and this immediately yields (2.40).)

F. Some Remarks Concerning M, Z Measurability

We do not know of more concrete conditions on an arbitrary bounded
family {A(y)|ye '} which guarantee M, Z measurability of the family
{Definition 2.20) in general. Such conditions could also conceivably be dif-
ferent for different methods M. However, for the case where all of the
spaces A(y) are are all the same finite dimensional space with possibly
different norms (i.e., the context of [C1, C2]) we can give such conditions:

2.41. THEOREM. Let {A(y)|yeI'} be a bounded family such that each
A(y) and the containing space U are all C? equipped with possibly different
norms. Suppose that there exists a non trivial normed space £, which is also
C“ renormed appropriately, such that s/ < A(y) for all yeI'. If for each
aeC \al| 4y, is a Z-measurable function of y on I', then {A(y)| yel} is
M, Z measurable for each of the methods M =K, p, J,p, FL, and St.L.

Proof. Consider the family {f,} . of functions on the compact set
K={aeC9 |a|,=1} defined by f,(a)=log|lal| 4, This is a bounded
equicontinuous family since || <c|al, for some fixed ¢>0 and so
—log ¢ < f,(a) <0, and furthermore |f,(a) — f,(b)| <log(l + c||b —al| ) for
all ye I" and all a, b e K. Therefore, by the Arzela-Ascoli theorem, for each
&> 0 there exists a finite sequence y,, y5,..., ¥, of points in I” such that for
each ye I’ there exists an integer j, 1 <j<n, for which |f,(a)— Hla)l<e
for all ae K, or equivalently,

e *<|all A(y)/”a” A < e, (2.42)

But X contains a countable dense subset K, and the set E; of points y such
that (2.42) holds for all a e K, coincides with the set for which (2.42) hglds
for all ae K. Thus E; is Z-measurable and |)J_, E;=1. Define I'=



268 CWIKEL AND JANSON

{I,, [,}€P by I''=E, and I'=E\| Jxo; Tk, j=2,., n. It is easy to see
that for all 2 €2 with @ > I and for each of the four methods M,

lal Lm(4.82.2) S e2‘||a|| Upm(A,82.2)

for all aeC? Since ¢ is arbitrary it follows that {A(y)|yel} is M, Z
measurable. ||

2.43. Remarks. In particular it is obvious that, in the case d=1, M, Z
measurability is equivalent to the Z-measurability of the real valued
function ¢(y)= |1 4,), In the context of infinite dimensional spaces
another trivial instance of M, Z measurability is of course when A(y)
assumes only finitely many different “values,” each of them on a Z-
measurable set. Note also that if {A(y)| ye I'} is St. L, P, measurable then
Us.(4, P,) and Lg,, (A, P.) coincide with A[z], assuming that {A4(y)|
ye '} is also an interpolation family as defined in [C3].

3. THE INCLUSION Ag,., < A, 4 18 STRICT

In this section we give the details of the construction of the triples A" of
two dimensional Hilbert spaces (Example 1.10) which enable us to deduce
(Corollary 1.11) that the spaces Ay ,., and A, ., do not coincide in
general, even if A(A) is dense in A4, for each j. We choose to work with
spaces over the complex field in order to facilitate comparison of the spaces
Ay ,., and Ay, with certain complex interpolation spaces. (See
Remark 3.15 at the end of this section.) Not surprisingly, via trivial
modifications, we can obtain triples of two-dimensional real Hilbert spaces
with analogous properties.

We begin with some observations of a more general nature concerning -
tuples of finite dimensional Hilbert spaces. Given any Hermitian positive
definite dxd matrix M we can define a Hilbert norm on C? by
llal = \/<a, Ma) = \/(\/A_Ja, \/A—4a> z\/(\/]l_la, \/H ). Here we use the
notation <{a,b)=%4%_,a,b, and (a,b)=3¢_, a, b, for a=(a,, a,,..., a,)
and b=(b,, b,,.., b,) in C% For our purposes it will be convenient to
always take M to be a matrix over the reals so that the two natural
definitions of dual norm coincide. More specificially, |[la|’ =
Sup, .o 1<a, b1/11b| =sup, ., l(a, b)|/I1b| =/<a, M~ 'a). We consider an
n-tuple A=(4,, A,,..., A,) where each 4,is C* and ||af 4=+/<a, M;a) for
some real symmetric positive definite matrix M, j=1, 2,.., n. Of course in
this context the spaces 44 ,., and 4 ,. « all coincide with C“ and all norms
are equivalent. We shall be concerned with inequalities between these
various norms. It will be convenient to modify the definitions of 45 ,., and
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Ay ,.x and their norms by replacing the J- and K-functionals in the
formulae (1.8) and (1.4) by their “/*” counterparts

n 1/2
st a; )=( 3 (olal )

=1

and

n 1/2 n
Ky(t, a; Z)=inf{< Y (tllall L) ) a=)y aj}.
_ j=1

The ratio between the new and original Ay ,.x norms is clearly bounded
above and below by constants depending only on n. The same is true for
Ag, ,.;. Thus for the remainder of this section we shall use (ie., abuse) the
notation | | ,,, and | | 4,,, to denote the new norms defined via J,(7, a; A)
and K,(f, a; A). (In fact we shall be concerned almost exclusively with the
case n=3,d=2,p=2)

In the present context (in contrast to that discussed in Theorem 1.32 and
Sect. 6; see Remark 6.1(iv)) the proof that (4, + 4,) = A N A5 (see, e.g.,
[BL, p. 32]) can be easily adapted to show that the norms J,(7, -; 4) and
Ky(f7 ', _') are dual to each other, where 7~'=(1/t,, 1/t,,.., 1/t,) and
A'=(4}, 43,.., 4}), ie, the norm of 4] is generated by M. Since of
course J,(7,-; A) is a Hilbert norm w1th J(t,a; A =<a, Zj_l ]M a) it
follows that K, (7, a; 4)*=<a, (X_, t; *M; ') 'a) and so also ||all%,,, =
{a, Mg,.xay, ie., the (new Hllbert) norm of Aj,.x is generated by the
matrix

Ma,z;ﬁfE(f‘g)z <Z z,sz,-1> du. (3.1)
=1

Here E = R” and the measure p on E are as in Definition 1.3 or its variants
(Remark 1.5).

From the above duality of norms we can deduce that the norms || || z,,,
and | [ 4,,, are also dual to each other. (Once again this is a
straightforward adaptation of analogous arguments for couples.) Con-
sequently | a 3?5,2;/= {a, My,.,a) where

n —1 —1
MMFU (f")2<2 tj—2Mj> du) . (3.2)
E j=1

We can now turn to an explicit description of our counterexample. Let
n=3 and d=2. Thus we consider a triple 4= (4,, 4,, A;) of two-dimen-
sional Hilbert spaces defined by the real symmetric positive definite 2 x 2
matrices M,, M,, M,. We shall compare the “volumes” ¥, and Vj of the
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unit balls of the two spaces 4;,., and A4 ,., and show that the ratio V/V,
can be arbitrarily large. To simplify the calculations we shall only consider
the case § = (4, §, 1) although the arguments work for all fe H> .

We shall use the notation

MH.Z:J:MJ=M.I(M17M2~M3) (3.3)
and
M0,2;K:MK=MK(M1’M2vM3) (3-4)

for the matrices defining the norms of Ag,., and 4, ,.,. More specifically,
for all values of the parameters ae (0, c0) and be(—1, 1) we let

0 1 0 1 b
M""””=M’<<g 1)’<0 a)’(b 1)) (33)
0 1 0
MK(a,b)=MK(<g 1),(0 a)(;) ’f)) (3.6)

Now we choose E={(1,,t,,1)|1,,7,>0} and du=dr, dt,/t,t,. Setting
x,=1;% x,=1;? and using (3.2) we obtain that

and

1 p= peo
MJ(MI,MZ’M3)=(_J L (1 X2) P(x M+ x, M+ M3) !

dx, dx,\ !
4Jo

XIXQ

(3.7)
and thus, in particular,

4M; Y(a, b)

—J J~ (a 0 +x<1 0 +<1 M\ " dx,dx,
*1%2)' 0 1)7"\0 «/T\b 1 X%,

oo o —1
=j J‘ ax; +x,+1 b Y
o Jo b X +ax,+1 ! 2 e

:J"JC J% [(ax1+x2+1)(x1+ax2+1)_b2]4
0 0

x7Px7 23 dx, dx,

x<x1+ax2+1 -b
-b ax,;+x,+1

B (11 +al, + 1, —bl, )
B —bl, al,+L+1)°
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where

X7 2Pxy 3 dx dx
b 1 2
@ b6)= f -[ ax1+x2+1)(x1+ax2+1) b2

forj=1,2,3, with x,=1.

(In fact by symmetry I, =1,.) Since V (a, b)=v, det M; '(a, b), where v, =
7%/4 is the volume (four-dimensional Lebesgue measure) of the euclidean
unit ball of C*>=R* we may write

Via,b)~ (I, +al,+ L)al, + I, + I,)— b*I2. (3.8)

(Here, and in the rest of this section, the notation /'~ g shall mean that the
quotient f/g is bounded above and below by positive numbers which do
not depend on g or b.)

Via the change of variables x,=(1—5%) y,/(1 +a), j=1,2, we obtain
that

(1- b)2]2/3

Is(a, b)z[(ua)

f f yi*y; P dy, dy,
( (1-»? 2/(1 + a) Nay,+ p2)(y: + ayz))
+(1=b)(y1+y2) + 182
Hence, by monotone convergence, the expression

(1—%)"Iy(a, b)

=(1+a)42/3j°° f‘*’ yi Py ?? dy, dys
o Yo ((1—bz)/(l+a)2)(ayl+y2)(yl+ay2)+y1+y2+1

converges as b tends to 1, for each fixed positive q, to the integral

-2/3 —2/3d d
2/3 Y1 Yy 4y,
(1+a)~ j j S (39)

As can be readily verified (e.g., with the help of polar coordinates) this
last integral is finite. From this point onwards we shall restrict a to the
range 0 <a <1 and so the above calculation shows in fact that

lim (1 - 52)"2L,(a, b) ~ 1. (3.10)
b—1
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We next estimate the expression

lim (7, + 1)
b—1

—limJ f (3 4 x5)(x,x5) "3 dx, dx,
bt (ax;+x,+ 1)(x; +ax, +1)—b*

_f” J*’” (X1 +2,)(x, x5) 7 dx, dx,
B o a(x?+xH)+(14+a%) x,x,+ (1 +a)(x, + x,)

by monotone convergence

j J (x4 x3)(x,x5) =¥ dx, dx, _J
o a3 +x)+x,x,+(x,+x,) ¥
The integrand of I, is dominated by
x,(x1x,) "% X(x1%2) P (nx)”? (yx)

ax?+ XX+ Xx; axi+x X,+x, ax;+x,+1 ax;+x,+1°
Thus

® (x,x;) " dx, dx,
axl +x2+ 1

14<2j

=2q" 13 ro © (p1y2) " dy dy,
0 0 y1+y2+1

3

where we have used the transformation y,=ax,, y,=x,. We recall
(cf. (3.9)) that this last integral is finite.
But also

© ax -2/3 d
14>J <J ! . xlgxle) X3 )dxl
o \Jo a(xt+x5)+xx,+ (x; +x;)
([l Py
([
o \Wo ax;+x,+1
o[ (f” U_ﬂ_/dy_) dy,,
o \Yo yit+y,+1
using the same transformation as previously. We have thus shown that
lim (I, + L) ~a~"? (3.11)
b1

which of course also implies the finiteness of the limits lim, _, /, and
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lim, ,, 1, for each g, 0 <a < 1. Combining this with (3.8) and (3.10) we can
deduce that

lim (1-5)"°¥(a, b) ~ lim (1, +al+al, + L)1 —8%)"Ls+ (1= 1]
b—1 -1

~lim (1 +a)I,+L)~a™ " (3.12)

We now turn to determining the corresponding asymptotic behavior of
Vl(a, b). It turns out to be possible to deduce this from (3.12) with the
help of the following matrix identity.

Mz'(a,by=a=%3(1—b*)"*M (a, —b). (3.13)

Indeed, from our earlier discussion of duality, in terms of the notation (3.3)
to (3.6),

MEI(MI’ MZ, M3)=MJ(M1_1’ Mz_l, M3-l)‘

More specifically,

wrtwmmsn((5 (000
4 9406 9 )
(s 96 Dl )

by (3.7). Further, via the change of variables, y,=(1—5b%)x,/a, y,=
(1 —b%) x,/a in the integral (3.7), it follows that the above matrix equals

ey 6 (L )
R )

again by (3.7). (Indeed for 8 = (3, 4, §) the space 4, ,., is unchanged by any
permutation of the order in which the spaces 4,, 4,, A, appear in 4.) Thus
(3.13) is proved. From the formulae used above to obtain (3.8) it is clear
that ¥V (a, —b)=V (a, b) and so

Vla, b)~det Mg '(a, b) = (a~%*(1 — b2)~ 1) det M (a, —b)
~a (1= b))~V (a, b)~ .
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Consequently lim, _ ,(1—b5%)"*V(a, b)~a *?a'*=a~'. Indeed lim, _,
Vi(a, b)/V,(a,b)~a ¥ for all ae(0,1) so that clearly, for suitable
choices of a and b, V', may be arbitrary larger than V.

3.14. Remark. We briefly indicate some details of the proof of
Corollary 1.11. For 1< p<o and any sequence of Banach spaces
{B, }=_, let I?{B,,} denote the space of sequences {b, }=_, such that
b, € B, and the norm [[{b,,}|l (5, = (X%_, I5,115,)"” is finite. Then for
any sequence of Banach triples {A™} = {47, A7, A7)} it is easy to see that
A=(7{A7}, IP{A7}, 17{A47}) is also a Banach triple with containing space
1P{A7 + A7 + A7}. Taking A7, A7, and A7 to all be C? as above with the
property that ¥, >mV,, it is easy to see that 4;,., is strictly contained in
Ay ,.x- Furthermore by taking p =2 we may obtain A as a triple of Hilbert
spaces. (For examples of similar applications of direct sums cf, e.g.,, [J1,
Lemma 1, p. 52] or [Cw, Lemma 2, pp. 221, 2221].)

3.15. Remark. 1t is of interest to compare the estimates obtained above
for lim,_ , (1—4%*"*V, and lim,_ , (1 —b*)'?V, with a corresponding
estimate which we shall obtain now for Vg, ;, the volume of the unit ball of
the analogous St. Louis complex interpolation space Ap;;r where 4=
(A, A,, A5) is the same triple of two-dimensional Hilbert spaces as above
and the spaces A4, r are defined as in Section 1 using a domain D with
boundary I, and a decomposition of [I" into three disjoint subsets
Iy, Iy, I';, each having harmonic measure 1 at {eD. By an argument
given in [Cl, p.279] (essentially an alternative proof of the
Masani-Wiener theorem) we have that for all ae C?

lallZ,, = <BE) a, BE) a,

where B(z) is a nonsingular matrix valued analytic function of z on D with
nontangential limits B(y) for ae. yel satisfying <{f(y)a, f(y)a)=
{a,M;a)forae.yel;, j=1,2,3,and allae C2 Consequently det f(z) is a
bounded nonvanishing analytic function on D. We claim that in fact
det f(z) is an outer function, since 1/det f(z) is also bounded (cf. [G,
Theorem 5.5, Corollary 5.6, p. 74]). This can be seen, e.g., by applying the
Masani-Wiener theorem as above also to the dual couple (4}, 45, 43)
generated by the matrices M !, M; !, M; !, and using the duality theorem
([C3, Remark 3.2, p.214] also [C2, p. 135]).

We can now assert, using notation as in Section 1, that

|det B({)] =exp L log |det B(y)| dP ()= |det M, det M, det M;|"/°.

Thus Vg ~|det ()] 2=a~**(1—b*)~"* and lim,_  (1—5%)"
Vseu~a™ .
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By comparison with earlier estimates we see that for a sufficiently close
to 0 and b sufficiently close to 1

Vi< VgL < Vi

4. THE FAVINI-LIONS AND THE ST. Louls COMPLEX INTERPOLATION SPACES

4A. The Inclusion Ag ., <[ A)e: Theorem 1.15

For each ae A(A) let f(z, 22ys 24— 1) = 8210 2,) = (T} lllalle’ ")a
where, as above z,=1-3%7" ! zj Then clearly f € H#,(A4) (see Remark 1. 14)
and, since 37_, 6,=1, f(8,,..,0,_)=a. Furthermore forany k=1, 2,..,
if z-(zl,zz, ,z,, ) €0, then |f(2)ll, = l||a||,4 Consequently
lallpa3, <IT5- 1||al|4 Now, given any beAg”, we have for suitable

functions u(7) (see (1 7) and (1.8)) that
161 ¢

- N [t auti

<f ()] {23, dulf)
E

[430

<[ TT 1@ sty = =2 TT hu@1)% dt)
Ej_y E j=1

<[ 0 u(h); @) du(d)

Taking the infimum over all such functions u(f), we deduce that
161l 470 < 161l 4,,,, which completes the proof.

4B. Proof of Lemma 1.16

Given f e #(A) and arbitrary &> 0 let f, = e, f where e;(z) = e’>/=15 and
0> 0 is chosen sufficiently small to ensure that || f, — f| 41, < &/4. Let ¢ be
a complex valued C*® function on R” ' whose Fourier transform ¢, ¢(s) =
fre-1€70(t) dr, is a C* function of compact support such that ¢(s) =1 for
all s, lsl < 1. (Here of course 5= (s, §350 S,_y) @and t={(t,, t5,.., t,_,) are
in R*™Y, [s|=(Xr2/) 7)) and (s, 1) =372 5;1;.)

For each posmve integer m let g,,,(z) j'w v m" " Yo(ms) fi(z—is) ds.
Since e, is arbitrarily small on the complements of suitably large compact
subsets of @ it follows that f, is a uniformly continuous function
from @ into X(A). Furthermore its restriction to dQ; is a uniformly
continuous map into A4; for each j=1,2,.,n Thus g,€e#(4) and
lim,, ,  lg.—fill X(A)—O We let f,=g, where m is chosen such

that | g, — fl”.#’(/?)_“fZ f1||y(,4)<8/4 Now let u.(s)= LR et
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Jax+itydt where x,5,teR" ' and x+it=(x,+it,, x,+ity,, X, |+
it,_ )€ Q. For each fixed s the integrand, considered as a function of x + i,
maps Q continuously into X(4) and is analytic in Q. Also
lim, . sup{fle"™ " fy(x+if)l 4!t >a}=0. It follows by Cauchy’s
theorem that u (s)=u(s) for all x, x'e @ and henceforth we shall use the
notation u(s) for this function. Furthermore since we can take x or x’ to be
in 092, for any choice of j=1, 2,..., n, we see that ¥ maps R” ' continuously
into A( 4). (The continuity follows from the fact that for x e 0Q; the integral

J, Wt inlgdi<| UfiGe+ il di

is finite.) Since ¢ has compact support so does u. Applying the inverse
Fourier transform to e~ u(s) = (-1 €'™f5(x + it) dt yields that, for all
z=x+ite,

fol2) = falx +it) = (2m) =D j e~ (i3 (el 5 ds

R -1

— (27[) nal)Ji ef(x+i1,s)u(s) ds
Rr-1

= (215)*"'—”'[ e =y s) ds.

Let fy=e; f, where 6'>0 is chosen sufficiently small to ensure that
If3 =12l w7, <e/4. Let Q be a fixed cube in R” ' which contains the sup-
port of u. Let {Q,,Q,,..., Oy} be an arbitrary finite collection of non
overlapping cubes whose union is Q. For k=1, 2,... N we shall denote the
centre of Qp by Ap = (441, Aases Ag 1) Let

N
fo(2)=(2n)~" D'} e*wj u(s) ds.
k=1 O«
For all z=x+iteQ and seR" !, e~ G| = [e (&9 eI+l + +lsml
and, since [|u(s)| 4.z) is a bounded function supported in Q, we deduce that
the numbers sup, g /2(2)l| 44 and sup, g [ fa(z)ll 45, are both bounded
by a fixed constant M which depends only on the quantities sup, ., Is| and
SUP, o [lu (s}l 4z)- In particular M is independent of the choice of decom-

position of O, {Q,,..., Qy}. Let g=e, f,. Then
18(z) = f3(2)ll a1y

n—1

= les(2) 1fa(z) = fo(2)l 4z S 2M exp(=¢" 3 (Im z))%).

j=1
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Thus

lg(z) = f3(2)l 4zy<e/4  forall zeQ\B,,

where

B,={z=(z,.,z,_)€Q||Imz|<p, j=1,2,.,n—1}

and p is chosen sufficiently large. On the other hand, for ze B,,

Ig(z) = f3(2)l a2y
= les(2)] 1 f2(2) *f4(2)”4(2)

N
<eTN@m) T e = e fuls) g, ds.
= &

Now e~ is a uniformly continuous function (of 2n—2 variables
(21, 2350y Zu_15 S15 52555, 1)) ON the compact set B,x Q. Thus if we
choose each of the cubes Q, with sufficiently small side length we will

obtain that | g(z)— f3(z)ll 4z, <¢/4 for ze B, and so for all ze Q. This
implies that

”g_f3||;r(1)<3/4
and

lg— e <lg— il + 15— L2l xay
+ 2= Sy + 11— fllpay e

Since g is a function of the required form, the proof is complete.

4C. Proof of Theorem 1.17, [A]gc Ay r

For each j=1,2,.,n, let u; be the harmonic function on D u(w)=
P (I} and let v; be the harmonic conjugate of u; chosen so that v({}=0 at
the constant point { € D which is used to define A,  and 6. Thus z,(w) =
u(w)+iv (w) is analytic in D and has a nontangential limit z(y)=
lim,_  z{w) for ae. yel. In particular Rez/(y)=1 for ae. yel; and
Re z,(y) =0 for ae. ye I'\I';. Note also that z,(w)=1—37-/ z/(w).

Let ae[A],. By Lemma 1.16 there exists a Cauchy sequence {g,} in
#(A) such that lim,_ | Emll ey = llall a7y, lim,, _ o, lla,,—all (4:=0,
where a,,= g.(0;,05,..0,_,) and each g, is of the form g,(z)=
S¥n Wy ml2) by Where ¥, .(z) is a scalar valued analytic function for all
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z=(zy, 23y 2,;)€C"" ! and is bounded on Q, and where b, ,, € 4(A).
Define the function f,, on D by

fm(w)zgm(zl(w)’ Zl(w)’ »Zn_1 W) Z (pkm W) bkm,

k=1

where @, (W) =¥ .(z,(W), Zo(W),., z,,_,(w)). Then f,, € %(A4, I') and for
ae yel]

(Zl('})), 22(')))3"-’ Zn— 1(?)) € 69] and fm(y) = limw|>y fm(w) = gm(zl(y)a--':
z,1(7) Thus  Nfllzan<lgmlem and  1fu—Sfullszan <
|l &m— &l ,ﬂ 1 for all positive integers m, m’, and so the clements a,,
gm0y, 05, 0, 1) = [,({) € 4(4) form a Cauchy sequence in A, r as well
as in A[g] and X'(A4). Since Am r is complete and continuously embedded
in 2(4) we deduce that ae A - and lall 4., - < lall; 77, which completes
the proof.

4D. St. Louis Spaces Are Not “Rearrangement Invariant”

We begin by indicating the general strategy behind the construction of
our example and by fixing some notation. Throughout this subsection I
will denote the unit circle. We shall start by specifying two infinite inter-
polation families {A(y)},., and {B(y)},., (for the definition of inter-
polation families, see [C3, p.206]) such that, for each ye I, A(y) is the
same space % equipped, however, with a norm which varies continuously
with y. {B(y)}, . - will be obtained by taking B(y)=A(1/y) for all ye I". (In
this subsection ‘=" signifies that the two norms are equal.) {B(y)},.  is
thus a “measure preserving rearrangement” of {A(y)},. with respect to
harmonic measure on I at 0. Of course the spaces A[0] and B[0] (as
defined in [C3, p. 209]) both coincide algebraically with %. However, we
will be able to arrange for the ratio || x| 4 01/l X| ;07 to be arbitrarily large
for suitable elements x and for suitable choices of a certain parameter in
the definition of {A(y)},. -

To obtain counterexamples in the setting of n-tuples we must “discretize”
the above situation. Thus we shall divide I” into »n arcs of equal length
r,,r,.., I, where ={e"|2n(j—1)/n<t<2nj/n}, and let A=
(4,,A,,.., 4,) be deﬁned by A,=A(y;) where y,=e?"V~ V" Clearly
Aoy r=E[0] where {E(y)},., is the interpolation family defined by
E(y)=A(y,) for yel, and I'={I'\,I,,.,I',}. Similarly, if ™=
{I't, I'¥,.., I¥} where for each j the set I'*= {ye T l/yef} coincides,
except for its endpoints which may be neglected with I, ., _;, then
Apoy.r»=F[0] where F(y)=E(l/y). An appropriate adaptation of the
preceding estimates for norms in A[0] and B[0] will show, as required,
that the ratio || x|l rro1/l%ll zroy = %0l 2y o/ 1%l 4;r €an also be made
arbitrarily large for suitable elements x.
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We now turn to the specific details of the construction. Let % be the
space of complex valued functions on the unit disc D obtained as the
closure of the analytic polynomials with respect to the norm ||y =
((1/2m) [27 |p(e™)|” dt)"/P. Thus % is the Hardy space H?(D) if 1< p< 0
(see, e.g., [G, p- 59]) and % is the disc algebra if p = c0. For each ye I" we
define A(y) to be % renormed equivalently by

1 p2n el lp
lolan=(52 [, oteeriear) .
where A is an arbitrary positive constant. Clearly

971”(P||A(y)< ol ge/l”(P”A(y)

and
0 4 < 10l i <€ 1 lLagr D

for all y,y’el, and @e%. It follows immediately that {A(y)},., and
{B(y)},.r are interpolation families. We shall now estimate the norms
111l sgo3> 1Ml rro7, @nd subsequently [|11| 4r07 @and |[1] zpo3, of the function
which assumes the constant value 1 on D u I'. We shall first show that

I} gpoy = €* (4.2)
if p= o0 and
110 roy = (e/2m) Pe*~ 1 = (43)

forevery g, 0<e<1,if 1< p<oo.
The calculations here are a “model” for our main step which will be to
obtain the estimates

H 1 ” F10] > e().n/n)sin(n/n) (44)

for p= o0 and

“ 1 ” 103 2 (8/27’()1/P€;” /1 —ez(n/n)sin(n/n) (45)

for 1< p<oo and every ¢, 0<e< 1.

Let g(w)=Y¥_, @r(w) a, be an element of ¥(B(-), I') [C3, p. 207] with
a,€% and @, a bounded scalar valued analytic function on D. (We recall
that, although %(B(-), I') may contain such functions g for which the ¢,
may be unbounded, by Proposition 2.5 of [C3, p. 210] it suffices to con-
sider only bounded functions ¢, in the process for estimating the norm of
B[0].) We may consider g as a scalar valued function of two variables on
DxD, gw,z)=37_, @«(w) ai(z). There are now two cases to be dealt
with:
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Casei. p=co0. Here we define a bounded analytic function # on D by
h(w) = g(w, w). The nontangential limit of A, A(y)=32_, lim,_  ¢.(w)
a,(y)=XN_, ox(y) a,(y) exists for ae. ye I and in fact

|A(y) e < sup Z ox(7) a(z) e = [F(C2] PP (4.6)

zeD =1

Consequently [g(0, 0)| = |A(0)| <esssup,, . |h()l < e_l”g”(f(am,r)- Letfe
F (B("), I') be the limit with respect to the norm | |44, - of a sequence of
functions in %(B(-), I') of the above form such that f(0)=1 (constant
function of z). The preceding inequality implies that 1 <e %[ f Il g s ).r for
all such f. This proves (4.2). A rather similar argument will now give (4.4).
Indeed for a.e. ye 7, much as in (4.6),

Y o) adz) e =11 g(2)ll airy

k=1

= |lg)l o) S “g“g(n-).r)'

|h(y) e*'] < sup
ceD

Consequently,

Ih(O)| <exp | log [h()] dPo(y)

n

2nj/n
sllgllg(,-“ﬂexp@j L . —Acos(t—zn(j—1/2)/n)dz/2n>
w{j— 1)/n

=1

n/n
=l gllgr). rexp (n f —Acost dt/27r)

—n/n

=gl e —n/lsin7r
. X — ~.
&llw(rcy, ry CXP T n

From this inequality we deduce, analogously to before, that (4.4) holds.

Caseii. 1< p<oo. Here the function g=g(w,z)e%(B(-),I) is
introduced as before, but instead of the function A(w)= g(w, w) we use
k(w) =k, (w)= g(w, e“w) where u is a (temporarily) constant real number.
Clearly ke H?(D) so that

2n
12(0, 0) |7 = k(0) "] 7 < j k(™) e*"|? di/2m.
0
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Integrating this inequality with respect to u now yields

2n
|g(()’ 0)|PJ. elpcosudu
\]
2rn r2n . . w
<[] 1gtet, ey e dt duj2n
0 0
n 2n 1 i i85/ it
=7 [ 1ate", ey *¢)7 ds dif2m
0 V]
2n . s
= [ [ 180, €y e ds dPo(y)
r<o
=] 211850 dPolr) <22l gl eac .y

Now

2n €
." AP dy > f e*Peost gy > gtV 1-¢ forall 0<e<l.
o 0

Thus |g(0, 0)| < (2n/e)'?e *¥'~“lgllg(s(.,r, and a repetition of by now
familiar arguments proves (4.3). The proof of (4.5) will proceed similarly as
follows: Let a(y)=vy, for all yeI; and let @, (w) be a (bounded) outer

function on D such that |¢ ()| = |e*"“”*™)| for a.e. ye I'. Here again u is a
{(constant) real number.

2n
0

|£(0, 0) ¢,(0)” = k(0) ¢.(0)I Sj |k(e") @ (e")|? dt/2n.
Similarly to before
2n
1200,0)1” [ 19.(0)|” du
Q
sJ~21t J-21z |g(ei', ei('+“)) elei(uu)/a(eit)lp du dt/21r
0 0
= f j | g, €°) €| ds dPo(y)
rJo

= [ 2m18() 7y dPo() <27l &l agacorry
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Now

¢.,(0)=exp LG log|e.(e") |dt/2n>

n 2nj/n i 10

—exp < Z J‘ 7 10g| il +i=2ni—1/21) | dt/27z>
2r(j— 1)/n

([

n
—Acosu sm
7

Acos(u+t) dt/27r>

—n/n

Thus, for 0 <e <1,

Jzn l(pu(O)l"du>j exp( A 1 —g?sin )du
0

=g exp (lp(‘ /1 —sz)gsin g)

Consequently |g(0, 0)|” < (2n/e)exp(—Ap/T—¢” (n/n) sin(n/m) | €ll ger..1o
and (4.5) follows.

The estimates for ||1]| 4007 and ||1] go; are rather more straightforward.
We use the function f(w,z)=e " =3%_,(—Aiwz)"/m! The partial
sums of this series are of course in %(A(-), I') and converge uniformly on
Dx D and therefore also in the norm of 4(A(-), I') for all pe[1, o]
Thus fe#(AC).T) and f(0,2)=1 and |1lao;< IS lgpa, =
esssup, . - [1f(7, z) e”|| , = 1. Also the identity operator is bounded from
A(y) to E(y) with norm e*"~ " =¢*' =7 (see (4.1)) for all yeI';. So we
can apply the interpolation theorem [C3, Theorem 4.1, p.216] to obtain
that

2sin -

1]l groy < exp ( Y [ logett =7 dPo()’)) 110 41
An rin
J 3

j=1
44
<exp<27I » dt)—exp[Tn(l-cos%):I.

Finally we can combine all the above estimates to show that
111l sro3/ 111l 4ro7 can be made arbitrarily large by suitable choices of 4 (and
of ¢ if p<o0), and also that

p
11} rrog/I11 ] £gop > €Xp [7" (sin g —4 (1 —cos %))] if p=oo
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and otherwise
A
111 rray/ 11 103 = (&/27) " exp H— ((\/1 —&)sin 4 (1 oo 2%))]

Therefore this ratio can be arbitrarily large, for suitable choices of A and &,
provided that sin(n/n)— 4(1 — cos(n/2n)) > 0. This holds for all #>=3 and
indeed for n > 2.1834.

We shall next describe a rather simpler two-dimensional version of the
interpolation family {A(y)},.,. Although as before we obtain that the
ratio ||x|| gro7/ll x|l 4ro7 can be arbitrarily large, we are not able to deduce the
same here concerning ||X|| sro3/1xll £ro; for any choice of . This naturally
raises the question of whether for each m we can find a triple of two dimen-
sional spaces 4™ and elements x,, such that ||x,,|| Z’["o],r'/ I, &, .2 m. (One
possible approach to such a construction might be to use a finite dimen-
sional “approximation” to a triple of H? spaces suitably weighted as above.
(Cf. also Remark 4.8.) In view of the Masani-Wiener theorem (see [Cl,
p.279] and Remark 3.15) the complex interpolation spaces for such a
triple of finite dimensional Hilbert spaces are determined via an analytic
matrix valued function which can perhaps be composed with projections
onto a suitable two-dimensional subspace to yield the required example.

47. ExampLE. For each yel let A(y) be C? renormed by
(215 22)l ay) = 1211 + 125 + 4|2,y — z,| where 4 is an arbitrary positive con-
stant. (We also take % to be C? with any norm we please.) Then
g(w)=(1,w) is a C* valued analytic function in the class %(A(-), I') and
g4 =1+1+0. Consequently [[(1,0)[l 407=18(0)ll4r01< 2. To
estimate ||(1, 0)| zro3, Where, as above, B(y) = A(1/y), consider any function
feF(B(+), I') such that f(0)= (1, 0). Then f(w) = (¢,(w), @,(w)) where ¢,
and @, are bounded scalar valued analytic functions on the unit disc D,
also defined (via non tangential limits) for ae. yel, and ¢,(0)=1,
0:(0)=0. Then, for ae yels 1f(lsp=I(@:7) 020)la0)>

Mei(v)fy — @209)1 = A, (y) —y@2(7)l. Applying the maximum modulus
principle to the function ¢,(w)— we,(w) yields that

A=A¢,(0)] <Aesssup |@,(y)—y@a(y)] <esssup [ (P 5,

vel yel

Consequently |[(1, 0)ll 501> 4 and the ratio {(1, 0)l| s/l (1, 0)ll 403> 4/2
can be arbitrarily large.

4.8. Remark. As promised we shall construct, given any number m >0,

607/66/3-5
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a triple of finite dimensional spaces ¥=(Y,, Y,, Y,) for which, for some
nonzero ye Y, nY,nY,,

Iyl v vy vl | Vv v, 31, = M- (4.9)

To begin with, for each j=1, 2, 3, we choose 4, to be the disc algebra with
weight |e*”| as in the example above, and let Y, be the subspace of
polynomials of degree at most N. By choosing first A and then N large
enough we obtain as above that

I #roy e 2 1T gy e > Ml ] 9y e (4.10)

Y,, Y, and Y; coincide algebraically, and so do Y7, Y3, and Y. Suppose
now that (4.9) is false for all y. Then the norm of the identity mapping
[ Y75~ [ Y15 does not exceed m. Furthermore, by Theorem 1.17, the norm
of the identity mapping [¥'];— Yy r is at most 1 and, by the duality
theorem for St. Louis spaces [C3, pp. 214, 216, 228], Yoy r=(Y(00.7)
isometrically. Hence the identity mapping [ Y]; — (¥ [o;.r)’ has norm less
than m. By duality and Theorem 1.17, the identity mapping Y4 r—
[¥Y]s— Yo7+ has norm less than m. This contradicts (4.10), and shows
that Y has the required property (4.9).

4E. The Inclusions [A)g< Ago.xs A0 < Aok Theorem 1.23

We shall first prove the second inclusion. Given any element ae 4y r
with norm less than 1, choose f € #(4, I') with f({)=a and ||fll sz r< 1.
Then for any 7= (¢, t5,..., t,) € R let @(z) be a bounded outer function on
DuT such that |e(y)|=1/t; for ae. yel), j=12,..,n ¢()a=

{ro() f(7)dP.(y) so

a=Y an  where a;=(1/o(0) | 9(1)S(7)dP()

1 75

(The above integrals are defined in the sense of Bochner for X(A4) valued
and for A; valued functions, respectively.)

<IW©1 S 1| 10yt dP)

j=1

<exp [ log [1/0()] dPe(y) 3. 6=l tn
ji=1
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This shows that aeAdy..x with |a| A.x<1 and proves that
A[C],I'CAG,OO;K' _ _

The inclusion [A4]s< 44 .., now follows as an immediate corollary. We
simply choose any I'={I';,.., I',} and { e D such that P,(I;)=6; (eg., I
can be the unit circle divided into disjoint arcs I, of length 276, j=
1,2,.,nand {=0). Then we apply Theorem 1.17.

4F. The Inclusion for n-tuples of Hilbert Spaces, [A)y< Ay ,.,

Let g(z) =e4(z) YN _, e*7)g, be an element in #(A4) of the form defined
in Lemma 1.16, where, as in the proof of that lemma, we use the notation
es(z)=e"T-1'3. Let g,(z)=e,(z) g(z) and, much as in the proof of
Lemma 1.16, we use the function u: R"~! — 4(A4) defined by

u(s)= J e tisdg (x+it) dt
Rrr—1

which is independent of x. In particular if x € 2, we can apply Parseval’s
equation for Hilbert space valued functions to show that
172 172
( f ||e—<*-”u(s)||i.ds) = @) (f Ig1x+ il dt)
Rr-! s RrRr-1 7
gC“g”x(Z) (4.11)
where C is a constant depending only on n. Also, as in the proof of

Lemma 1.16,

gl(z)=(27t)""’”j e y(s)ds  forall ze(,

mr—1

We now define a continuous 4(4) valued function v(7) on R . Actually we
only need to know its value on the set Ec R" (Definition 1.6). Thus

we take v(ty, ty,, t,_1, 1) =C, [172) t9u(—log t,,.., —logt,_;) where the

constant C, =1/(2rn)"~'e,(8,, 05,.., 0, _,).

[ enaud=c,[ T e=*us)ds = C2my 1010, 6,
E n lj=l

= g(ela"" Bn—l)

Now we can estimate the norm

" g(ol EALAH] 0n— 1)" 19_2;,[

s( [ 26,000 D)y du(t)>m
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n 1/2
<[, 5 u-toprs... ~togr, 2 duih)

n 1/2
=C, ( Y f . e~ u(s .., s,,_,)llf,j ds)
J

j=1
<C,Cnlglea by (411).

Using standard density and completeness arguments we can deduce from
the above inequality that, for every ae[A]y, ac Ay, , with |a| ,, <
C,C/n llall a3y

5. CALCULATIONS OF SPACES OF FERNANDEZ
FOR THE 4-TUPLE (B,, B,, B,, B);)

Proof of (1.26). 1f f(z,, z,) e H(B,, B,, B;, B,) then the function g(z)=
f(z, z) is analytic in {z|0 <re z< 1} and continuous up to the boundary on
which it has values in B,. Thus it follows that f(z,z)e B, (using, e.g., a
simpler version of the argument in Sects. 9.1 and 29.1 of [Ca]). Similarly
f(z,1—z)e B, and so f(3, 3)€ B, n B,.

Proof of (1.27). This is left as an exercise for the reader.

Proof of (1.28), (1.29), and (1.30). Observe that
K(t,, t,,a, A)y=min(1, t,¢t,) K(

Therefore, if t,=e“"", t,=¢“"" then (t,t,) "2 K(t,,ts,a;A)=
e K"~ a; B,, B,). This gives (1.29), and (1.28) also follows by first
using the variables u, v and then |u|, |u|—|v| to calculate the double
integral. Inequality (1.30) follows from (1.28), except in trivial cases such as
B, =B,. (In fact it can be shown that (1.30) fails if and only if the norms
|l I 5, and || || 5, are equivalent on B, N B,.)

6. DEPENDENCE ON THE CONTAINING SPACE:
PRrROOF OF THEOREM 1.32

Let ¥ be the quotient space of % modulo the one dimensional subspace
generated by a, and let T be the quotient map from # onto ¥ . Let
B;=TA; with |b]l 5, = |lal 4, for every b= Tae B;. (Of course, since a, ¢ 4,
every coset he B, is the image of a unique a€ 4;.) Since T maps 4, into B,
boundedly (isometrically) and also maps % continuously into ¥, an
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appropriate interpolation theorem for the method & shows that ||Ta| 5, <
lall z, for all ae A,. In particular, if (a,,)®_, is a sequence in 4(4) such
that |a,,—a,| z, O, then for b, = Ta,,, b, 5,=Ta,— Ta,| g, = 0.

We now define the operator S;: B, — 4, to be the inverse of the restric-
tion of T to 4;. S; is of course an isometry. Furthermore if € B;n B, then
S;b =S, b since the difference of these elements must be a scalar multiple of
a, and in A;+ A,. Thus the operator S, which is the common restriction to
A(B) of the operators S,, S,, S;, is well defined and satisfies ||Sb,,|| 7,/
{8,/ g, = 00 proving Theorem 1.32.

6.1. Remarks. (i) We cannot apply the interpolation theorem to S
since it is not defined from ¥ into %. We now see that such a requirement,
which is imposed in the formulation of interpolation theorems in [Sp, C3],
etc., is not superfluous. Note that § is also not defined from X(B) into
Z(A). Thus, from the present point of view, the simple algebraic argument
mentioned in Sect. 1, which enables an operator defined from 4; to B,
Jj=1, 2, and consistently from 4, N 4, to B, n B, to be extended uniquely
to an operator from A4, + A, to B, + B,, is a sort of “accident” which
happens to work for n=2 but for no n greater than 2.

(i) It is not difficult to produce examples of triples 4 = (4,, 4,, 4;)
satisfying the hypothesis of Theorem 1.32. For example, let (X, X,) be a
Banach couple with an element xe [X,, X,],5\X,.

Let 4,=X,@X,0X,, L,=X,@X,8X,, A;:=X,®X,®X,, with
containing space % = (X, + X,)® (X, + X,)® (X, + X3). Then if Py(I',) =
Po(I,) = Po(I'3)=1 it is not hard to show (cf. [C3, Theorem 5.1, p. 218])
that

Z[O],I‘= [Xl»X2]1/3®[XI’X2]1/3®[X15X2]1/3,

and to see that a suitable choice for a, is a, = (x, x, x).

(iii) There seems to be some connection between the present theorem
and the counterexample in [C3, Appendix 1] showing that the St. Louis
space A[z] does not coincide in general with a second space A{z}
obtained by a similar construction which we shall not bother to define
precisely here. Since A{z} is obtained by abstract completion of the space
A(A) with respect to a suitable norm, its construction does not depend on
the containing space and so Theorem 1.32 gives us a general and simpler
way for constructing further examples where A[z] and 4{z} do not coin-
cide. This leads naturally to a “converse” question: Can we always make
the spaces A[z] and A{z} coincide (as they do in many examples) by
choosing a different “more natural” embedding for the n-tuple or infinite
family which generates them? We rephrase the question more precisely:
Given any n-tuple 4 (or more generally an infinite interpolation family
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{A(y)},cr) is it possible to construct a second n-tuple B (or interpolation
family {B(y)},.,) having the property that B{z}=B[z] and which is
“isomorphic” to A (or {A(y)},.r) in the sense that there exists an
isomorphism between 4(A) and A(B) (or the log-intersection spaces of the
two infinite families) which extends to an isomorphism of 4; onto B, for
each j (A(y) onto B(y) for each y € I') and which is “pairwise consistent” as
in the above theorem?

One reasonable way to construct such an n-tuple B might be to first take
as containing space ¥~ the abstract completion of 4(A4) with respect to the
norm :

n
lall zoq)= in,,f . Z “aj”A,
19 51

=3 Y

aje A4(4)
(cf. [C3, Appendix 1, p. 226]) then, provided 4(A4) is dense in 4, for each j,
we can take B; to be the subspace of ¥~ consisting of equivalence classes of
Cauchy sequences for which at least one representative also converges with
respect to | ||, B; and 4; will be isometrically isomorphic since they each
contain the same dense subset 4(A). Furthermore it can be shown that
lall s 7y = llall 55 for all ae A(A4). In other words, the norm | | 51, ON
A(A), which in general is not equivalent to the usual sum norm || | 2(A)
[C3, p.226], nevertheless is the usual sum norm for a suitable different
choice of containing space.

(iv) All the above also shows that the duality formulac A4(A4) =
2(A') and Z(4) = A(A’), which are readily established for couples [BL],
are not automatically valid for n-tuples if the containing spaces for the a-
tuples 4 or A’ are chosen “badly.” In fact Jaak Peetre drew our attention
to this difficulty some years ago.

Similarly the duality theory for St. Louis, Sparr, or Favini-Lions spaces
needs careful formulation.

Note added in proof. In fact a more detailed study of the above duality formulae
and related matters in the context of n-tuples can be found in G. DORE, D. GUIDETTI, AND
A. VENNIL Some properties of the sum and intersection of normed spaces. Atti Sem. Mat. Fis.
Univ. Modena 31 (1982), 325-331.
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