Path numbers of balanced bipartite tournaments

Vojislav Petrovic*

Institute of Mathematics, University of Novi Sad, Trg. D. Obradovica 4, 21000 Novi Sad, Yugoslavia

Received 22 October 1997; revised 2 October 1998; accepted 5 March 2000

Abstract

A path decomposition of a digraph D is a partition of its edge set into edge disjoint simple paths. The minimal number of paths necessary to form a path decomposition is called the path number of D and denoted by $pn(D)$. A bipartite tournament $T(A,B)$ with partition sets A and B is balanced if $|A| = |B| = n \geq 1$. We prove the following: (a) if n is odd and k is any odd integer from the interval $[n; n^2)$ or (b) if n is even and k is any even integer from the interval $[n/2+1; n^2]$, then there exists a balanced bipartite tournament $T(A,B)$, $|A| = |B| = n$, with $pn(T(A,B)) = k$.

MSC: 05C05

Keywords: Path number; Bipartite tournament

In general, the terminology is that of [2]. A path decomposition of a digraph D is a partition of its edge set $E(D)$ into edge disjoint simple paths. The minimal number of paths necessary to form a path decomposition is called the path number of D and denoted by $pn(D)$. The deficiency $d(v)$ of a vertex v of D is defined as $d(v) = d^+(v) - d^-(v)$, where $d^+(v)$ (resp. $d^-(v)$) is its outdegree (resp. indegree). The quantity $x(v) = \max\{0, d(v)\}$ is called excess of v. The excess of D is defined by $x(D) = \sum_{v \in V(D)} x(v)$.

It has been shown in [2] that for any digraph D

$$x(D) \leq pn(D). \quad (1)$$

D is consistent if equality holds in (1).

A bipartite tournament is an orientation of a complete bipartite graph. $T(A,B)$ will denote a bipartite tournament with partite sets A and B. When no confusion can arise the shorten form T will be used. A bipartite tournament $T(A,B)$ is balanced if $|A| = |B|$. An antidirected path (cycle) is an orientation of a path (cycle) such that each two adjacent edges are oriented oppositely.

* Tel.: +381-21-58136350449; fax: +381-21-58136350458.
E-mail address: vojpet@unsim.im.ns.ac.yu (V. Petrovic).
Theorem 3. Let \(T(A, B) \) be a balanced bipartite tournament with \(|A| = |B| = n \). If \(n \) is odd, then \(x(T) \geq n \).

Proof. Suppose that there is a balanced bipartite tournament \(T \) such that \(x(T) < n \). Since \(n \) is odd, \(d(v) \geq 1 \) for each \(v \in V(T) \). Let \(\{v_1, \ldots, v_k\} \cup \{v_{k+1}, \ldots, v_{2n}\} \), \(1 \leq k \leq 2n - 1 \), be the partition of \(V(T) \) such that \(d(v_i) > 0 \) for \(i = 1, 2, \ldots, k \) and \(d(v_i) < 0 \) for \(i = k + 1, k + 2, \ldots, 2n \). Let \(d_i = d(v_i) \). From the identity \(\sum_{v \in V(T)} d^+(v) = \sum_{v \in V(T)} d^-(v) \) and the definition of vertex deficiency it follows \(d_1 + \cdots + d_k + d_{k+1} + \cdots + d_{2n} = 0 \). So,

\[
x(T) = d_1 + \cdots + d_k = |d_{k+1}| + \cdots + |d_{2n}|
\]

Since \(x(T) < n \) and \(d_i \geq 1 \) for \(i = 1, 2, \ldots, k, k < n \). It implies \(2n - k > n \) and since \(|d_i| \geq 1 \), \(x(T) = |d_{k+1}| + \cdots + |d_{2n}| > n \) contradicting the assumption. \(\Box \)

As \(\text{pn}(T) \leq n^2 \) obviously holds we have:

Corollary 1. Let \(T(A, B) \) be a balanced bipartite tournament with \(|A| = |B| = n \). If \(n \) is odd, then \(n \leq \text{pn}(T) \leq n^2 \).

Theorem 4. Let \(T(A, B) \) be a balanced bipartite tournament with \(|A| = |B| = n \). If \(n \) is even, then \(n/2 + 1 \leq \text{pn}(T) \leq n^2 \).

Proof. The length of the longest path in \(T \) is at most \(2n - 1 \). Hence \(\text{pn}(T) \geq [n^2 / 2n - 1] = n/2 + 1 \). The upper bound is the same as for \(n \) odd. \(\Box \)

The main results are contained in next two theorems.

Theorem 5. For each odd positive integer \(n \) and each odd \(k \), \(n \leq k \leq n^2 \), there exists a balanced bipartite tournament \(T(A, B) \), \(|A| = |B| = n \), such that \(\text{pn}(T) = k \).
Proof. Let $n = 2s + 1$, $s \geq 0$. Denoted by T the bipartite tournament with partition sets $A = \{a_1, \ldots, a_n\}$, $B = \{b_1, \ldots, b_n\}$. The arc set of T is given by

$$a_i \to \{b_i, b_{i+2}, \ldots, b_{i+2s}\}, \quad i = 1, 2, \ldots, n,$$

(2)

where all indices are taken modulo n and all unspecified arcs are understood to be oriented from B to A. We claim that T is consistent and $pn(T) = n$.

Since by (2) $d(a_i) = 1$ and $d(b_i) = -1$, $x(T) = n$. To prove the claim, it is sufficient to decompose $E(T)$ into n edge disjoint paths. Let M_0, M_1, \ldots, M_s be 1-factors from A to B defined by

$$M_i = \{a_1b_{1+2i}, a_2b_{2+2i}, \ldots, a_{2s}b_{2s+2i+2}\}, \quad i = 0, 1, \ldots, s.$$

Similarly let N_1, N_2, \ldots, N_s be 1-factors from B to A defined by

$$N_i = \{b_1a_{1+2i}, b_2a_{2+2i}, \ldots, b_{2s}a_{2s+1+2i}\}, \quad i = 1, 2, \ldots, s.$$

All indices are taken modulo n. It is easy to see that $E(T)$ is a disjoint union of $M_0, M_1, \ldots, M_s, N_1, N_2, \ldots, N_s$.

Consider s subdigraphs $C_{1,s}, C_{2,s-1}, \ldots, C_{s,1}$ of T induced by $M_1 \cup N_s, M_2 \cup N_{s-1}, \ldots, M_s \cup N_1$, respectively. Since $C_{i,s-\ell+1} = a_1 \rightarrow b_{1+2i} \rightarrow a_2 \rightarrow b_{2+2i} \rightarrow \cdots \rightarrow a_{2s} \rightarrow b_{2s+1} \rightarrow b_{2s+2} \rightarrow a_1$, each of them is a Hamiltonian cycle of T. Thus, $M_0 \cup E(C_{1,s}) \cup \cdots \cup E(C_{s,1})$ is a partition of $E(T)$ consisting of an 1-factor and s Hamiltonian cycles.

Removing the arc b_1a_{2s+1} from the cycle $C_{1,s}, b_2a_{2s+2}, \ldots, b_{s}a_{s+2}$ we obtain s Hamiltonian paths $H_1 = C_{1,s} - b_1a_{2s+1}$, $H_2 = C_{2,s-1} - b_2a_{2s}, \ldots, H_s = C_{s,1} - b_{s}a_{s+2}$. The removed arcs and those of M_0 form s edge disjoint 4-paths $P_1 = a_1 \rightarrow b_1 \rightarrow a_{2s+1} \rightarrow b_{2s+1}, P_2 = a_2 \rightarrow b_2 \rightarrow a_{2s+2} \rightarrow b_{2s} \rightarrow P_s = a_s \rightarrow b_s \rightarrow a_{s+2} \rightarrow b_{s+2}$ and trivial $P_{s+1} = a_{s+1} \rightarrow b_{s+1}$. Thus, $E(H_1) \cup \cdots \cup E(H_s) \cup E(P_1) \cup \cdots \cup E(P_{s+1})$ is a decomposition of $E(T)$ into $2s + 1 = n$ edge-disjoint paths implying $pn(T) = n$. Since $x(T) = n$, it implies by (1) $pn(T) = n$. The tournament T is consistent.

We now start reversing, one by one, those arcs of T which are oriented from B to A. By Lemma 1 each reversal results in a consistent tournament with the path number increased by 2. Since the total number of arcs to be reversed is ns, it yields the sequence of consistent tournaments T_1, T_2, \ldots, T_n with path numbers $n+2, n+4, \ldots, n+2ns = n^2$.

The proof is complete. \(\square\)

For a corresponding result for n even the following two simple lemmas are needed. Being almost obvious their proofs are omitted.

Lemma 2. Let a digraph D be the antidirected path $v_1 \rightarrow v_2 \leftarrow v_3 \rightarrow \cdots \rightarrow v_{2n-1} \rightarrow v_{2n}$. Then the following statements hold:

(a) D is consistent and $pn(D) = 2n - 1$;

(b) successively reversing the arcs $v_2 \leftarrow v_3, v_4 \leftarrow v_5, \ldots, v_{2n-2} \leftarrow v_{2n-1}$ yields a sequence of consistent digraphs D_1, D_2, \ldots, D_n with path numbers $2n-3, 2n-5, \ldots, 3, 1$.

Lemma 3. Let a digraph \(D \) be the antidirected path \(v_1 \to v_2 \leftarrow v_3 \to \cdots \to v_{2n} \leftarrow v_{2n+1} \). Then the following statements hold:

(a) \(D \) is consistent and \(\text{pn}(D) = 2n \);

(b) successively reversing the arcs \(v_2 \leftarrow v_3, v_4 \leftarrow v_5, \ldots, v_{2n-2} \leftarrow v_{2n-1} \) yields a sequence of consistent digraphs \(D_1, D_2, \ldots, D_{n-1} \) with path numbers \(2n - 2, 2n - 4, \ldots, 4, 2 \).

Theorem 6. For each even positive integer \(n \) and each even \(k \), \(n/2 + 1 \leq k \leq n^2 \), there exists a balanced bipartite tournament \(T(A, B) \), \(|A| = |B| = n \), such that \(\text{pn}(T) = k \).

Proof. Let \(n = 2s \) and let \(T = T(A, B) \) be the bipartite tournament with partition sets \(A = \{a_1, \ldots, a_n\}, B = \{b_1, \ldots, b_n\} \) whose all arcs are oriented from \(A \) to \(B \). Obviously, \(x(T) = \text{pn}(T) = n^2 \) and \(T \) is consistent.

Denote by \(M_0, M_1, \ldots, M_{n-1} \) 1-factors of \(G \) given by \(M_i = \{a_1 b_{1+i}, a_2 b_{2+i}, \ldots, a_n b_{n+i}\} \). (All indices are taken modulo \(n \).) It is easy to see that \(C_i = M_{2i} \cup M_{2i+1} = a_1 \to b_{1+2i+1} \leftarrow a_2 \to b_{2+2i+1} \leftarrow \cdots \to a_n \to b_{n+2i+1} \to a_1 \) (\(i = 0, 1, \ldots, s-1 \)) \(n \) yields a sequence of consistent digraphs \(D_1, D_2, \ldots, D_{n-1} \) with path numbers \(2n - 2, 2n - 4, \ldots, 4, 2 \). On the other hand, \(E(T_i) \) can be partitioned into \(n^2 - 2 \) paths. These are the 3-path \(a_1 \to b_1 \to a_n b_n \) plus the rest of \(n^2 - 3 \) single arcs all going from \(A \) to \(B \). So, \(\text{pn}(T_i) \leq n^2 - 2 \). By inequality (1) \(T_1 \) is consistent and \(\text{pn}(T) = n^2 - 2 \).

Next, we reverse \(a_{n-1} \to b_n, a_{n-2} \to b_{n-1}, a_2 \to b_3 \), in that order, leaving \(a_1 \to b_2 \) intact. After the \(i \)-th (\(i = 1, 2, \ldots, n \)) reversal the tournament \(T_i \) with \(x(T_i) = n^2 - 2i \) arises. The arcs set of \(T_i \) consists of arcs of the \((2i + 1) \)-path \(a_1 \to b_1 \to a_n \to b_n \to a_{n-1} \to b_{n-1} \to \cdots \to a_{n-i+1} \to b_{n-i+1} \) and \(n^2 - (2i + 1) \) arcs all going from \(A \) to \(B \). It implies \(\text{pn}(T_i) \leq n^2 - 2i \). Since \(x(T_i) = n^2 - 2i \) \(T_i \) is consistent and \(\text{pn}(T_i) = n^2 - 2i \). In particular, \(T_{n-1} \) is consistent with \(\text{pn}(T_{n-1}) = n^2 - 2(n - 1) \).

We next apply the similar reversals on \(C_1, C_2, \ldots, C_{s-1} \) leaving one suitable selected arc of each unchanged. It results in a sequence of \(s(2s - 1) + 1 \) consistent tournaments, \(T, T_1, \ldots, T_{s(2s - 1)} \) with path numbers \(n^2, n^2 - 2, \ldots, n^2 - 2s(2s - 1) = n \), respectively. Thus, all even integers from the interval \([n, n^2]\) are covered. For the rest of even integers, those of \([n/2 + 1, n-2]\), two cases need to be considered.

Notice that \(s \) unchanged arcs, one from each of \(C_0, C_1, \ldots, C_{s-1} \), can be selected so that they form an antidirected \((s + 1)\)-path \(P = a_1 \to b_2 \leftarrow \cdots \).

(a) \(s = 2t \). Then \(P = a_1 \to b_2 \leftarrow a_2 a_{2t-1} \to b_4 \leftarrow a_{2t-3} \to b_6 \leftarrow \cdots \leftarrow a_{s+2} \to b_s \leftarrow a_{s+1} \). Reversing \(t - 1 \) arcs of \(P \), as in Lemma 3, we obtain a sequence of consistent tournaments \(T_{s(2s-1)+1}, T_{s(2s-1)+2}, \ldots, T_{s(2s-1)+(t-1)} \) with path numbers \(n-2, n-4, \ldots, n-2(t-1) = n/2 + 2 \).

(b) \(s = 2t + 1 \). Then \(P = a_1 \to b_2 \leftarrow a_{2t-1} \to b_4 \leftarrow a_{2t-3} \to b_6 \leftarrow \cdots \leftarrow b_{s-1} \leftarrow a_{s+2} \to b_{s+1} \). Reversing now \(t \) arcs of \(P \), as in Lemma 2, we obtain a sequence...
of consistent tournaments $T_s(2s-1)+1, T_s(2s-1)+2, \ldots, T_s(2s-1)+t$ with path numbers $n-2, n-4, \ldots, n-2t=n/2+1$.

This completes the proof. \hfill \Box

References