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The fact that continuous functions in primary summands of the Heisenberg 
manifold must vanish somewhere was proven by L. Auslander and R. Tolimieri, 
who deduced from this theorem the classical results on the vanishing of theta 
functions, as well as important applications to wavelets and radar ambiguity 
functions. The Heisenberg theorem seemed to depend on the presence of a central 
character, but the result is here extended to include primary summand functions on 
all compact nilmanifolds and to three-dimensional compact solvmanifolds which 
are not n-tori. c 1992 Academic Press, Inc 

Let G be a solvable, connected and simply connected Lie group, with Lie 
algebra g and with cocompact discrete subgroup K By a representation n 
of G we shall mean a strongly continuous, unitary representation of G in 
some separable Hilbert space H,; x will be called irreducible if the space 
H, contains no proper closed nontrivial subspace invariant under rr. 

Let M be the space of right cosets rg of r in G, endowed with the 
quotient topology. Then G acts on L’(M) by right translation; i.e., 
gl-*R(g), where [R(g)f](rx)=f(rxg) for feL*(M) (here M has the 
G-invariant probability measure inherited from Haar measure on G). R is 
called the quasiregular representation of G on L2(M). 

It is well known that L2(M) decomposes into the direct sum OH,, 
where the spaces H, are mutually orthogonal R(G)-invariant subspaces, 
and R on the space H, is a finite multiple of the irreducible representation 
7c [GGP, Sect. 1.23. We let (r\G)” denote the set of irreducible represen- 
tations appearing in the quasiregular representation R of G on L’(M). 
(r\s)z will denote the set of those representations n E (T\S) A which are 
infinite dimensional. Then the orthogonal projection P, of L2(M) onto H, 
is L2-continuous and preserves Cm(M) [Aus-Bre, Theorem 51, and is 
given by convolution with a bounded Bore1 measure on. 

Now let N be a nilpotent Lie group, connected and simply connected, 
with Lie algebra n and cocompact discrete subgroup E 
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If the coadjoint orbits of the action of N on the dual n* are linear 
varieties, then T\N possesses the property that the orthogonal projections 
P, of L’(f\N) onto H, preserve continuity [Ril, Brel]. These flat- 
orbit nilmanifolds share this property with compact quotients of the 
3-dimensional solvable group S, by discrete subgroups. Here S, denotes 
the semidirect product R a R2, where R acts on R* via a one-parameter 
subgroup of rotations. 

This paper was motivated by a theorem of L. Auslander and 
R. Tolimieri. Let H, be the 3-dimensional Heisenberg group, R3 endowed 
with the multiplication (x, y, z)(x’, y’, z’) = (x +x’, y + y’, z + z’ + xy’), 
and let r be the discrete group of integer points in H3. Let f be a con- 
tinuous function in H, c L*(r\H,), where x is an irreducible, unitary, 
infinite-dimensional representation in (f \H3) “. Then f must have at least 
one zero on T\H, [Aus-Tol, Theorem 11.21. It is shown in Chapter II of 
[Aus-Toll that the vanishing of theta functions follows as a direct 
corollary of this theorem. In work by L. Auslander, R. Tolimieri, 
I. Daubechies, A. Janssen, D. Gabor, and others, this result has been shown 
to have important consequences for wavelet theory, and applications to 
problems involving the radar ambiguity function (see, for example, 
Paul ). 

The phenomenon of vanishing arises from a rather surprising interaction 
between the representation theory of H, (which determines the primary 
summand H,) and the topology of the manifold T\H,. In this paper, 
we generalize this theorem to all 3-dimensional compact solvmanifolds, 
using techniques of harmonic analysis on solvmanifolds developed by 
L. Auslander, J. Brezin, L. Richardson, and others. 

The proof that all continuous primary summand functions on compact 
nilmanifolds have zeros is an adaptation of Auslander and Tolimieri’s 
original proof, using induction and relying heavily upon the central 
covariance which all such functions possess; this covariance appears to 
be at the heart of the result in the nilpotent case. However, since 
3-dimensional non-nilpotent solvable Lie groups with cocompact discrete 
subgroups have trivial centers [AGH, Chap. 31, completely new techniques 
are needed to show that most 3-dimensional compact solvmanifolds do 
possess the property that their continuous n-primary functions (hereafter 
referred to as primary functions) must vanish, for infinite-dimensional n. A 
noteworthy exception is one compact quotient of S, which is actually 
homeomorphic to the 3-torus T3; here one finds plenty of continuous 
primary functions which do not vanish, as one would expect. However, 
for three of four remaining compact quotients of S,, it is shown that 
continuous primary functions must have zeros. For the fourth compact 
quotient of S,, we have shown that continuous functions in certain sub- 
spaces of a primary summand H, must have zeros. As of this writing, 
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however, it is conjectured but not known that all continuous primary 
summand functions on this manifold must have zeros. 

Let SH be the semidirect product R cc R2, where R acts upon R2 via the 
one-parameter subgroup t I+ [” j,-t] in X,(R), where j. + A-’ = k+ 1 for 
any integer k > 2. It is shown in this paper that for all compact quotients 
of sfj, continuous primary functions must have zeros. This exhausts the 
compact solvmanifolds of dimension three. 

Thus the interplay of topology and representation theory which 
produces zeros of continuous primary functions is seen to be more than a 
nilpotent phenomenon, but the extent of this interaction remains obscure. 
There is the possibility of a generalization of this theorem to a larger class 
of compact solvmanifolds. 

I express my thanks to Leonard Richardson; the contents of this paper 
are my doctoral dissertation, done under his direction at Louisiana State 
University. 

1. PRELIMINARIES 

Let G be a connected, simply connected Lie group with Lie algebra g, 
and let g* be the vector space of linear functionals on g. We define a 
sequence of ideals of the Lie algebra g by g(O)= g, gck’ = [gckP ‘I, g’k-l’]; 
this is called the derived series of g, and g is said to be solvable if gcn’ = 0 
for some n EN. We define another sequence of ideals of the Lie algebra g 
by g(,, = g, g,,, = [gck- i), g]; this is called the lower central series of g, and 
g is said to be nilpotent if g,,, = 0 for some n E N (see [Hum, Sect. 31). The 
term “nilmanifold” (“solvmanifold”) will refer to compact spaces T\G, 
where G is nilpotent (solvable) and r is discrete and cocompact. 

The adjoint representation of the group G in the vector space g, written 
Ad, is defined as follows; for each element XE G, Ad(x): g + g is the 
differential at the identity of G of the group automorphism Z(x), inner 
conjugation by x E G. Ad(x) satisfies 

x(exp X)x-’ =exp[Ad(x)X] (1) 

for each XEG, XEg. 
The coadjoint representation of G is of central importance in the 

representation theory of nilpotent and solvable Lie groups. The set of 
equivalence classes of irreducible representations of a nilpotent Lie group 
G is naturally parametrized by the orbit space g*/Ad* G; this is also true 
for the (completely) solvable Lie groups examined in this work. This 
parametrization, due to A. A. Kirillov, is freely drawn upon here; for 
details, see [CG, Chap. II]. 
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As described in the introduction, there are two j-dimensional, solvable, 
non-nilpotent Lie groups with cocompact discrete subgroups, the groups 
S, and S,. Their Lie algebras are three-dimensional vector spaces spanned 
by the vectors T, X, and Y, where exp ST= (s, 0, 0), exp sX= (0, s, 0) and 
exp s Y = (0, 0, s). 

We have the following live compact quotients of S,, with convenient 
coordinatization (see [AGH, Sect. 2.21). 

1. r,, l\SR, 1 = M,, 1, where S, , = R a R*, R acts on R* via the one- 
parameter subgroup a,(t) = [ “:::,“;A, ::1”,:], and fR,i = {(p, m, n) E S,,,; 
p, m, ncZ}. Here rR,l is isomorphic to the abelian group Z3, and so 
M,,, s T3 [Mos, Theorem A]. 

2. rR,2\SR,2=MR,2, where S,32=R a R*, R acts on R* via the one- 
parameter subgroup c2(t) = [ ‘ti,,‘$ rL$], and fR,* = ((p, m, n) E SR,*; 
p,m,nEZ}. 

3. rR,3\SR.3 = MR,3, where S,,3 = R a R2, R acts on R* via the one- 
parameter subgroup 03(t) with cr3( 1) = [ _ i _ :], 03(t) is isomorphic to the 
subgroup Rot(2zf/3) = [ f:::T$, ::$$I, and r,,, = {(p, m, n) E SR,3; 
p,m,nEZ}. 

4. rR,4\SR,4 = MR,4, where SR,4 = R a R*, R acts on R2 via the one- 
parameter subgroup ad(t) = [ _““s ar’2 s,nnt,2 ,“~~$I~ and G4= {(P, m, n)G& 
P, m nEZ}. 

5. rR,6\SR,6 = MR.6, where SR,6 = R CC R2, R acts on R2 via the one- 
parameter subgroup o,(t) in S&(R) with crJl)= [y -iI, and r,,, = 
{(p,m,n)ESR,6; P, m, nezj. 

We also have the following compact quotients of S,, with convenient 
coordinatizations. 

Suppose k E Z, k 2 2. Define SH.P = R a R*, where R acts on R2 via the 
one-parameter subgroup ok(t) in X,(R) with ck( 1) = [ kl I k]. Then 
S,,zSS,foreachk. Letr,,,={(p,m,n)ESH,k;p,m,nEZ};theneach 
rH,k\SH,k = MH,k is a distinct compact quotient of S,. 

Thus there are 5 distinct, non-homeomorphic compact quotients of S,, 
and infinitely many distinct compact quotients of SH. 

It will be convenient to use several different coordinatizations of S, and 
S,. The coordinatizations of S, just described will be called integral 
coordinatizations of S,, p. Let A E CL,(R) be such that 

Ao,( t) A - 1 = R(2nt/p) = 
cos 2xtlp sin 2nt/p 1 -sin 2nt/p cos 2zt/p ’ 

If we recoordinatize N so that the action of R on N is given by R(27rz/p), 
then rR,., nN=A(Z2) (note that in the case of rR,lr rR,*, and rR,4, 
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A = I). In this coordinatization of SR,p, the nondegenerate coadjoint orbits 
of SR,, are circular cylinders, x2 + JJ~ = A*, for some J E R. For the groups 
s R,3 and SR,6T the 2-torus Nn rR,p\N will be a non-standard torus in 
this coordinatization. We will call these coordinatizations the circular 
coordinatizations of S,, p. 

The coordinatizations of the solvmanifolds SH,k just described will be 
referred to as the integral coordinatizations of SH.k. Let A E CL,(R) be 
such that Aa,(t)A - ’ = [z ,!,I where I + 2-e ’ = k f 1; if we recoordinatize 
N so that the action of R on N is given by this one parameter subgroup, 
then rH k n N = A(Z2); the nondegenerate coadjoint orbits in this case are 
hyperbolic cylinders of the form x,u = 1, i E R. The 2-torus N n rH,k\,N in 
this coordinatization will be a non-standard torus, for all k > 2. This coor- 
dinatization of S,,, will be referred to as the hyperbolic coordinatization. 

For each solvmanifold M,,&(MR,i), the group S,,,(S,,,) is a simply con- 
nected cover of MH,JMR,;) and rH,k(fR,i) is the group of covering trans- 
formations of SH,L(SR,I). Thus we have Z7,(M,,) = r’H.k, n,(M,,i) = fR,;. 
The MH,k and M,,, are bundles over the circle with 2-torus fiber; the 
projection maps are 

PH ’ ’ MH,~ + Z\R 
(2) 

~,,,(t,u,u)++Z+t 

and 
PR. ’ MR>~ -+ Z\R 

&#, u, u)+-+z+ t. 
(3) 

A convenient decomposition of H, into irreducible subspaces will be 
used throughout this paper; however, no canonical decomposition of H, 
into irreducible subspaces exists. The irreducible subspaces of the chosen 
decomposition of H, will be referred to as the constructible irreducible 
subspaces of H,. 

We will now describe those functions on M,,,(M,,,) which are primary 
functions. We will use integral coordinatizations of S,,, and S,,,. 

In the integral coordinatization of SH,k, the coadjoint orbits satisfy 

(k-l)x*+(k-1)xy-Y2=E, (4) 

so that the orbits are saturated in the T*-direction. We will call I an 
integral functional if 11, = a.%‘* + fly*, ~1, p E Z, and denote by C!J the orbit 
of I in s&. 

Fix some nonzero integral functional A E f&. We define the character x j. 
on the (abelian) nilradical n follows: if ;il, = CM* + fly*, then 

xj.(O, r, s) = e2ni(xr+ pJ). (5) 
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We seek a maximal subgroup A4 of S,, such that 

(i) A4 contains N; 
(ii) xi may be extended to a character of A& i.e., xJA4, M] = 1, 

where [M, M] is the commutator subgroup of A4 M will be called a 
maximal subgroup subordinate to 1. We will call this extension 2, the map 
extension of x to M. To this end, it suffices to examine the values of xi on 
terms in [SH,k, SH,k] of the form 

(6 0, OW, x, Y)( - t, 0, ONA -x, -v) = (0, k v) - gk(t)(x, Y)). (6) 

Since uk(t) has eigenvalues A’ and A-‘, where A+1-’ = k+ 1, and since 2 
is nonzero, 

x2(0, (x9 Y) - ck(t)(x, Y)) = ew 2W(x, Y) - a,(t)(x, Y)) 

is 1 for all (x, y) if and only if t = 0. Thus N itself is maximal subordinate 
to 1 for all nonzero A. 

We define the Mackey space M(I) for 1 as 

M(1) = {f: SH,L + C lfis measurable, IfI E L’(N\S,,), 

f(ng)=Xi(n)f(g)nEN, gESH,k). (7) 

It is well known that the action of S,, on M(1) by right translation 
is an irreducible representation R. We note that the functions f in M(A) 
are left r,,, n N-invariant, and define the homogenizing (lift) map L: 
M(A) --* L2(rH,,\S,,) as follows: for f E M(A), 

J5f (rH,k(t> 4 Y)) = c (f-Y)(CX, Y), (8) 
YErH.knN\fH,k 

where (f.y)k)=f(w), for Y, gESKk. 
Note that the sum in (8) is well defined with respect to equivalence 

classes of rH,, n N\,,. For all f E M(1), Lf is a well-defined element of 
L*(r,,,\S,,,), and the map L is S ,,-equivariant, so that the image in 
L’(r,,,\S,,) of M(A) is an irreducible rt-subspace of L2(r,,,\S,,,), and 
therefore a subspace of the n-primary summand H,. 

Those subspaces of H, which are the images of homogenizing maps L 
from Mackey spaces M(1) will be referred to as the constructible 
irreducible subspaces of H,; there are finitely many such subspaces in each 
H,. The maximum number of such mutually orthogonal subspaces will be 
referred to as the multiplicity of rc, mu1 7~. There is one constructible 
irreducible subspace in H, for each distinct r,,,-orbit in the integral func- 
tionals of oZo,, and so mu1 x is given by the number of such orbits. 
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The constructrble irreducible subspaces are not canonically determined 
irreducible subspaces of H, ; nevertheless, the n-primary summand is the 
orthogonal direct sum of these spaces, and so we may represent a typical 
member of the n-primary summand H, as follows. Let (Ai}F2’rn be a set of 
representatives of distinct rH,k- orbits in the integral functionals of UZ, ii an 
integral functional for each i. Let f, E M(A,); L,, the lift map from M(E.,) to 
L2. Then a typical member of H, has the form 

mul x mul n 
F= c L;fi= 1 c (9) 

i= 1 i= I ?~rH.k”N’rH.k 

If Ae M(A,), then f, may be written 

fife x9 Y)=x;,(O, 4 yhi%, (10) 

where s.~ L2(R). Thus, if we choose the elements (n, 0, 0)~ rH,k, n E Z, to 
represent the equivalence classes of rH,k n N\,,,, we have 

Lh(rH,k(z? xY Y))= C [fi(n, O, O)](t, X3 y) 
IlEZ 

= c fa + 4 fJ,(n)(x, y)) 
IfGZ 

=nFz.Ctn+ ‘1 Xi,(OY ak(n)(xT Y)) 

Thus a typical member of H, is of the form 

where all elements o?(n) A, satisfy Eq. (4). 
Suppose we have 1 in*, 1= aX* + flY* for some a, fi E Z. Then 

x).(0, x, y) = exp hi(ax + fly). (13) 

If we. set z, = e2n’x, zz = e2nb, we may write xj,(O, x, y) = e2ni(Zx+p-“)= 
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zyzt, so that FE H, may be thought of as a function of t, zi, z2, i.e., as F, 
where 

mul x 

F(t,zl,z*)= 1 c fi(n+t)zyzp (14) 
i=l nsz 

for at(n = CI,,~X* + /?,,i Y*. Fixing to E R, we may define a cross section 

E,cz 1, G) 2 ~kh ZI 3 z2) (15) 

so that Ft is a function from T2 to C, for zi, z2 of modulus 1. Let the 
integral functionals {Ai>yJii” be a set of r,,,-orbit representatives in n*; we 
define H, to be the image of the lift map 

L: M(ni) + L2(rH,k\sH,k) 

(H, is the ith constructible irreducible subspace of H,, the n-primary 
summand). 

In the integral coordinatization of S,,,, the coadjoint orbits satisfy 

(i) x2+y2=k2 forsomekERifp=1,2,4 (16) 

(ii) x2+xy+y2=k2 forsomekERifp=3,6, (17) 

so that the orbits are saturated in the T*-direction; fix some coadjoint 
orbit 0, c sg,,, and some nonzero integral functional 1 E 0,. 

We define the character xi, on the nilradical N as 

~~(0, r, s) = exp 2ni;l(r, s) = exp 2ni(ur + bs), (18) 

where A = aA’* + /3Y*. We seek a maximal extension of the character Xi, on 
M; we examine the values of Xi. on terms of the form 

(t, 0, O)(O, x, Y)( -t, 0, om -x5 -Y) = (0, (A Y) - a,(t)(x, Y)), 

in the commutator [S, P, S,,]. Since a,(t) has eigenvalues exp + Z&/p, 
and since c,(pZ) E 1, we may extend the character xi. to a character on the 
subgroup 

M,={(n,x,y):n=pkforsomek~Z,x,y~R}. (19) 

Then MP is called maximal subordinate to the functional 1. 
We define the Mackey space M(1) for 1 as 

M(1) = {f: S,,, -+ C If is measurable, IfI E L2(TR,p\SZ,p)r 

f(w)=xrbwk)~~~p~ m%QJ. (20) 
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The action of S,., on M(A) by right translation is an irreducible represen- 
tation rr, independent (up to equivalence) of the choice of A E ox. 

The functions f~ M(A) are left rR,p n M,-invariant. We define the lift 
map L: M(A) + L2(f,,P\SR,P) as follows: for fE M(A), 

Lf(L,,k x5 Y)) = 7ErR,pnMp rR p (f.liN4 x3 Y). c (21) 

Note that the sume (21) is a sum of p terms, and is a left L’,,,-invariant 
function in L2(f R,p\SR,p). L is an S .,,-equivariant map, so that the image 
in L2(f R,p\SR,p) of M(A) is an irreducible rc-subspace of L’(T,,,\S,,,), 
and therefore a subspace of the x-primary summand H, c L2(r,,p\SR,p); 
this subspace will also be referred to as a constructible irreducible subspace 
of H,. The number of such mutually orthogonal subspaces of H, is equal 
to the number of disjoint rR+- orbits in the set of integral functions in 0~. 
H, is the orthogonal direct sum of these subspaces. 

We may represent a typical element of the x-primary summand H, as 
follows. Let (A,}~?iiz be a set of representatives of distinct r,,,-orbits of 
integral functionals in n* n oz. Iffi E M(A,), a typical member of H, has the 
form 

mu1 n muln 

F= 1 Lf,= c c (221 
i= 1 i=l YEMpnrR.p‘rR,p 

If fiE M(Ai), then f, may be written 

(23) 

where Tie L2(pZ\R) (J: is to be thought of as a function on R with period 
p). Thus, if we choose the elements (n, 0,O) E rR,p, n = 0, 1, 2, . . . . p - 1 to 
represent the equivalence classes of Mp n rR, p\rR, p, we have 

p-1 

Lfi(rR,p(f, x~ Y))= C (fi. Cn2 O, o))(t~ x~ Y) 
n=O 

p--l 

= 1 fib+ t, a,(n)(x, Y)) 
?7=0 

p-1 

= n;. (7ib + t) Xi.,(a&Mx? Y))) 

p-1 

= C t7itn + t, Xo;(n)i.,(X, Y)). (24) 
n=O 
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Thus a typical member of H, is of the form 

Recall that all elements of(n)& satisfy Eq. (16) or (17). 
Suppose we have 1 in*, A = CL%‘* + /?Y* for some a, B E Z. Then 

~~(0, x, y) = exp 2rri(crx + By). 

(25) 

(26) 

If we set zi = e2nix, z2 = e2=jy, we may define P and F, as in Eqs. (14) and 
(15) for FE H,. If the integral functionals { Ai} TJy are a set of r,,-orbit 
representatives in n*, we define H,( to be the image of the lift map 
L(M(A,)) + L*(r,,,\S,,,). H,, is the the ith constructible irreducible 
subspace of H,. 

We end this section with a fact, and a lemma. 

1. SH,k(SR,p) in its integral coordinatization has the fundamental 
domain [0, 113; since T3 has the same fundamental domain and since the 
invariant measure of the boundary is zero, the identification of fundamen- 
tal domain produces a Bore1 isomorphism of the measure spaces and an 
isometry between L*( T3) and L*(r,,,\S,,)[L*(T,,\S,,)]. Since each 
character f&(t, x, y) = exp 2k(crx + /Iy + rt), CI, p, y E Z, appears in the 
summand H, for which ctX* + /?Y* E &Jr, we have that the a-primary 
summands H,, together with the constant functions, form a complete set 
of orthonormal subspaces in L’(r,,,\s,,)[L’(r,,\S,,)1. 

2. We define 

P,: L*(L,,\&,,) + Hz, 

to be the orthogonal projection of L2(r,,p\SR,p) onto H,;. We have for 
f E L2(L,*\sR.*h 

P--l 

p~fw~,~(t, X, Y)) = c f(t,d~ bww ~,;(~,~,a x3 Y), (27) 
N=O 

where f(t,-,.)^ is the standard Fourier transform in the variables x 
and y for fixed t (note that for fixed t, PJt, x, y) is a function on 
(Nn r,,.\N) r T*). 

LEMMA 1. Suppose f is continuous on AI,,,. Then P, f = L3 for some 
continuous 3 in M(&). 

Proof: We need to produce a continuous function 3~ M(&) such that 
L3= p,J: 
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(28) 

To see that L,= Pn,f, we must demonstrate 

1. that f~ M(li) and f is continuous in (t, x, y); 

2. that T((t+k), o,(k)(x, Y)) =f(t,.,.)^ (o,*(k)Ji) x,+)~,(x, Y); i.e., 
the kth terms in each sum are identical. By definition, 

f(f + k q,(W(x> Y)) =S(t + k.>.)^ (Ji) xi,k+Nx, Y)). (29) 

Since x~*(,+(x, JJ) = XA,(o,(k)(x, v)), to demonstrate part 2 we need only 
show th& 

.f((t+k),.,.)^ (&)=f(t,.,.)” (a,*(k)&). (30) 

By definition, 

= s f(t+kx, ~)xi.,k Y)~x~Y. (31) 
N n rn, p\N 

Since f is continuous on AI,,, and is therefore left r,,-invariant, we 
have 

I N n f,, P\N 
f(t + k, X, Y) Xi, dx dY 

= i N n r~, p\N f(c a,(-k)(x, Y)) xi.,@, Y) dx dy 

= s N n r~, P\N f(t, x3 Y) X>.,(ap(k)(X, Y)) ldet ap( dx dY 

=f(t, XT Y) Xatctc,Z,(Xy Y) dx dY 

=f(t,*,.)^ (o,*(k)li). 

j’has the desired left-M,-invariance, and is therefore in M(Ai); since f itself 
is continuous in t, f(t, ., .) h (Ai) is continuous in t and therefore f is a 
continuous function in AI( This completes the proof of Lemma 1. 

580jl06.1.12 
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2. ZEROS OF CONTINUOUS FUNCTIONS IN H, OF A COMPACT NILMANIFOLD 

We have the following generalization of a theorem of L. Auslander and 
R. Tolimieri [Aus-Tol, Theorem 11.21. 

THEOREM 2. Let N be a nilpotent Lie group with cocompact discrete 
subgroup r, T\N not isomorphic to T” for any n E N. If f is a continuous 
function in H, s L2(r\N) for BE (T\N)z, then f has at least one zero 
on T\N. 

ProoJ: We proceed by induction on dim N. 
We begin with dim N = 3, where the 3-dimensional Heisenberg group H, 

is the only example of a nilpotent group with quotient manifolds that are 
not isomorphic to T3. Theorem 2 for this case was proved by L. Auslander 
and R. Tolimieri in [Aus-Tol, Theorem 11.21. 

LEMMA 3. Let r’ be a uniform subgroup of H,. Then if r= 
((p, m, n) E H, : p, m, n E Z}, r’ contains a subgroup isomorphic to r, and its 
index in r’ is finite. 

This lemma follows immediately from the results of A. I. Malcev in 
[Mall. 

We are given T\N compact, and the map 

O:L2(T'\N)+L2(T\N) 

defined by @f (TX) = f (r’x) is a well-defined, N-equivariant isometry of 
L2(r’\N) with its image in L2(r\N). 

Suppose R E (T’\N) & and that f is a continuous function in 
H,c L2(r’\N). Then @f is continuous in L2(r\N). Since @ is an 
N-equivariant isometry, @(HZ) is contained in the n-primary summand of 
L'(r\N). By Theorem II.2 in [Aus-Toll, then, @f must have a zero. This 
completes the first step of the induction. 

Suppose that the Lie algebra center z(n) has a nontrivial subspace 
on which 1, is zero, where the character Xj.. induces to rc; then k = 
z(n) n ker A, is a nonzero, rational subspace of n, and if K = exp k, then 
functions in H, are K-invariant. Therefore R is actually a representation of 
a lower dimensional group N= N/K, H, may be imbedded in L'(r\m) 
where F is the image in N of r, and thus continuous functions in H, must 
have zeros by the induction hypothesis. 

Therefore we suppose that z(n) is l-dimensional, and that xn inducing R 
is nontrivial on z(n). 
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Suppose {X,, . . . . X,} is a strong Malcev basis through z(n), such that 
z(n)=RX,, and such that 

r=expZX;expZX,-,...expZX, 

(see [CG, Theorem V.1.61). 

(32) 

Suppose F is a continuous, nonvanishing function in H,. Then 
F(x,, . . . . x,) = exp 2niPx,F(x,, . . . . x,- 1, 0), since 7~ E (T\N) A, p e Z. Con- 
sider the function 

G(x,, . . . . x,) = 
W,, . . . . x,) 
IW,, . . . . x,,)l’ 

This function is continuous and nonvanishing on f \N, and possesses the 
same Z(N)-covariance as F. Let fP be defined as 

r,=expZX,,.expZX,-,.expZX,,. 2...expZX,. (33) 
P 

Since F is left r,,-invariant, so is G, and both are defined on T,\N, note I-, 
is uniform in N, since rz I-,. Let 

p: N -+ Z( N)\N 

be the natural map, and let m, pP be the images of N and f, under ~1. 
Define 

Q: f,\N --f ?;7\& x T 

rp(x, 3 ..., x,) - t&(x,, . . . . xn- ,)r G(x,, . . . . x,)). (34) 

Then Q is continuous on f,,\N since G is; it is l-l since G takes on the 
value 1 exactly once on every fiber over pP\ii? Sz is clearly onto, and since 
G\N is compact, S2 is a homeomorphism of T,\N and pP\flx T (note: 
r,\fi is compact since Z(N) is a rational subgroup). 

However, if r, is a k-step nilpotent group, then rP x Z is a k - l-step 
nilpotent group (recall that rP is not actually abelian). Therefore, since 
these groups are respectively the fundamental groups of T,\N and 
pP,\fix T, we arrive at a contradiction. 

3. HOMOTOPY CLASSES OF FUNCTIONS ON SOLVMANIFOLDS 

In Section 4 we use homotopy classes of functions from solvmanifolds to 
the circle to show that n-primary summand functions which are continuous 
must have zeros. 
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In this section, we demonstrate that functions nonvanishing on the 
solvmanifolds M,, p, p = 2, 3, and M, k for all k> 2, must be null- 
homotopic on 2-torus fibers of the bundle’s M,,, + T and M,,, + T, where 
T is the circle group. (Note: this is also true of the bundles M,, p, p = 4 
and 6, but this fact is not used in Section 4.) 

We consider first the solvmanifolds M,, p, p = 2, 3. 

THEOREM 4. For the manifolds M,, p, p = 2,3, the functions fp : M,, p + T 
defined by f,(r,(t, x, y)) = ezxir are continuous and generate the groups of 
homotopy classes of functions from MR,p to T. 

Proof: We first state a few relevant facts [G-H]. 
Denote by [M, T] the set of homotopy equivalence classes of con- 

tinuous functions from M to T. 

1. For all solvmanifolds under consideration, we have that 
H’(M) = CM, T] via the map 

*: [M, T] + H’(M); 

f-f*(o), 
(35) 

where o is a generating cocycle in H’(T), and f*(o) is the class in H’(M) 
of the cocycle Q which satisfies 

for all 1-simplices y. 

4r) = 4f “7) (36) 

2. For all solvmanifolds under consideration, we have H’(M) z 
Hom(H,(M), Z) via the isomorphism 

a: H’(M) + Hom(H,(M), Z); a(a) = c?‘, (37) 

where for a cycle y E H,(M), d(y) = [a, 71. This follows from the existence 
of the exact sequence 

0 + Ext,(H,- ,(M), Z) + H”(M) -% Hom(H,(M), Z) + 0 

for all n E Z + (Universal Coefficient Theorem). H,(M) is always a projec- 
tive Z-module, and so Ext,(H,JM), Z) is zero. Therefore c1 is an 
isomorphism. 

We begin by demonstrating that for MR,p, p = 2, 3, we have 
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H’(M,, P) r Z, generated by the cocycle A1 for which X,(y r) = 1 (here y , is 
the l-simplex t E [0, 1) --t r,(t, 0,O)). We also define the simplices 

72: 1 E co, 11 + rpco, t, 0) (38) 

y3 : l E co, 11 + r&o, 0, t) (39) 

and note that y,, y2, and yj generate the group n,(M,.,). Furthermore, 
n,(MR, P) is isomorphic to f,. 

Case 1. H,(M,,2)=Z.y,0Z,.y20Z2.y3. 
This follows from the fact that [n 1 (AI,,*), 71, (M,, 2)] is generated by the 

elements yz and y: in ~c,(M~,~). 

Case 2. Hl(M,,3)=Z~yl@Z3.y2. 
Here we use the fact that [x,(M~,~), ~c,(M~,~)] is generated in x,(M~,~) 

by the elements y2yj and y:. 

We now compute H’(M,, P), p = 2, 3, using the fact that H’(M,, P) z 
Hom(Hl(MR,,L Z). 

Case 1. H’(M,,,) E Hom(Z.y,@Z,.y,@Z.y,, Z)=Hom(Z.y,, Z) 
EZ.I,, where 1, is the cocycle in H’(M,,J satisfying x,(7,)= 1, 
M4 = L(Y3) = 0. 

Case 2. H1(M,,)~Hom(Z~y,OZ,.y,,Z)=Hom(Z.yl,Z)~ZZ~.,, 
where A, is the cocycle in M,,3 satisfying J,(y,,= 1, :‘(yz) = x1(y3) = 0. 

Finally, if we suppose that o is any cocycle generating H’(T), then 
CM R,p, T] is generated by any continuous function f on M,, p satis- 
fying ~.,.(u)=A,. Therefore we must have f,(o)(y,) = 1, f*(w)(y*) = 
f*(~)(Y,)=O. 

Since f, in the statement of Theorem 4 satisfies these conditions and is 
continuous on &I,,,, f, generates CM,,,, r] for p = 2, 3. This completes 
the proof of Theorem 4. 

THEOREM 5. For the manifolds MH.kr k = 3, 4, 5, . . . . the functions 
fk: Mm -+ T defined by 

fk(rk(4 x, Y)) = eaniir 

are continuous on MH,k and generate the groups of homotopy classes of 
functions from MH,k to T. 

Proof. Facts 1 and 2 following the statement of Theorem 4 also apply 
here. We begin by demonstrating that for M,,, k 2 3, we have 
H’(M,,,)zZ, generated by the cocycle I, for which x,(y,)= 1 (here y, is 
the l-simplex t E [0, l] H r,(t, 0,O)). 
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Again we define the simplices 

and note that y, , y2, and y3 generate the group nI(MH+). We also have 
7mf”Jc) g rlc. 

Case 1. H,(M,,,) = Z .y,. 
This follows from the fact that [n,(M,,), n,(M,,)] is generated in 

n,(M,,,) by the elements y2 and y2y3, which together generate all terms of 
the form y?yr. 

Case 2. H,(M,,,)=Z.y,OZ,_,.y, for k>3. 
In the case k 2 3, we have [r~i(M~,~), q(M&] generated by y:-’ and 

y3 in ~A&d 
We now compute H’(M,,k) for k > 2. 

Case 1. H’(M,,,) s Hom(H,(M,,), Z) = Hom(Z.y,, Z.A,, Z) % 
Z .A,, where 1, is the cocycle satisfying x,(y,) = 1, x1(y2) = x1(y3) =O. 

Case 2. H’(M,,,) g Hom(H,(MH,k), Z) = Hom(Z .yi @Z,- r .yz, Z) 
for k > 3. However, this is Hom(Z . yr, Z) g Z .A,, where 1, is the cocycle 
satisfying X,(y,) = 1, X,(y2) = X1(y3) = 0. 

If we suppose again that o is a cocycle generating H’(T), then 
T] is generated by any continuous f on MHk, k 2 2, satisfying 

j*$)Q Ar. The rest of the argument proceeds as for Theorem 4. 

4. ZEROS OF CONTINUOUS FUNCTIONS IN H,EL*(M,,~) 

We begin this section by demonstrating that M,,, E T3 possesses 
n-primary functions which are nonvanishing, as one would expect. 

Suppose ;1,~ Pi”* n Co,; then the character Xi,, defined on a maximal 
subgroup M of S R,l gives rise to the Mackey space M(1,). 

Functions in the image of the lift map L: M(l,) + L*(M,,,) are of the 
form f: MR,i -+ C, f(r,(t, x, v)) = y(‘ct) x1,(0, x, y) for some L2 function 7 
with period 1. Clearly f is continuous ifSis. 

Thus we see that the n-primary summand contains the character 

IC/(r,( 1, x, y)) = e2nii.n(x, Y) (40) 

which is continuous and nonvanishing on MR, i . 
We wish to emphasize here that the manifold M,,r g T3 is the only com- 

pact 3-dimensional solvmanifold arising from a non-nilpotent Lie group 
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known to possess continuous, nonvanishing n-primary summand functions. 
We demonstrate in what follows that for M,,,, p = 2, 4, 6, continuous 
functions in the infinite-dimensional n-primary summands must have zeros. 
In the case of M,,,, continuous functions in certain constructible subspaces 
which span the n-primary summands are known to have zeros, but the 
complete answer for M,,, is not known. 

We begin by examining the situation for M,,,. 

THEOREM 6. Suppose f is a continuous function in H, c L*(M,,,), for 
TTCE (r,,,\S,,,)i. Then f has at least one zero on IV,,,. 

Proof: Recall that SR,* = R cc R2, with R acting on R* via the 
l-parameter subgroup o(t)= Rot(d), and that rR,* is the subgroup of 
integer points in SR,*. The coadjoint orbits are therefore circular cylinders 
m s$,*, saturated in the T*-direction. The coadjoint orbit associated with 
7c E (M,,,); is that containing an integral functional ii, = aX* + j?Y* for 
which x1, induces n. 

Let P,, be orthogonal projection of L’(I%~,,~) onto the irreducible sub- 
space H,,i which is the image of the lift map Li from M(A,) to L2(M,,,). 
We note that if f is continuous on IU,,~, then P,,.f is continuous on M,., 
[Ril], and 

Pn,f = i f( t,.,.)^ (a(j)(a, B)) x~(~)(~.~) 
j=O 

(41) 

is equal to Li f’ for some continuous f’ in M(&) (Lemma 1). 
Thus, in order to prove Theorem 6, it suffices to look at sums of func- 

tions of the form Cy!‘,‘“’ Ljf;, for fi continuous in M(&), where M(A,) lifts 
to H,,,. 

Let S= {A: a2+f12= A2, (a, /?) E Z*, (a, /3) # (0, O)}. Order the elements 
of S so that & > A,-, . The proof of Theorem 6 is by induction on the 
elements of S. 

Case 1. A, = 1, mul(n,,)=2. 
This case falls into the category of odd &,, which is treated in the 

induction step. 
For the induction step, we suppose that if f is continuous on M,,,, 

f E H,, for A, < A,, then f must have a zero. 
Case 1. 2: is odd. 
Let { (ai, /Ii)}~J’/“~J b e a complete set of r,-orbit representatives in 

~j.~n 9*; for convenience we may take them to be in the set {(a, 8): 
a, BE Z, a + /I > O}. Note that a + p is odd whenever a2 + f12 = AZ is odd. 

Let P= (~=a~+/?~}. Order P so that pk >pk- r. Note that the p are 
positive. 
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Let Qk = {i: tli + Bi = pk}, k = 1, . . . . m. Note that each Qk has cardinality 
2; this follows from the fact that if cli + /3i = U] + /Ii and a; + /?f = a,? + /I,? 
(orbit condition), then if ai#aj, we must have ai= pi. Thus Qk has 
cardinality 2, one for each of (a, /3) and (8, a). Let {f.: R --* C}y’@+) be 
a set of continuous functions with period 2. 

Then as demonstrated in Section 1, a typical continuous 4 in H,” has the 
form (setting z1 = e2aix, z2 = ezZiY) 

1 fi(f) z4’zp+fi(t + 1) z;a~z;~i 11 . (42) 
ieQk 

Fix t and define dr(z,, z2) = 4(t, z,, z2), so that Q1: Nn T,\Ng T2 + C. 
Suppose 4 is nonvanishing on MR,2. Then 4r: T2 + C is nullhomotopic. 

Consider &,, the restriction of 4, to the closed curve z1 = z2 in T2. Then 6r, 
defined by 

t43) 

is a curve in C\ (0) which has winding number zero. 
Clearly 7, may be viewed as the restriction to T of a meromorphic 

function @,: C + C, 

We claim that @, has a pole of odd order at w = 0. If not, then the coef- 
ficients in @, of negative exponents are zero; but since Qi, contains only 
terms with odd exponents, Qt has no constant term, and thus we would 
have a polynomial Dr with D,(O) = 0. Thus @, would wind at least once on 
the circle T, so 7, would wind, a contradiction. Let y 2 1 be the order of 
the pole at zero. Then we may write 

O,(z)=z-Y{ 1 1 f,(f)]zP*t’+[ c ~(~+l)lz-P’+7) 
{C?k} ieQk icQk 

= zPp(z), (45) 

where p is a polynomial in z with even exponents. 
But then the zeros of p(z) (and so the zeros of @,) occur in pairs of equal 

modulus, so that the number of zeros inside the unit circle is even. Define 
f: [O, 1 ] + T by r(t) = e’““. Then we have 

Ind, @, = N@, - Pet # 0, (46) 
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where N,, and Pa, are, respectively, the number of zeros and poles of @, 
inside r [Ru, Chap. lo]. Thus the winding number of 6, cannot be zero, 
and we arrive at a contradiction. 

Case 2. Az=Ornod 4. 
Note that if a2 + j?’ = ,I; E 0 mod 4, then both a and /I must be even. 
Let ((ai, pi)}:!“=“:‘““) be a set of r,,,-orbit representatives, and let 

(fi: R + C}y:‘/nn) be continuous with period 2. Then a typical 4 E Hz,\ 
may be written 

(47) 

for z1 = e2nix, z2 = e21riY. 

We define 

$Ct9 z15z2)= C fitt) 
zy*zy + fi (t + 1) z ; znJ**; pi*. (48) 

i=l 

Note that since the ai and pi are all divisible by 2, Ic/ has integer 
exponents; therefore, II/ is continuous, I’,,,-invariant, and lives in H,, 
where Ai = A:/4. By the induction hypothesis, $ has a zero. Since 
d( t, zl, z2) = $(t, zi, z:), 4 must also have a zero. 

Case 3. Azr2mod4. 
Let { (ai, pi)}~~~“iJ be a complete set of rR,* -orbit representatives from 

0x2 n A?*, satisfying ai> 0 for each i. Note that a: + j?f = Ai = 2 mod 4 
imblies that ai and fli are both odd for each i. 

Let P=(p=ai for some i}. Order P so that pk>pkPl. Let Qk= 
{i: ai = pk}, and note that each Qk has cardinality 2. Let (fi: R + C}TlyXn) 
be a set of continuous funtions of period 2. Then a typical continuous 4 in 
Hz;,, has the form of Eq. (42). 

Fix t and define #,(z,, z2)=4(t, zl, z,), 4,: NnT,\Nz T* -+C. Suppose 
that 4 is nonvanishing, so that 4, must be nullhomotopic on N n r2\N. 

Define i,(z) = b,(z, l), the restriction of 4, to the curve z2 z 1 in 
N n r2\N. Then we have 

it(‘)= C {[ C .fi(t)]z”+[ 1 fi(t+l)]ZFpk]* 
IQtl icQk ieQk 

Since each ai is odd, each pk is odd; by choice of ai, we have pk > 0 for 
all k. 

From here we proceed, as in Case 1, to demonstrate that 6, must wind 
on the circle T, a contradiction. This completes Case 3 and finishes the 
proof of Theorem 6. 
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In Theorem 7, we show that continuous functions in the n-primary 
summands of L2(M,,4) and L*(M,,J must have zeros. 

THEOREM 7. Let f be a continuous function in H, s L2(M,,i), for i = 4 or 

69 n E (rR,i\S,i)C * Then f has at least one zero on M,,i. 

Proof Define the groups 

Then r& and r; are subgroups of r,,, and rR,6, respectively, of finite 
index; thus r; is cocompact in SR,i for each i, and it is straightforward to 
verify that r; r rR,*, i = 4, 6. 

We prove Theorem 7 for M,,,; the proof for M,,, is analogous in every 
respect. 

Since r: z r,,, and is cocompact in S,,, , we have lI,(r&\S,,) 2 r,,, . 
Therefore we have r&\S,, g M,,* [Mos, Theorem A]. 

Functions which are TR,4-p eriodic are r;-periodic, so L2(M,,4) embeds 
isometrically in L*(M,,J. Furthermore this embedding is S,,-equivariant 
with respect to the quasi-regular representation, and so takes x-spaces to 
n-spaces. 

Let @ be the isometric embedding of L*(M,,,) in L2(M,,*). Then if 
f is a continuous function in H, c L*(M,,,), @f is continuous in 
H, E L2(MR *) and so must have a zero. However, if @f((r,,(t, x, y)) = 0, 
then since f’is r,-invariant, f(rR,4(t, x, y)) =O; thus f must have a zero. 
This completes the proof of Theorem 7. 

We finish this section with a theorem summarizing what is known for 
M R.3. 

THEOREM 8. Let f be a continuous element of a constructible, irreducible 
subspace of a n-primary summand H, c L’(MR.3). Then f has at least one 
zero on MR.3. 

Proof: Suppose iz, E 5?* n S’, an integral functional in sXt3 ; then 
the character x1, defined on a maximal subgroup M of SR,3 gives rise 
to the Mackey space, M(I,). The constructible irreducible subspace 
corresponding to 1, = (a, #I) is the image of the lift map L: M(&) + 
L*( M,, 3), an SR, ,-invariant isometry. 
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A typical continuous element of this constructible irreducible subspace of 
H, has the form 

=f(t) z;z$+f(t + 1) z~z;(a+~)+f(t +2) z;(=+~)z; (49) 

for z1 = eznix, z2 = ezaiy, and f: R + C a continuous function of period 3. 
Suppose? is nonvanishing on M,, 3. Then f must be nullhomotopic when 

restricted to T*-fibers of the bundle M,,3 + T. 
We examine the functions 3 on a case-by-case basis. 

Case 1. ccrb=lmod3, or a=/?-2mod3. 
We define I$~(z) = f(t, z, 1) for fixed t E R; 4, must have winding number 

zero on T, since f(t, zl, z2) is nullhomotopic on T* for fixed t. We have 

f$,(z)=f(t)Z~+f(t+l)Z~+f(t+2)2~~~+~). (50) 

Clearly one of a, p, and -(a + p) must be negative. If we view $, as the 
restriction to the set T= { Iz( = 1, z E C} of the meromorphic function 

@,(w)=f(t)d+f(t+ l)o~+f(t+2)w-‘“+~’ (51) 

we see that @, has a pole at o = 0. 
Let y be the order of the pole at zero. Then we may write 

@j,(o)=o-‘{f(t)w”+’ .f(t+ l)~+Y+f(f+2)++~)+7} 

=w-y(o), (52) 

where p(o) is a polynomial. Note that the exponents of p(o) must all be 
divisible by 3. Since a + fl= 1 or 2 mod 3, we must have y z 1 or 2 mod 3, 
so that a+yrj+ys -(a+/?)+yEOmod3. Thus the zeros ofp(o) are 
grouped as triples of equal modulus; in particular, the number of zeros of 
p(o) (and hence of Dt(w)) inside T is a multiple of 3. However, the pole 
of 0, at o = 0 is not a multiple of 3, and therefore, referring to (46), we see 
that @, must wind on the curve T, and therefore that 4, cannot be 
nullhomotopic, a contradiction. 

Case 2. aElmod3, flz2mod3. 
We define $,(z)=f((t, z, z-‘)=f(t)z”-‘?+f(t+ l)~*~+‘+f(t+2)~-(~~+~) 

as in Case 1 and note that 4, is f restricted to the curve z2 = z;” in the 
T*-fiber over r,( t, 0,O). 

Clearly one of a-p, 28 + a, and -(2a + p) must he negative, since 
(a - 8) + (28 + a) = 2a + /I. All are congruent to 2 mod 3, so none can be 
zero. If we view 4, as the restriction to T of the meromorphic function 
@,(w)=f(t)c~Y~+f(t+ 1)0*~+‘+f(t+2)0-(*~~~), we see that @,, has a 
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pole at zero. Let y be the order of the pole at zero; then --y E 2 mod 3, and 
we may write 

~,(u)=u-Y{f(t)ua-B+Y+f(t+ l)W28+a+y+f(t+2)0-(*b+8)+Y) 

= 0 -Yp(o), (53) 

where p(w) is a polynomial. Note that since -y z 2 mod 3, and since all of 
a - p, 28 + a, and -(2a + b) are congruent to 2 as well, the function p(w) 
contains only terms with exponents divisible by 3, and so the number of 
zeros inside T is a multiple of 3. Since y is not a multiple of 3, we have 
Ind, 0, # 0, and again we arrive at a contradiction. 

Case 3. aE2mod3, flElmod3. 
Proceeding as before, we define dr(z) =J((t, z, z-i) =~(z).z~-~+ 

f(t+ l)Z*~+a+f(t+2)z-(*“+fi), and note that 4, is f restricted to the 
curve z2 = z;’ in the T*-fiber over r3(f, 0,O). 

Again, one of a - /?, 2/.? + a, and -(2a + /3) must be negative, and all are 
congruent to 1 mod 3, so that none is zero. If we view 4, as the restriction 
to T of the meromorphic function 

@,(w)=f(t)o”-B+f(t+ l)W*p+a+f(t+2)w-(*a+8) 

we see that @, has a pole at zero. Let y be the order of the pole at zero; 
then --y E 1 mod 3, and we may write 

O,(u) = u-Y{f(t)c!l-fi+~+f(t+ l)W@+a+Y +f(t +2)cF@‘x+~)+Y} 

= w -Yp(o), 

where p(o) is a polynomial. Note that since -y E 1 mod 3, and since all of 
a-j?, 28 + a, and -(2a + /?) are as well, the function p(o) contains only 
terms with exponents divisible by 3. The number of zeros inside T is there- 
fore a multiple of 3. Since y is not a multiple of 3, we have Ind, @, # 0, and 
we arrive at a contradiction. 

Case 4. a=Omod3, fislmod3 or aE2mod3, @=Omod3. 
If (a, /3) is such that a 3 0 mod 3 and p E 1 mod 3, then the r,-orbit 

containing (a, B) also contains the point (/?, -(a + B)), which is of the type 
dealt with in Case 2. Since the function 7 is independent of the base point 
chosen from the r,-orbit, f must have a zero. Similarly, if (a, fi) is of the 
type a = 2 mod 3, j? z 0 mod 3, then the point (-(a f /?), a) is of the type 
dealt with in Case 2. 

Case 5. aeOmod3, Bz2mod3; or aslmod3, pGOmod3. 
If (a, /3) is such that a E 0 mod 3, /3 E 2 mod 3, then (8, -(a, j3)) is in the 

same J-,-orbit as (a, fl) and is of the type dealt with in Case 3. If (a, j3) is 
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of the type ~1 E 1 mod 3, p = 0 mod 3, then the point ( -(a, P), a) is of the 
type dealt with in Case 3. 

Case 6. ct s /?zO mod 3. 
We have u = 3ka’ and fl = 3kb’ for some k # 0 and some pair (a’, fl’), not 

both congruent to 0 mod 3. We may therefore define 

which is clearly the lift of a function in the Mackey space iV(Aa) for 
A:, = (IX’, 8’); since not both ~1’ and fi’ are congruent to 0 mod 3, g must 
have a zero, since one of Cases l-5 applies. Since g has a zero, and since 
we have g( t, z:~, ~~~)=f(f,z,,z~),fmust have a zero on MR,3. 

This completes the proof of Theorem 8. 

5. ZEROS OF CONTINUOUS FUNCTIONS IN H,GL*(M,,~) 

In this section, we demonstrate that functions in a uniformly dense sub- 
space K, of continuous functions in Hz = C(M,k) n H, IruSt have zeros 
On M,k, for all hyperbolic solvmanifolds M,,,. It then follows easily that 
all continuous functions on H, must have zeros. 

If (A,,} y:n=u:(n) is a complete set of r,,,-orbit representatives from 
c?,nL?*, then the set (Li: M(&) +L2(MH,k)}~~n_u:(o) is a complete set of 
lift maps into the constructible irreducible subspaces of H,. Let 7’;: 
L*(R) + M(A,) be the isometry intertwining the Schrodinger model of 7c 
on L*(R) and the induced model on M(&); i.e., TJ=x wheref(t, x, y) = 
xi.& Y) f(t). 

Then L( = L,o T, lifts L*(R) into the ith constructible irreducible sub- 
space of H,. We define 

K,=L’,(C,“(R))O ... OL;,,,,,(C,“(R))cH,“. 

LEMMA 9. K, is uniformly dense in Hz. 

Proof: We first demonstrate that K, is uniformly dense in H ,” = 
c?M,,) n Hz. 

If S,(R) are the smooth vectors for the Schrodinger model of rc on 
L*(R), then we have 

UC,“(R)) 2 G(S,(R)) 

in the sup-norm on M,,, [Brel, Lemma 51. 

(54) 
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We have also that @iH,“i=H;, since &(S,(R)) = Hzi by preserva- 
tion of smooth vectors under’ intertwining maps. 

We have also that @ i H,,g’, = H,” , since orthogonal projection onto 
SH,k-invariant subspaces preserves inlinite differentiability [Aus-Bre, 
Sect. 23. Therefore if 4 E Z-Z:, we may uniformly approximate P,,,(d) 
in each subspace by elements of &(Cz(R)). Thus, K, is uniformly dense 
in H,“. 

We finish the proof of Lemma 9 by demonstrating that H,” is uniformly 
dense in Hz. 

Let F be a fundamental domain for I’,\S,, containing the identity; 
define a C” approximate identity {E,,} ,“= 1 so that 

1. O<s,ccc for each neZ+. 

2. Support E, is contained in the interior of F for each no Z+. We 
define, for 4 E HE, 

4 * s,,(t, x, y) = lFLSHk i((t, x, r)(t’, x’, Y’)-‘1 ~,(t’, x’, Y’) dt’ dx’ h’. (55) 

Then#*e,is C” for each n E N, since E, is Coo and SH+ is unimodular, 
and in fact 4 * E, E H,” since Q * E, is the uniform limit of linear 
combinations of right translates of 4. 

We now claim that 4 * E, converges uniformly to 4 on M,,. We have 

x E,( t’, x’, y’) dr’ dx’ dy’. (56) 

Choose N so that for n 2 N, we have IQ((t, X, r)(t’, x’, y’)-I)- 
&t, x, y)I < E for all (t, x, y) E F and all (t’, x’, y’) E support( Then 
114 * E, - 411 o. < J E . E,( t’, x’, y’) dt’ dx’ dy’ = E, which completes the proof of 
uniform convergence. 

Thus we have H,” 5 Hz uniformly dense in HE, completing the proof 
of Lemma 9. 

Recall that S,, = R a R2, with R acting on R2 via the l-parameter 
subgroup crk : R + SL,(R) satisfying rrk( 1) = [ kl 1 k]. The one-parameter 
subgroup crk is conjugate to a(t)= [$ j,‘?,], where 1+1-l =k+ 1, IER. 
The coadjoint orbits in s& are therefore hyperbolic cylinders, saturated in 
the T*-direction, and satisfying the equation 

(k-l)x2+(k-l)xy-y2=0J (57) 

for some o E R. Note that two coadjoint orbits satisfy (57) for each value 
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of o, each being a connected component of the set in s:,~ satisfying (57). 
The coadjoint orbit associated with R E (TH,k\S,,k)i is that containing an 
integral functional A, = aX* + /3Y* for which xi, induces rt. 

THEOREM 10. Suppose f is a continuous function in H, E L2(M,,k), for 
n c (~ff,!f\sH,,);~ Then f has at least one zero on M,,,. 

Proof. We begin by proving Theorem 10 for functions f E K, E H,. We 
have K, = L’,(C,“(R))@ ... @L&,,(C,“(R)), so that a typical element of 
K, has the form 

muln 

4(rk(4 x3 Y)) = C C fiCt + n) exp 274ad + B,,iYh 
i=l nsZ 

(58) 

where {(Q,;, fi,,i)}yZ’l=u:(n) is a set of distinct r,-orbit representatives in 
&nn*, (or,;, Pn,i)=ak(n)(ao,;, &), and where for each i= 1, . . . . mui( 
and for fixed t, the sum over n in (58) is finite. Suppose 4 is nonvanishing 
on MH,k. By setting z1 = e2=jx, z2 = e2niy, we may define 

mul n 

it4 zl, z2) = Q)(rAf, x, Y)) = 1 C .fAt + n) zf+‘. (59) 
i=l nez 

For any fixed t, we must have 6 nullthomotopic on N n r, g T*\N by 
Theorem 5. 

We note at this point that if (a, /I) satisfies (k- l)cr2+(k-- 1) a/?-fl’= o 
for w > 0, then either all points in Oc’ca,s, satisfy u > 0, or they all satisfy 
M < 0. If not, then since Uca,8, is connected, O,,,,, must intersect the y-axis, 
so that o! = 0 and -p’= w, a contradiction. Similarly, if 0(ol,gI satisfies 
(k - 1)a2 + (k- 1) c$-/~~=o for o ~0, then either all points in Oca,ar 
satisfy /3 > 0, or they all satisfy #I < 0. 

Suppose 8cE,B) satisfies (k - 1)a2 + (k - 1) ~$3 - p’ = 0 for w 10. 

Case 1. Suppose all (4 8) E @c’ca,s, satisfy cc > 0. Then we have 
muln 

&t,zl,z2)= 1 1 fi(t+n)zy’zF’, 
i=l ncZ 

where cl,,; > 0 for all n, i. Fixing t, we have 
mu1 k 

fjr(z)=$(t,z, l)= C 1 L(t+n)z*n,’ 
i=l nrz 

(60) 

a curve of winding number zero on the circle T. The sum in (60) is always 
finite. 

We may consider 4, to be the restriction of a polynomial @, on C to T, 
i.e., @~(o)=~~~~ C,,zfi(t +n)oY+. Since a,,i is never zero, Qi, has no 
constant term and so has a zero at w = 0. Since @, has no pole inside T, 
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we see, referring to (2.20) that Qt and hence 4, cannot have winding 
number zero on T. Therefore 4 cannot be nullhomotopic on Nn f',\N for 
fixed t, and so 4 cannot be nonvanishing. 

Case 2. Suppose all (a, j?)~ Ocol,s, satisfy a < 0. Then set i,(z) = 
$( t, z - ‘, 1) for fixed t and proceed as in Case 1. 

Case 3. Let Oca,P, satisfy (k- l)a’+(k- l)a/.?-P’=w for o<O. 
Suppose all (6 B) E flcoI.8, satisfy /? > 0. Then set 4,(z) = &t, 1, z) for fixed t 
and proceed as in Case 1. 

Case 4. Suppose all (a, B)E I?I~~,~, satisfy B > 0. Then set 4,(z) = 
&t, 1, z-l ) and proceed as in Case 1. 

Thus we have proof that all f~ K, have zeros, and so we have shown 
that all functions in a uniformly dense subspace of HO, have zeros. 
Therefore all functions in II: must have zeros. 
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