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The fact that continuous functions in primary summands of the Heisenberg
manifold must vanish somewhere was proven by L. Auslander and R. Tolimieri,
who deduced from this theorem the classical results on the vanishing of theta
functions, as well as important applications to wavelets and radar ambiguity
functions. The Heisenberg theorem seemed to depend on the presence of a central
character, but the result is here extended to include primary summand functions on
all compact nilmanifolds and to three-dimensional compact solvmanifolds which
are not n-tori. € 1992 Academic Press, Inc.

Let G be a solvable, connected and simply connected Lie group, with Lie
algebra g and with cocompact discrete subgroup 7. By a representation =
of G we shall mean a strongly continuous, unitary representation of G in
some separable Hilbert space H,; = will be called irreducible if the space
H, contains no proper closed nontrivial subspace invariant under =.

Let M be the space of right cosets I'g of I' in G, endowed with the
quotient topology. Then G acts on L?*(M) by right translation; i.e.,
g~ R(g), where [R(g)f](I'x)=f(I'xg) for fe L*(M) (here M has the
G-invariant probability measure inherited from Haar measure on G). R is
called the quasiregular representation of G on L*(M).

It is well known that L?(M) decomposes into the direct sum @ H,,
where the spaces H, are mutually orthogonal R(G)-invariant subspaces,
and R on the space H, is a finite multiple of the irreducible representation
n [GGP, Sect. 1.2]. We let (I'\G)" denote the set of irreducible represen-
tations appearing in the quasiregular representation R of G on L*(M).
(I'\S) 2 will denote the set of those representations n e (I'\S)"~ which are
infinite dimensional. Then the orthogonal projection P, of L*(M) onto H,,
is L>-continuous and preserves C*(M) [Aus-Bre, Theorem 5], and is
given by convolution with a bounded Borel measure o ,.

Now let N be a nilpotent Lie group, connected and simply connected,
with Lie algebra n and cocompact discrete subgroup I
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If the coadjoint orbits of the action of N on the dual n* are linear
varieties, then I\ N possesses the property that the orthogonal projections
P, of L*(I'\N) onto H, preserve continuity [Ril, Brel]. These flat-
orbit nilmanifolds share this property with compact quotients of the
3-dimensional solvable group S, by discrete subgroups. Here S, denotes
the semidirect product R oc R?, where R acts on R? via a one-parameter
subgroup of rotations.

This paper was motivated by a theorem of L. Auslander and
R. Tolimieri. Let H, be the 3-dimensional Heisenberg group, R endowed
with the multiplication (x, y,z)(x', y, 2’} =(x+x', y+y,z+2z' +xy'),
and let I” be the discrete group of integer points in H,. Let f be a con-
tinuous function in H,c L*(I'\H,), where n is an irreducible, unitary,
infinite-dimensional representation in (/'\H,)". Then f must have at least
one zero on I"\H; [Aus-Tol, Theorem II.2]. It is shown in Chapter II of
[Aus-Tol] that the vanishing of theta functions follows as a direct
corollary of this theorem. In work by L. Auslander, R. Tolimieri,
I. Daubechies, A. Janssen, D. Gabor, and others, this result has been shown
to have important consequences for wavelet theory, and applications to
problems involving the radar ambiguity function (see, for example,
[Daul).

The phenomenon of vanishing arises from a rather surprising interaction
between the representation theory of H; (which determines the primary
summand H,) and the topology of the manifold I'\H,. In this paper,
we generalize this theorem to all 3-dimensional compact solvmanifolds,
using techniques of harmonic analysis on solvmanifolds developed by
L. Auslander, J. Brezin, L. Richardson, and others.

The proof that all continuous primary summand functions on compact
nilmanifolds have zeros is an adaptation of Auslander and Tolimieri’s
original proof, using induction and relying heavily upon the central
covariance which all such functions possess; this covariance appears to
be at the heart of the result in the nilpotent case. However, since
3-dimensional non-nilpotent solvable Lie groups with cocompact discrete
subgroups have trivial centers [AGH, Chap. 3], completely new techniques
are needed to show that most 3-dimensional compact solvmanifolds do
possess the property that their continuous z-primary functions (hereafter
referred to as primary functions) must vanish, for infinite-dimensional n. A
noteworthy exception is one compact quotient of S; which is actually
homeomorphic to the 3-torus T3; here one finds plenty of continuous
primary functions which do not vanish, as one would expect. However,
for three of four remaining compact quotients of S, it is shown that
continuous primary functions must have zeros. For the fourth compact
quotient of Sz, we have shown that continuous functions in certain sub-
spaces of a primary summand H, must have zeros. As of this writing,
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however, it is conjectured but not known that all continuous primary
summand functions on this manifold must have zeros.

Let S, be the semidirect product R oc R2, where R acts upon R? via the
one-parameter subgroup ¢+ [* ,_] in SL,(R), where A+ A" '=k+1 for
any integer k> 2. It is shown in this paper that for all compact quotients
of Sy, continuous primary functions must have zeros. This exhausts the
compact solvmanifolds of dimension three.

Thus the interplay of topology and representation theory which
produces zeros of continuous primary functions is seen to be more than a
nilpotent phenomenon, but the extent of this interaction remains obscure.
There is the possibility of a generalization of this theorem to a larger class
of compact solvmanifolds.

T express my thanks to Leonard Richardson; the contents of this paper
are my doctoral dissertation, done under his direction at Louisiana State
University.

1. PRELIMINARIES

Let G be a connected, simply connected Lie group with Lie algebra g,
and let g* be the vector space of linear functionals on g. We define a
sequence of ideals of the Lie algebra g by g =g, g =[g* ", g% "7];
this is called the derived series of g, and g is said to be solvable if g*' =0
for some ne N. We define another sequence of ideals of the Lie algebra g
by 80,=8, 8= [8«- 1) &]; this is called the lower central series of g, and
g is said to be nilpotent if g, =0 for some ne N (see [Hum, Sect. 3]). The
term “nilmanifold” (“solvmanifold”) will refer to compact spaces I'\G,
where G is nilpotent (solvable) and I is discrete and cocompact.

The adjoint representation of the group G in the vector space g, written
Ad, is defined as follows; for each element xe G, Ad(x): g—g is the
differential at the identity of G of the group automorphism /(x), inner
conjugation by x e G. Ad(x) satisfies

x(exp X)x ' =exp[Ad(x)X] (1)

for each xe G, Xeg.

The coadjoint representation of G is of central importance in the
representation theory of nilpotent and solvable Lie groups. The set of
equivalence classes of irreducible representations of a nilpotent Lie group
G is naturally parametrized by the orbit space g*/Ad* G; this is also true
for the (completely) solvable Lie groups examined in this work. This
parametrization, due to A.A. Kirillov, is freely drawn upon here; for
details, see [CG, Chap.111].
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As described in the introduction, there are two 3-dimensional, solvable,
non-nilpotent Lie groups with cocompact discrete subgroups, the groups
Sy and Sy. Their Lie algebras are three-dimensional vector spaces spanned
by the vectors T, X, and Y, where exp sT=(s,0,0), exp sX = (0, 5, 0) and
exp sY=(0, 0, s).

We have the following five compact quotients of S, with convenient
coordinatization (see [AGH, Sect. 2.27).

1. I'g \Sg1=Mp,, where S, =R oc R% R acts on R? via the one-
parameter subgroup o¢,(¢)=[ %2 27 and I'g,={(p,m n)eSp,;

p, m, neZ}. Here Iy, is isomorphic to the abelian group Z°, and so
Mg = T> [Mos, Theorem A].

2. g \Sg2=Mpg,, where Sz, =R oc R? R acts on R? via the one-
parameter subgroup o,(¢)=[ %", ™7 and I'g,={(p,m n)eSg,;
p.mnel}.

3. I'g3\Sg3=Mpg;, where Sg ;=R oc R? R acts on R? via the one-
parameter subgroup ¢5(¢) with a5(1) = [_1 _17, 63(2) is isomorphic to the
subgroup Rot(2mi/3)=[ 3250 sniw], and Igsy={(p,m,n)eSgs;
p,mnel}.

4. T \Sgs=Mp,, where Sz ;=R oc R% R acts on R? via the one-
parameter subgroup a,(1)=[ %% 5721, and Iy = {(p,m, n)e Sxa:
p.m nel}.

5. I'r6\Sre=Mpgs, where Sgs=R oc R% R acts on R? via the one-
parameter subgroup o4(¢) in SL,(R) with a4(1)=[% ~}], and I'p¢=
{(p,m,n)eSge; p, m, neL}.

We also have the following compact quotients of S, with convenient
coordinatizations.

Suppose ke Z, k > 2. Define Sy . =R oc R? where R acts on R? via the
one-parameter subgroup a,(z) in SL,(R) with o,(1)=[,', ;] Then
Sux>Sy for each k. Let I'y = {(p,m,n)€Sy,; p, m, ne Z}; then each
I'y \Sui=My, is a distinct compact quotient of S.

Thus there are 5 distinct, non-homeomorphic compact quotients of Sg,
and infinitely many distinct compact quotients of 5.

It will be convenient to use several different coordinatizations of S, and
S,. The coordinatizations of S just described will be called integral
coordinatizations of Sy ,. Let A€ GL,(R) be such that

Ao (1) A~' = RQ2nt/p) = [ cos 2mt/p sin 2nt/p].

—sin 2nt/p cos 2ut/p

If we recoordinatize N so that the action of R on N is given by R(2nt/p),
then I'y ,n N=A(Z?) (note that in the case of I'g,, I'z,, and I'gy,
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A=1). In this coordinatization of Sy ,, the nondegenerate coadjoint orbits
of Sy , are circular cylinders, x>+ y*= 4%, for some A€ R. For the groups
Sr and Sgs, the 2-torus NN Tz \N will be a non-standard torus in
this coordinatization. We will call these coordinatizations the circular
coordinatizations of Sg ,.

The coordinatizations of the solvmanifolds S, , just described will be
referred to as the integral coordinatizations of S, .. Let A€ GL,(R) be
such that Ae,(1)4~'=[%4 2] where 2+ 4 '=k+1; if we recoordinatize
N so that the action of R on N is given by this one parameter subgroup,
then Iy , N N = A(Z?); the nondegenerate coadjoint orbits in this case are
hyperbolic cylinders of the form xy =4, AeR. The 2-torus Nn Iy \N in
this coordinatization will be a non-standard torus, for all £ > 2. This coor-
dinatization of S, will be referred to as the hyperbolic coordinatization.

For each solvmanifold M, (M), the group Sy, (S ) is a simply con-
nected cover of M, (Mg ,;) and Iy, (I'g ) is the group of covering trans-
formations of S, ,(Sg,). Thus we have II,(M, )=y, IIi(Mg,)=1p,.
The M, , and M., are bundles over the circle with 2-torus fiber; the
projection maps are

Byt My~ Z\R

(2)
Iy (tuv)y—Z+1t

and
pr:Mpg ,—Z\R

(3)
FR,p(t, u, U)HZ+I

A convenient decomposition of H, into irreducible subspaces will be
used throughout this paper; however, no canonical decomposition of H,
into irreducible subspaces exists. The irreducible subspaces of the chosen
decomposition of H, will be referred to as the constructible irreducible
subspaces of H,.

We will now describe those functions on M (M ,) which are primary
functions. We will use integral coordinatizations of S , and Sy, .

In the integral coordinatization of S, ,, the coadjoint orbits satisfy

k—=1)x*+(k—1)xy—y’=4 {4)

so that the orbits are saturated in the T *-direction. We will call A an
integral functional if A|,=aX™* + fY*, a, f€Z, and denote by O, the orbit
of 2in s¥,.

Fix some nonzero integral functional 4e (,. We define the character y,
on the (abelian) nilradical n follows: if 4|, =aX* + fY*, then

1:(0, r, 5) = e¥riter + £, 5
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We seek a maximal subgroup M of S, such that
(i) M contains N;

(i) x, may be extended to a character of M, ie., y,[M, M]=1,
where [M, M] is the commutator subgroup of M. M will be called a
maximal subgroup subordinate to 4. We will call this extension 7, the map
extension of y to M. To this end, it suffices to examine the values of y, on
terms in [ Sy, Sy, ] of the form

(1,0, 0)(0, x, y)(—=1,0,0)(0, —x, —p)=(0, (x, y) — o, (1)(x, ). (6)

Since o,(t) has eigenvalues A’ and A/, where A+ A !'=k +1, and since 1
is nonzero,

2200, (x, y) = a4 (1)(x, y)) = exp 2mid((x, y) — 0,(2)(x, »))

is 1 for all (x, y) if and only if #=0. Thus N itself is maximal subordinate
to 4 for all nonzero A.
We define the Mackey space M (/) for 4 as

M(A)={f: Sy — C|fis measurable, |f|e L*(N\Sy ),
fng)=y;(n) f(g)neN, g€ Sy} (7)

It is well known that the action of S, on M(A) by right translation
is an irreducible representation . We note that the functions f in M(A)
are left Iy, n N-invariant, and define the homogenizing (lift) map L:
M(4) - LTy \Sy..) as follows: for fe M(4),

Lf(Iy (1, x, y)) = ) (f- )t x, p), (8)

Y€l N\Tyk

where (f-7)(g)=/f(yg), for y, g€ Sy .
Note that the sum in (8) is well defined with respect to equivalence

classes of Iy, "N\, For all fe M(4), Lf is a well-defined element of
LA (I'y :\Sp.), and the map L is Sy ,-equivariant, so that the image in
LY(Iy  \Sy.) of M(1) is an irreducible n-subspace of L*(I"; ,\Sy «), and
therefore a subspace of the n-primary summand H.,,.

Those subspaces of H, which are the images of homogenizing maps L
from Mackey spaces M(A) will be referred to as the constructible
irreducible subspaces of H,; there are finitely many such subspaces in each
H,. The maximum number of such mutually orthogonal subspaces will be
referred to as the multiplicity of n, mul n. There is one constructible
irreducible subspace in H, for each distinct Iy, ,-orbit in the integral func-
tionals of ¢,, and so mul n is given by the number of such orbits.
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The constructible irreducible subspaces are not canonically determined
irreducible subspaces of H,; nevertheless, the n-primary summand is the
orthogonal direct sum of these spaces, and so we may represent a typical
member of the n-primary summand H, as follows. Let {4,}™"" be a set of

i=1
representatives of distinct 1"y (-orbits in the integral functionals of ¢,, 4; an
integral functional for each i. Let f,e M(4,); L,, the lift map from M(4,) to
L?. Then a typical member of H, has the form

F=Y L= { T U )

i=1 velygirn N Ty
If f;e M(4,), then f, may be written

filt, x, ¥) =100, x, y) Ji(1), (10)

where f;e€ L*(R). Thus, if we choose the elements (n,0,0)e I" His NEZ, O
represent the equivalence classes of ', A N\ ;; ., we have

Lf;(rH,k(t, X, y))= Z [f;‘(n, 0’ 0)](t3 X, }’)

nelZ

=3 fi(n,0,0)-( x, y))

nel

=Y filn+1t,0,(n)x, y))

nel

=Y Filn+1) 1,0, aln)(x, y))

neZ

=n§Z7f("‘+‘1) Xa;(n)).,(oa X, y) (11)

Thus a typical member of H, is of the form

mul n
Y X i) Horion s (0, %, ), (12)

i=1 neZ

where all elements o }(n)4, satisfy Eq. (4).
Suppose we have Aen*, 1=oX*+ BY* for some o, fcZ. Then

x:(0, x, ¥) = exp 2mi(ox + By). (13)

If we set z, =€, z,=e>, we may write y,(0,x, p)=e™x+5) =
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2328, so that Fe H, may be thought of as a function of ¢, z,, z,, i€, as F,
where

- mul m

Fit,zy,2)= ) Y filn+1)z{z8 (14)

i=1 nel

for o¥(n)A;=a, , X*+f,,;Y* Fixing t,€R, we may define a cross section
F/O(anz)gﬁ(to’zl,zz) (15)

so that F, is a function from T2 to C, for z,, z, of modulus 1. Let the
integral functionals {4,}T\" be a set of I'y, (-orbit representatives in n*; we
define H,, to be the image of the lift map

L: M(2;) > LTy \Su.s)

(H,, is the ith constructible irreducible subspace of H,, the n-primary
summand).
In the integral coordinatization of S ,, the coadjoint orbits satisfy

(i) x*+y*=k forsomekeRif p=1,2,4 (16)
(ii)) x*+xy+y*=k*> forsomekeRifp=3,6, (17)

so that the orbits are saturated in the T *-direction; fix some coadjoint
orbit ¢, =s% ,, and some nonzero integral functional i€ @,.
We define the character y, on the nilradical N as

1:(0, r, sy=exp 2riA(r, s) = exp 2ni(ar + fs), (18)

where 1 =aX* + fY*. We seek a maximal extension of the character x; on
M; we examine the values of y; on terms of the form

(I’ 0’ 0)(09 X, y)( —1, 0’ 0)(()’ - X, —)’) = (0’ (-x, )’) - Gp(t)(x7 y))a

in the commutator [ S ,, Sk ,]. Since o,(1) has eigenvalues exp + 2mit/p,
and since o,(pZ) = I, we may extend the character y, to a character on the
subgroup

M,={(n,x, y):n=pkforsomekeZ, x, yeR}. (19)

Then M, is called maximal subordinate to the functional 4.
We define the Mackey space M(4) for 4 as

M(A)={f: Sk ,— C| f is measurable, | f| eLz(I"R‘p\SZ,p),
f(mg)éx;(m)f(g) meM,, geSg ,}. (20)
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The action of S , on M(4) by right translation is an irreducible represen-
tation n, independent (up to equivalence) of the choice of A€ 0.

The functions fe€ M(4) are left I', ,n M ,-invariant. We define the lift
map L: M(4) —»LZ(FR‘,,\SR_,,) as follows: for fe M(2),

Lf(I'g (1, x, y)) = ) (f-7)1, x, p). (21)

vyeTR pNMp TR p

Note that the sume (21) is a sum of p terms, and is a left /'; ,-invariant
function in L*(Ig »\Sr ). Lis an Sy ,-equivariant map, so that the image
in L*(I'g ,\Sg,,) of M(4) is an irreducible n-subspace of L*(I'g ,\Sx ,),
and therefore a subspace of the n-primary summand H, < L*(I'y \Sr )
this subspace will also be referred to as a constructible irreducible subspace
of H,. The number of such mutually orthogonal subspaces of H, is equal
to the number of disjoint I' ,-orbits in the set of integral functions in C,.
H, is the orthogonal direct sum of these subspaces.

We may represent a typical element of the n-primary summand H, as
follows. Let {4,}7\" be a set of representatives of distinct I', ,-orbits of
integral functionals in n* ~ @,. If f; € M(4,), a typical member of H, has the
form

OR7E0 % D 1 22)

i=1 i=1 yeEMpnIg p\I'R p
If f;e M(4,), then f; may be written

filt, x, )= 1,00, x, y) Ji(2), (23)

where ;e L(pZ\R) (7, is to be thought of as a function on R with period
p). Thus, if we choose the elements (1,0,0)e g ,, n=0,1,2,.,p—1 to
represent the equivalence classes of M, 'y \'x ,, we have

p—1

Lf}(rR,p(t’ X, Y))= 2 (f‘i'(n’ ()a 0))(t, X, )’)
n=0

=Y filn+ 1 oudn)(x, )
n=0

p—1
= 3 (Jin+ 1) 15, (0(n)(x, )))
n=0

p—1
= 2 (Z(n+t) XU;(n)i.,'(x? Y)) (24)
n=0



170 CAROLYN B. PFEFFER

Thus a typical member of H, is of the form

mul(n) p—1

Y X Jiln+0) 40, x, p). (25)
i=1 ne0

Recall that all elements o}(n)4, satisfy Eq. (16) or (17).

Suppose we have Alen*, 1=aX*+ BY* for some «, fe Z. Then

120, x, y) = exp 2mi(ax + By). (26)

2mix

If we set z, = e’™™, z,=¢>”, we may define F and F, as in Egs. (14) and
(15) for Fe H,. If the integral functionals {4,}™* are a set of I'y ,~orbit
representatives in n*, we define H, to be the image of the lift map
L(M(4,)) = L*(I'g ,\S&.,). H, is the the ith constructible irreducible
subspace of H,.

We end this section with a fact, and a lemma.

1. 8y 4(Sg ,) in its integral coordinatization has the fundamental
domain [0, 1]°; since T* has the same fundamental domain and since the
invariant measure of the boundary is zero, the identification of fundamen-
tal domain produces a Borel isomorphism of the measure spaces and an
isometry between L*(T°) and L*(I'y \Su«)[L*(I'r ,\Sk.,)]. Since each
character f, 5 (t, x, y) =exp 2ni(ax + By +yt), o, B, y€Z, appears in the
summand H, for which aX*+ 8Y*e(,, we have that the =m-primary
summands H_, together with the constant functions, form a complete set
of orthonormal subspaces in L*(Iy \Sy  )[L(Tr ,\Sk ,)]-

2. We define

Pn,: LZ(rR,p\SR,p) g Hn,-

to be the orthogonal projection of L*(I'g »\Sx ,) onto H,. We have for
fELZ(rR,p\SR.p)’

1

.
PN o8, %, )= 3 ft,-)" (GBN)A) Xm0, %, p), (27)
N=0
where f(¢,-,-)" is the standard Fourier transform in the variables x
and y for fixed ¢ (note that for fixed 1, P, f(¢, x, y) is a function on
(NnTg \N)=T?).

LeMMA 1. Suppose f is continuous on My ,. Then P, f= Lf for some
continuous f in M(1,).

Proof. We need to produce a continuous function e M(4,) such that

L]= Pnif:
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Let

T x, p)= )~ (A) 1, (28)

To see that Lf= P, f, we must demonstrate
1. that fe M(4,) and f is continuous in (¢, x, y);

2. that J((1+k), o,(k)x, ¥))=f(1,-,-)" (6 }(k)1,;) Yorwys (X, ¥); de,
the kth terms in each sum are identical. By definition,

J+k a,(k)(x, p)=ft+k-)" (A) 1:,(0,(k)(x, »)). (29)

Since xa;(k)l,(x, y)=x(0,(k)(x, y)), to demonstrate part 2 we need only
show that

JUt+ k), )" (A)=f(8,-,)" (a7(k)A,). (30)

By definition,
Jt+k) )" (A)=f(t+k,-,-)" (4)

=| k%, y) g, (x y) dxdy.  (31)
N~TR p\N

“Since f is continuous on My , and is therefore left I'; ,-invariant, we
have

J fe+k, x, y)x;,dxdy
NoT'g p\N

o T 0RO 1)) 1 ) i dy

=J o X ) 100K ) 1det o, (k)] dxdy
=f(t, X, ¥) X202, (%; y) dx dy
= f(t,)" (03(K)4,)

7 has the desired left-M ,-invariance, and is therefore in M(4,); since f itself

is continuous in t, f(¢,-,-)"* (4,) is continuous in ¢ and therefore 7 is a
continuous function in M(4,). This completes the proof of Lemma 1.

580/108/1-12
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2. ZErOS OF CONTINUOUS FUNCTIONS IN H, OF A COMPACT NILMANIFOLD

We have the following generalization of a theorem of L. Auslander and
R. Tolimieri [Aus-Tol, Theorem I1.2].

THEOREM 2. Let N be a nilpotent Lie group with cocompact discrete
subgroup I', I'\N not isomorphic to T" for any neN. If f is a continuous
function in H,< L*(I'\N) for ne (I'\N)Z,, then f has at least one zero
on I'\N.

Proof. We proceed by induction on dim N.

We begin with dim N = 3, where the 3-dimensional Heisenberg group H,
is the only example of a nilpotent group with quotient manifolds that are
not isomorphic to 7>, Theorem 2 for this case was proved by L. Auslander
and R. Tolimieri in [Aus-Tol, Theorem I1.2].

LEMMA 3. Let I’ be a uniform subgroup of H,. Then if I'=
{(p,m,n)eHy: p,m,ne L}, I'" contains a subgroup isomorphic to I', and its
index in I"’ is finite.

This lemma follows immediately from the results of A. 1. Malcev in
[Mal].
We are given I'\N compact, and the map

&: L*(I'"\N) - L}(I'\N)

defined by &f(I'x)= f(I"'x) is a well-defined, N-equivariant isometry of
L*(I'"\N) with its image in L*(I"\N).

Suppose me(l’\N), and that f is a continuous function in
H,< L¥I''\N). Then &f is continuous in L*(I'\N). Since & is an
N-equivariant isometry, @(H,) is contained in the n-primary summand of
L*(I'\N). By Theorem IL.2 in [Aus-Tol], then, &f must have a zero. This
completes the first step of the induction.

Suppose that the Lie algebra center z(n) has a nontrivial subspace
on which A, is zero, where the character x; induces to x; then k=
z(n) nker A, is a nonzero, rational subspace of n, and if K=expk, then
functions in H, are K-invariant. Therefore z is actually a representation of
a lower dimensional group N=N/K, H, may be imbedded in L*(I'\N)
where I is the image in N of I, and thus continuous functions in H, must
have zeros by the induction hypothesis.

Therefore we suppose that z(m) is 1-dimensional, and that y, inducing =
is nontrivial on z(n). -
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Suppose {X,, .., X,} is a strong Malcev basis through z(n), such that
z(m)=RX,, and such that

I'sexpZX,-expZX,_,---expZX, (32)

{see [CG, Theorem V.1.6]).

Suppose F is a continuous, nonvanishing function in H,. Then
F(x,, .., x,)=exp 2nipx, F(x,, .., X, _,0), since ne(I\N)", peZ. Con-
sider the function

This function is continuous and nonvanishing on "\ N, and possesses the
same Z(N)-covariance as F. Let I', be defined as

V4
Fp=exp—p—X,,-epoXn,l-epoX,,‘2-~-epoX1. (33)

Since F is left I'-invariant, so is G, and both are defined on I',\N; note I',
is uniform in N, since I'< T,. Let

N> Z(N\N

be the natural map, and let N, I » be the images of N and I, under p.
Define
QT \N->T\NxT

by
rp(xl’ ey xn)H (fp(xls ey Xy 1)9 G(xla ey xn))' (34)

Then Q is continuous on I',\N since G Is; it is 1-1 since G takes on the
value 1 exactly once on every fiber over I ,\N. Q is clearly onto, and since
I,\N is compact, 2 is a homeomorphism of I',\N and F\NxT (note:
' \N is compact since Z(N) is a rational subgroup).

However, if I', is a k-step nilpotent group, then I »xZL is a k—1-step
nilpotent group (recall that I", is not actually abelian). Therefore, since
t_l_lese~ groups are respectively the fundamental groups of I',\N and
I',\N x T, we arrive at a contradiction.

3. HoMOTOPY CLASSES OF FUNCTIONS ON SOLVMANIFOLDS
In Section 4 we use homotopy classes of functions from solvmanifolds to

the circle to show that n-primary summand functions which are continuous
must have zeros.
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In this section, we demonstrate that functions nonvanishing on the
solvmanifolds My ,, p=2,3, and My, for all k>2, must be null-
homotopic on 2-torus fibers of the bundles M ,—» T"and M, , - T, where
T is the circle group. (Note: this is also true of the bundles M, ,, p=4
and 6, but this fact is not used in Section 4.)

We consider first the solvmanifolds My ,, p=2, 3.

THEOREM 4. For the manifolds Mg ,, p=2,3, the functions f,: Mg ,—> T
defined by f,(I',(1, x, y))=e>™" are continuous and generate the groups of
homotopy classes of functions from Mg , to T.

Proof. We first state a few relevant facts [G-H].
Denote by [M, T'] the set of homotopy equivalence classes of con-
tinuous functions from M to T.

1. For all solvmanifolds under consideration, we have that
H'(M)=[M, T] via the map
x: [M, T]-> H\M);

(35)
S filo),

where w is a generating cocycle in H'(T), and f, () is the class in H'(M)
of the cocycle ¢ which satisfies

a(y)=o(fey) (36)

for all 1-simplices .
2. For all solvmanifolds under consideration, we have H'(M)z
Hom(H,(M), Z) via the isomorphism

a: H\(M) - Hom(H,(M), Z); a(c) = &, (37)

where for a cycle ye H,(M), &(y)=[o, y]. This follows from the existence
of the exact sequence

0 Ext,(H,_,(M), Z) » H"(M) = Hom(H, (M), Z) » 0

for all ne Z* (Universal Coefficient Theorem). Hy(M) is always a projec-
tive Z-module, and so Ext,(H,(M),Z) is zero. Therefore o is an
isomorphism.

We begin by demonstrating that for M, ,, p=2,3, we have
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H'(My ,) = Z, generated by the cocycle 4, for which Z,(y)=1 (here y, is
the 1-simplex te [0, 1) - I',(1, 0, 0)). We also define the simplices

y2:1€[0, 171> 1,(0,10) (38)
y3:t€[0,1]1->1,(0,0,1) (39)

and note that y,, y,, and 7y, generate the group n,(My ,). Furthermore,
n,(Mg ,) is isomorphic to I',.
Case 1. H\(Mgy)=Z-7,®Z,-7,®ZL;y;.

This follows from the fact that [7,(Mz,), 7,(Mg,)] is generated by the
elements 73 and y3 in 7,(Mg,).

Case 2. H(Mg3)=Z-y,®ZL;-y,.
Here we use the fact that [7,(Mg;), m,(Mg3)] is generated in m, (Mg ;)
by the elements y,7; and y3.

We now compute H'(My ,), p=2,3, using the fact that H'(M, ,) =
Hom(H (Mg ,), Z).

Case 1. H'(Mg,) ~ Hom(Z -y, ®Z,-y,®Z-y;,Z)=Hom(Z -y, Z)
~Z-1,, where A, is the cocycle in H'(Mg,) satisfying Z,(y,)=1,
11(7’2)‘—'7»1(7’3):0-

Case 2. H'(Mg3)=Hom(Z -y, ®Z;-y,,Z)=Hom(Z-y,,Z)=Z -}
where 4, is the cocycle in M ; satisfying Z,(7,,_1 3'(y2) = %,(y3) =0.
Finally, if we suppose that w is any cocycle generating H'(T), then

[Mg,, T] is generated by any continuous function f on My , satis-
fying f (w)=24,. Therefore we must have f (w)(y;)=1 f lo)y,)=
ful@)(73)=

Since f, in the statement of Theorem 4 satisfies these conditions and is
continuous on My ,, f, generates [M; ,, T] for p=2, 3. This completes
the proof of Theorem 4.

THEOREM 5. For the manifolds M, ,, k=3, 4, 5,.., the functions
Ji: M, — T defined by

SuTi(1, x, y)) =™

are continuous on M, , and generate the groups of homotopy classes of
Sunctions from My, to T.

Proof. Facts 1 and 2 following the statement of Theorem 4 also apply
here. We begin by demonstrating that for M, ,, k=3, we have
H'(M )= Z, generated by the cocycle 4, for which Z.(y,)=1 (here y, is
the 1-simplex te [0, 1]+ I, (¢, 0,0)).
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Again we define the simplices

VZ:ZE[()’ IJHFk(O’ t’ O)
v3:1€[0,1]1—1,(0,0,7)

and note that y,, y,, and y, generate the group n,(M,,). We also have
ny(My ) =Ty.

Case |. H{(My,)=1Z.v,.
This follows from the fact that [n,(M,), n,(M,)] is generated in
n,(My ,) by the elements y, and y,y;, which together generate all terms of

the form y>y%.

Case 2‘ HI(MH,k)=Z.vl®Zk—l"y2 for k>3

In the case k >3, we have [n,(My ), n,(M ;)] generated by y%~! and
V310 7 (M p )

We now compute H'(M, ) for k> 2.

Case 1. H'(My,) = Hom(H,(My,), Z) = Hom(Z -y,, Z-4,, Z) =
Z -2, where 1, is the cocycle satisfying Z,(y,)=1, 1,(y,) = 1,(y5) =0.

Case 2. H'(M,,)=Hom(H(My,),Z) = Hom(Z -y, ®Z, _, y,,Z)
for k> 3. However, this is Hom(Z -y,, Z)=Z - A,, where 4, is the cocycle
satisfying I1(7’1)= 1, I1()’2)= 11(3’3):0-

If we suppose again that w is a cocycle generating H'(T), then
[M, ., T] is generated by any continuous f on My ,, k=2, satisfying
Si(w)=24,. The rest of the argument proceeds as for Theorem 4.

4. Zeros oF CONTINUOUS FUNCTIONS IN H, € L*(My ,)

We begin this section by demonstrating that M, =~ T> possesses
n-primary functions which are nonvanishing, as one would expect.

Suppose A.€ £*Nn(,; then the character y, defined on a maximal
subgroup M of Sk, gives rise to the Mackey space M(4,).

Functions in the image of the lift map L: M(A,) —» L*(M ) are of the
form f: My, - C, f(I'(t, x, ¥))=7J(t) x:.(0, x, y) for some L? function f
with period 1. Clearly f is continuous if f is.

Thus we see that the n-primary summand contains the character

Y(Iy(1, x, p)) =4 (40)

which is continuous and nonvanishing on M ;.
We wish to emphasize here that the manifold Mg, = T is the only com-
pact 3-dimensional solvmanifold arising from a non-nilpotent Lie group
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known to possess continuous, nonvanishing n-primary summand functions.
We demonstrate in what follows that for M ,, p=2, 4, 6, continuous
functions in the infinite-dimensional n-primary summands must have zeros.
In the case of M ,, continuous functions in certain constructible subspaces
which span the n-primary summands are known to have zeros, but the
complete answer for M ; is not known.

We begin by examining the situation for M ,.

THEOREM 6. Suppose f is a continuous function in H,< L*(My,), for
ne€ (g2 \Sr2)2. Then [ has at least one zero on My ,.

Proof. Recall that Sg,=R oc R’>, with R acting on R? via the
1-parameter subgroup o(¢z)= Rot(nt), and that 'y, is the subgroup of
integer points in Sy ,. The coadjoint orbits are therefore circular cylinders
in 8% ,, saturated in the T*-direction. The coadjoint orbit associated with
ne(Mg,), is that containing an integral functional 1, =aX*+ BY* for
which y; induces 7.

Let P, be orthogonal projection of L*(Mg,) onto the irreducible sub-
space H,, which is the image of the lift map L, from M(4,) to L*(M,).
We note that if f is continuous on M ,, then P, fis continuous on M,
[Ril], and

1
P.f= Z S, (6 B)) Xo(iyap (41)
=0

J

is equal to L, f’ for some continuous f’ in M(4,) (Lemma 1).

Thus, in order to prove Theorem 6, it suffices to look at sums of func-
tions of the form Y™™ L_f, for £, continuous in M(4,), where M(4,) lifts
to H_,.

Let S={A: o>+ p*>= 1% (o, B)e Z?, (o, B) #(0,0)}. Order the elements
of S so that A,>A,_,. The proof of Theorem 6 is by induction on the
elements of S.

Case 1. A =1, mul(n,)=2.

This case falls into the category of odd 4,, which is treated in the
induction step.

For the induction step, we suppose that if f is continuous on M,
feH, for i, <4,, then f must have a zero.

Case 1. 42 is odd.

Let {(a;, B;)} ™"~ be a complete set of I',-orbit representatives in
O;,n £*; for convenience we may take them to be in the set {(a, B):
a, feZ, a+ f>0}. Note that « + § is odd whenever a® + 2= 12 is odd.

Let P={p=ua,+ B;}. Order P so that p,> p,_,. Note that the p are
positive.
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Let O, = {i: a;,+ B,=pi}, k=1, .., m. Note that each Q, has cardinality
2; this follows from the fact that if o, + f;=a;+ 8, and o + p2=0a? + f?
(orbit condition), then if a;#a;, we must have a,=p,. Thus O, has
cardinality 2, one for each of (a, f) and (B, «). Let {f;: R > C}™!™ be
a set of continuous functions with period 2.

Then as demonstrated in Section 1, a typical continuous ¢ in H,_has the
form (setting z, = e>™™, z, = ™)

¢0th»={z [z,mnz%;+ﬁu+1n;%;§”. 2)

{Qk} Lie Ok

Fix ¢ and define ¢,(z,, z,) = 4(t, z,, z,), so that ¢,: NnL\N=T?->C.

Suppose ¢ is nonvanishing on M ,. Then ¢,: T? - C is nullhomotopic.
Consider §,, the restriction of ¢, to the closed curve z, =z, in T2 Then §,,
defined by

¢&F¢mﬂ=Z[meqﬂ+[ZﬂwHﬂf“ (43)

{Ok} LieQ ie Qk

is a curve in C\{0} which has winding number zero.
Clearly #, may be viewed as the restriction to T of a meromorphic
function @,: C > C,

D (w)= Y [Z ﬁ(t)] w""+[ Y, f,(t+1)]w“”‘. (44)

{Qk} Lie gk ie Qk

We claim that &, has a pole of odd order at w =0. If not, then the coef-
ficients in @, of negative exponents are zero; but since &, contains only
terms with odd exponents, @, has no constant term, and thus we would
have a polynomial @, with @,(0)=0. Thus @, would wind at least once on
the circle T, so ¢, would wind, a contradiction. Let y>1 be the order of
the pole at zero. Then we may write

¢,(z)=z_7{ PIEDY fi(t)]zp*”+[ Y fit+1)] z—PHV}

{Qk} ieQk ie Qk
=z7"p(2), (45)

where p is a polynomial in z with even exponents.

But then the zeros of p(z) (and so the zeros of @,) occur in pairs of equal
modulus, so that the number of zeros inside the unit circle is even. Define
I': [0,1] - T by I'(t)=e*". Then we have

Ind, ®@,=Ng,— Py, #0, (46)
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where N, and P, are, respectively, the number of zeros and poles of @,
inside I' [Ru, Chap. 10]. Thus the winding number of #, cannot be zero,
and we arrive at a contradiction.

Case 2. 2 —0 mod 4.

Note that if «? + B*=4i%=0mod 4, then both « and f must be even.

Let {(a;, B)} ™™ be a set of I'p,-orbit representatives, and let
{fi:R—>C}™!™ be continuous with period 2. Then a typical ¢ H,
may be written '

mul(ny,)

ot z,z,)= }: f,-(t)z","'zg'-%-f,-(t+1)2;“'22’”’, 47)
i=1
for z, = e¥™*, z, =™V,
We define
mul(n,)
W zz)= Y, 032 S+ D)2 0 (@8

i=1

Note that since the «, and f, are all divisible by 2, v has integer
exponents; therefore, ¥ is continuous, I ,-invariant, and lives in H,,
where A =A%/4. By the induction hypothesis, ¥ has a zero. Since
#(t, 21, z,) = Y(t, 23, z3), ¢ must also have a zero.

Case 3. A2=2mod 4.

Let {(a;, B; )}"‘“‘("*n) be a complete set of I’z ,-orbit representatives from
0,, N Z*, satisfying «,>0 for each i Note that a?+ 7 =A2=2mod 4
1mp11es that a; and f; are both odd for each i.

Let P= {p a; for some i}. Order P so that p,>p,_,. Let Q,=
{i:«;= p.}, and note that each Q, has cardinality 2. Let {f;: R —» C} ™™
be a set of continuous funtions of period 2. Then a typical continuous ¢ in
H,, has the form of Eq. (42).

Fix ¢ and define ¢,(z,, z,) = ¢(t, z,, 2,), #,: NN I,\N=T? - C. Suppose
that ¢ is nonvanishing, so that ¢, must be nullhomotopic on N I'\N.

Define §,(z)=¢,z, 1), the restriction of ¢, to the curve z,=1 in
Nn AN, Then we have

b= Y {[ > f,-(t)]zp"+|: Y ﬁ(t+1)]z‘p“},

{Ox} ic Qg ie O

Since each «; is odd, each p, is odd; by choice of «,, we have p, >0 for
all k.

From here we proceed, as in Case 1, to demonstrate that ¢, must wind
on the circle 7, a contradiction. This completes Case 3 and finishes the
proof of Theorem 6.
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In Theorem 7, we show that continuous functions in the n-primary
summands of L*(My,) and L*(M  ¢) must have zeros.

THEOREM 7. Let f be a continuous function in H, < L*(My ), for i=4 or
6, ne(F'r \Sg;)2. Then f has at least one zero on Mg ;.

Proof. Define the groups

r"i_—' {(ms n, P)EFR,4§SR,4ZM=2/€, forsomekeZ}

Fs={(mn, p)elp ¢S Sge: M=3k, forsomekeZ}.

Then I'y and I'§ are subgroups of 'z, and I 4, respectively, of finite
index; thus I'/ is cocompact in Sy ; for each i, and it is straightforward to
verify that I'/ =TIy ,, i=4,6.

We prove Theorem 7 for My ,; the proof for M, ¢ is analogous in every
respect.

Since I'y= Iy, and is cocompact in Sy 4, we have II)(I')\Sg 4) =g .
Therefore we have I'j\Sy 4= Mz, [Mos, Theorem A].

Functions which are I'y ,-periodic are I'j-periodic, so L*(My ,) embeds
isometrically in L*(M ,). Furthermore this embedding is Sy 4-equivariant
with respect to the quasi-regular representation, and so takes w-spaces to
m-spaces.

Let @ be the isometric embedding of L*(Mg,) in L*(Mg,). Then if
f is a continuous function in H,<L*(Mg,), ®f is continuous in
H,< L*(Mg,) and so must have a zero. However, if &f(I'z ,(1, x, y)) =0,
then since f is [,-invariant, f(I'g 4(1, x, y))=0; thus f must have a zero.
This completes the proof of Theorem 7.

We finish this section with a theorem summarizing what is known for
MR 3 .

THEOREM 8. Let f be a continuous element of a constructible, irreducible
subspace of a n-primary summand H,< L* (Mg ;). Then f has at least one
zero on My ;.

Proof. Suppose i,e £*n(,, an integral functional in s}%,; then
the character y, defined on a maximal subgroup M of S, ; gives rise
to the Mackey space, M(4,). The constructible irreducible subspace
corresponding to 4,=(a, f) is the image of the lift map L: M(i,)—
L*(Mg 3), an Sy s-invariant isometry.
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A typical continuous element of this constructible irreducible subspace of
H_ has the form

J(rs(t %, )= f(t, 24, 2,)
=f() 2328+ f(t+ D) 2Bz Py f14+2) 274 P25 (49)

for z, =e?™*, z,=¢*", and f: R — C a continuous function of period 3.
Suppose f is nonvanishing on M ;. Then 7 must be nullhomotopic when
restricted to T>-fibers of the bundle Mz, — T.
We examine the functions 7 on a case-by-case basis.

Case 1. a=f=1mod3, or a=f=2mod 3.
We define ¢,(z) = f(¢, z, 1) for fixed & R; ¢, must have winding number
zero on T, since f(, z,, z,) is nullhomotopic on T for fixed t. We have

(2)=f1)*+ f(t+ 1)2P + f(t +2)z =+ P, (50)

Clearly one of a, ff, and —(a+ ) must be negative. If we view ¢, as the
restriction to the set 7= {|z} =1, ze C} of the meromorphic function

D (w)=f(Ho*+ f(t+ Do + f(1 +2)o—*+P (51)

we see that @, has a pole at w=0.
Let y be the order of the pole at zero. Then we may write

G ()= ()™ ft+ 1) 4 f142)" )
=" "p(w), (52)

where p(w) is a polynomial. Note that the exponents of p(w) must all be
divisible by 3. Since a + f=1 or 2 mod 3, we must have y=1 or 2 mod 3,
so that a+y=8+7y= —(a«+ B)+y=0mod 3. Thus the zeros of p(w) are
grouped as triples of equal modulus; in particular, the number of zeros of
p(w) (and hence of @ (w)) inside T is a multiple of 3. However, the pole
of @, at w =0 is not a multiple of 3, and therefore, referring to (46), we see
that @, must wind on the curve 7, and therefore that ¢, cannot be
nullhomotopic, a contradiction.

Case 2. a=1mod3, f=2mod 3.

We define ¢,(z)=F(t, 2z, 27 )= f()z* P+ ft 4+ 1) 2>+ f(1 4 2)z " 22+H
as in Case 1 and note that ¢, is f restricted to the curve z,=z;' in the
T-fiber over I'(t, 0, 0).

Clearly one of a—f, 28 +a, and —(2a+ f/) must be negative, since
(x—B)+ (2 +a)=2a+ B. All are congruent to 2 mod 3, so none can be
zero. If we view ¢, as the restriction to T of the meromorphic function
D (w)=f(H)o* P+ ft+ 1) *+ f(1+2)o~ ?** P, we see that @, has a
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pole at zero. Let y be the order of the pole at zero; then —y =2 mod 3, and
we may write

P ()= " {f(ND* F*7+ f(t+ D™ 7+ f(1+2)~ = +A+7}
=07 "p(w), (53)

where p(w) is a polynomial. Note that since —y =2 mod 3, and since all of
o—pB, 28+ a, and —(2x + f) are congruent to 2 as well, the function p(w)
contains only terms with exponents divisible by 3, and so the number of
zeros inside T is a multiple of 3. Since y is not a multiple of 3, we have
Ind - @, #0, and again we arrive at a contradiction.

Case 3. a=2mod 3, f=1mod 3.

Proceeding as before, we define ¢,(z)=F(tz 2z )=f(t)z*"F+
ft+ 12 24 f(t+2)z>*#) and note that @, is f restricted to the
curve z,=z; ' in the T>-fiber over I's(z, 0, 0).

Again, one of o — f, 2f + «, and — (2x+ ) must be negative, and all are
congruent to 1 mod 3, so that none is zero. If we view ¢, as the restriction
to T of the meromorphic function

D (w)=f()o* P+ 1+ 1)o¥ 4+ f(t+2) P

we see that @, has a pole at zero. Let y be the order of the pole at zero;
then —y=1mod 3, and we may write

P (0)=0 " {f(o* P+ ft+ DN 4 fl1 4 2)” DT}
=o "p(w),

where p(w) is a polynomial. Note that since —y =1 mod 3, and since all of
oa—pB, 2B+a, and — (20 + ) are as well, the function p(w) contains only
terms with exponents divisible by 3. The number of zeros inside T is there-
fore a multiple of 3. Since y is not a multiple of 3, we have Ind - @, 50, and
we arrive at a contradiction.

Case 4. a=0mod 3, f=1mod 3 or a=2mod 3, $=0mod 3.

If (o, B) is such that a=0mod 3 and f=1mod 3, then the I';-orbit
containing («, B) also contains the point (§, —(x + #)), which is of the type
dealt with in Case 2. Since the function f is independent of the base point
chosen from the I's-orbit, 7 must have a zero. Similarly, if («, B) is of the
type e =2mod 3, f=0mod 3, then the point (—(x+ f), a) is of the type
dealt with in Case 2.

Case 5. a=0mod 3, f=2mod 3; or a=1mod 3, f=0mod 3.
If (a, B) is such that a =0 mod 3, =2 mod 3, then (8, —(«, §)) is in the
same I ;-orbit as (a, §) and is of the type dealt with in Case 3. If (a, f) is
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of the type «=1mod 3, =0mod 3, then the point (—(a, B), «) is of the
type dealt with in Case 3.

Case 6. a=f=0mod 3.
We have o = 3%z’ and f = 3%’ for some k # 0 and some pair (a’, '), not
both congruent to 0 mod 3. We may therefore define

gz, 2,)=f() 2228 + fa+ 1) 2827 4 fe+2) 2 @028

which is clearly the lift of a function in the Mackey space M(A}) for
A= (o', B); since not both o' and B’ are congruent to 0 mod 3, 2 must
have a zero, since one of Cases 1-5 applies. Since g has a zero, and since
we have g(1, 23, z2¥) = f(1, z,, z,), f must have a zero on M.

This completes the proof of Theorem 8.

5. ZEros OF CONTINUOUS FUNCTIONS IN H, < L*(M, )

In this section, we demonstrate that functions in a uniformly dense sub-
space K, of continuous functions in H?=C(M ;)" H, must have zeros
on M ,, for all hyperbolic solvmanifolds M . It then follows easily that
all continuous functions on H, must have zeros.

If {A,}™™ is a complete set of I, ,-orbit representatives from
€, &*, then the set {L;: M(4,)— L* (M)} ™ is a complete set of
lift maps into the constructible irreducible subspaces of H,. Let T':
L*(R) > M(4,,) be the isometry intertwining the Schrodinger model of n
on L*(R) and the induced model on M(4,); ie., T.f = J, where f(, x, y) =
L1 (%, 9) 10,

Then L;=L,- T, lifts L*(R) into the ith constructible irreducible sub-
space of H,. We define

K. =Li{(CFR)D - @ Lpun(CF(R)SHY.

Lemma 9. K, is uniformly dense in HY.

Proof. We first demonstrate that K, is uniformly dense in HX =
C*(My)nH,.
If S,(R) are the smooth vectors for the Schrodinger model of = on
L*(R), then we have
LACF(R)) 2 Li(S,(R)) (54)

in the sup-norm on My, [Brel, Lemma 5].



184 CAROLYN B. PFEFFER

We have also that @, H?,=H7, since L{(S,(R))=H2, by preserva-
tion of smooth vectors under intertwining maps.

We have also that @, H>,=HZ, since orthogonal projection onto
Sy «-invariant subspaces preserves infinite differentiability [Aus-Bre,
Sect. 2]. Therefore if g€ H?, we may uniformly approximate P, ;(¢)
in each subspace by elements of L;(C(R)). Thus, K, is uniformly dense
in HY.

We finish the proof of Lemma 9 by demonstrating that H * is uniformly
dense in H?.

Let F be a fundamental domain for I',\S, , containing the identity;
define a C* approximate identity {¢,}°_, so that

n=1
1. 0<¢g,< oo for each neZ™,

2. Support &, is contained in the interior of F for each neZ*. We
define, for pe H®,

¢ * £,(t, X, y) =f ¢t x, ), X', y) T et X, y)dt dx' dy'. (55)

Fs Sux

Then ¢ * ¢, is C= for each ne N, since ¢, is C* and S, is unimodular,
and in fact ¢*¢g,e HY since ¢=*¢, is the uniform limit of linear
combinations of right translates of ¢.

We now claim that ¢ * ¢, converges uniformly to ¢ on M, ,. We have

16+ 2, =Bl < sup [ 18((t,x )& X ') )= 405, x, y)]

x,y) F

x e (t', x', y')dt' dx' dy'. (56)

Choose N so that for n> N, we have |¢((¢t, x, y)t, x, y') ")—
é(t,x, y) <¢ for all (1, x, y)eF and all (¢, x’, y')esupport(c,). Then
¢ *e,—dllo<[e e, x, y')dt' dx' dy’ =e, which completes the proof of
uniform convergence.

Thus we have H < HY uniformly dense in H?, completing the proof
of Lemma 9.

Recall that S, =R oc R? with R acting on R? via the l-parameter
subgroup g,: R — SL,(R) satisfying o,(1)=[,', 1]. The one-parameter
subgroup o, is conjugate to o(¢)=[% ,%.], where A+ A '=k+1, AeR.
The coadjoint orbits in s} , are therefore hyperbolic cylinders, saturated in
the T *-direction, and satisfying the equation

*k-1)x*+k-1)xy—yry’=o (57)

for some w e R. Note that two coadjoint orbits satisfy (57) for each value
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of w, each being a connected component of the set in s} , satisfying (57).
The coadjoint orbit associated with ne (I'y ,\Sy )2 is that containing an
integral functional A, =aX* + fY* for which x,_ induces =.

THEOREM 10. Suppose f is a continuous function in H,< L*(M ), for
€ (g \Sur)o. Then f has at least one zero on My ;.

Proof. We begin by proving Theorem 10 for functions fe K, < H,. We
have K, =L{(CF(R))® - ® L) (C 5 (R)), so that a typical element of
K, has the form

mulzn
Wt x, y)= 3 ) filt+n)exp 2mia, ;x + B, y) (58)

i=1 nelkZ

where {(aq, Bo)} ™™ is a set of distinct I',-orbit representatives in
O, EL*, (o, Bni) = 0i(n)(ag ;5 Bo), and where for each i=1, .., mul(n),
and for fixed ¢, the sum over » in (58) is finite. Suppose ¢ is nonvanishing
on M, ,. By setting z, = e™™, z,=e>"", we may define

muln

Bt 21, 2)= (It x, )= 3 X filt+n) zimzhe. (59)
i=1 neZ
For any fixed f, we must have ¢ nullthomotopic on N~ I, = T?\N by
Theorem 5.

We note at this point that if (a, B) satisfies (k—1)a’+(k—1)af—p>=ow
for @ >0, then either all points in @, g, satisfy «>0, or they all satisfy
a < 0. If not, then since O, 4, is connected, O, 5, must intersect the y-axis,
so that x=0 and —p’=w, a contradiction. Similarly, if ¢, ,, satisfies
(k—1a*+(k—1)ap—p*=w for <0, then either all points in @,
satisfy g > 0, or they all satisfy f <0.

Suppose €, 4 satisfies (k —1)a’ + (k— 1) af — p*> = for v > 0.

Case 1. Suppose all (a, B) € O, 4, satisfy a>0. Then we have

mulx

Bz, )= Y T filt+n) zimzhe,

i=1 nelZ

where a,, ;>0 for all n, i. Fixing ¢, we have

muln

é,(z)=$(t, 2, 1)2 Z Z fi(t+n)za’“ (60)
i=1 nel
a curve of winding number zero on the circle 7. The sum in (60) is always
finite.
We may consider ¢, to be the restriction of a polynomial &, on C to 7,
ie, ®(@w)=Y"""Y _, fi(t+n)o™. Since a,, is never zero, @, has no
constant term and so has a zero at w =0. Since @, has no pole inside 7,
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we see, referring to (2.20) that &, and hence ¢, cannot have winding
number zero on 7. Therefore ¢ cannot be nulthomotopic on N~ I",\N for
fixed 7, and so 4 cannot be nonvanishing,

Case 2. Suppose all (a, f)e @, satisfy a<0. Then set §,(z)=
#(t,z7 1, 1) for fixed ¢ and proceed as in Case 1.

Case 3. Let O,y satisfy (k—1)o’+(k—1)ap—p*=w for w<O.
Suppose all (a, f) € O, 4, satisfy > 0. Then set §,(z) = (s, 1, z) for fixed ¢
and proceed as in Case 1.

Case 4. Suppose all (o, f)e 0,4 satisfy B>0. Then set §,(z)=
#(t, 1, z71) and proceed as in Case 1.

Thus we have proof that all fe K, have zeros, and so we have shown
that all functions in a uniformly dense subspace of H? have zeros.
Therefore all functions in H? must have zeros.
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