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a b s t r a c t

A finite poset P is called simplicial if it has the smallest element 0̂, and every interval [0̂, x] is
a Boolean algebra. The face poset of a simplicial complex is a typical example. Generalizing
the Stanley–Reisner ring of a simplicial complex, Stanley assigned the graded ring AP to P .
This ring has been studied from both combinatorial and topological perspectives. In this
paper, we will give a concise description of a dualizing complex of AP , which has many
applications.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

All posets (partially ordered sets) in this paper will be assumed to be finite. By the order given by inclusions, the power
set of a finite set becomes a poset called a Boolean algebra. We say that a poset P is simplicial if it admits the smallest element
0̂, and the interval [0̂, x] := { y ∈ P | y ≤ x } is isomorphic to a Boolean algebra for all x ∈ P . For simplicity, we denote
rank(x) of x ∈ P just by ρ(x). If P is simplicial and ρ(x) = m, then [0̂, x] is isomorphic to the Boolean algebra 2{1,...,m}.

Let ∆ be a finite simplicial complex (with ∅ ∈ ∆). Its face poset (i.e., the set of the faces of ∆ with the order given by
the inclusion) is a simplicial poset. Any simplicial poset P is the face (cell) poset of a regular cell complex, which we denote
by Γ (P). For 0̂ ≠ x ∈ P , c(x) ∈ Γ (P) denotes that the open cell corresponds to x. Clearly, dim c(x) = ρ(x) − 1. While the
closure c(x) of c(x) is always a simplex, the intersection c(x) ∩ c(y) for x, y ∈ P is not necessarily a simplex. For example, if
two d-simplices are glued along their boundaries, then it is not a simplicial complex, but it gives a simplicial poset.

Let P be a simplicial poset. For x, y ∈ P , set

[x ∨ y] := the set of minimal elements of { z ∈ P | z ≥ x, y }.

More generally, for x1, . . . , xm ∈ P , [x1 ∨ · · · ∨ xm] denotes the set of minimal elements of the common upper bounds of
x1, . . . , xm.

Set { y ∈ P | ρ(y) = 1 } = {y1, . . . , yn}. For U ⊂ [n] := {1, . . . , n}, we simply denote [


i∈U yi] by [U]. Here, [∅] = {0̂}.
If x ∈ [U], then ρ(x) = #U . For each x ∈ P , there exists a unique U such that x ∈ [U]. Let x, x′

∈ P with x ≥ x′ and
ρ(x) = ρ(x′)+ 1, and take U,U ′

⊂ [n] such that x ∈ [U] and x′
∈ [U ′

]. Since U = U ′


{i} for some i in this case, we can set

α(i,U) := #{ j ∈ U | j < i } and ϵ(x, x′) := (−1)α(i,U).

Then ϵ gives an incidence function of the cell complex Γ (P); that is, for all x, y ∈ P with x > y and ρ(x) = ρ(y) + 2, we
have

ϵ(x, z) · ϵ(z, y)+ ϵ(x, z ′) · ϵ(z ′, y) = 0,

where {z, z ′
} = {w ∈ P | x > w > y }.
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Stanley [9] assigned the commutative ringAP to a simplicial poset P .We remark that, if [x∨y] ≠ ∅, then { z ∈ P | z ≤ x, y }

has the largest element x ∧ y. Let k be a field, and let S := k[ tx | x ∈ P ] be the polynomial ring in the variables tx. Consider
the ideal

IP :=


txty − tx∧y

−
z∈[x∨y]

tz | x, y ∈ P


+ ( t0̂ − 1 )

of S (if [x ∨ y] = ∅, we interpret that txty − tx∧y
∑

z∈[x∨y] tz = txty), and set

AP := S/IP .

We denote AP just by A, if there is no danger of confusion. Clearly, dim AP = rank P = dimΓ (P)+1. For a rank 1 element
yi ∈ P , set ti := tyi . If {x} = [U] for some U ⊂ [n] with #U ≥ 2, then tx =

∏
i∈U ti in A, and tx is a ‘‘dummy variable’’. Since IP

is a homogeneous ideal under the grading given by deg(tx) = ρ(x), A is a graded ring. If Γ (P) is a simplicial complex, then
AP is generated by degree 1 elements, and coincides with the Stanley–Reisner ring of Γ (P).

Note that A also has a Zn-grading such that deg ti ∈ Nn is the ith unit vector. For each x ∈ P , the ideal

px := (tz | z ≰ x)

of A is a (Zn-graded) prime ideal with dim A/px = ρ(x), since A/px ∼= k[ti | yi ≤ x].
In [1], Duval adapted classical arguments on Stanley–Reisner rings for AP , and got basic results. Recently, Masuda and his

co-workers studied AP from the viewpoint of toric topology, since the equivariant cohomology ring of a torus manifold is of
the form AP (see [4,5]). In this paper, we will introduce another approach.

Let R be a Noetherian commutative ring, Mod R the category of R-modules, and mod R its full subcategory consisting of
finitely generatedmodules. The dualizing complex D•

R of R gives the important duality R HomR(−,D•

R) on the bounded derived
category Db(mod R) (see [2]). If R is a (graded) local ring with the maximal ideal m, then the (graded) Matlis dual of H−i(D•

R)

is the local cohomology H i
m(R).

We have a concise description of a dualizing complex AP as follows. This result refines Duval’s computation of H i
m(A) ([1,

Theorem 5.9]).

Theorem 1.1. Let P be a simplicial poset with d = rank P, and set A := AP . The complex

I•A : 0 → I−d
A → I−d+1

A → · · · → I0A → 0,

given by

I−i
A :=


x∈P,
ρ(x)=i

A/px,

and

∂−i
I•A

: I−i
A ⊃ A/px ∋ 1A/px −→

−
ρ(y)=i−1,

y≤x

ϵ(x, y) · 1A/py ∈


ρ(y)=i−1,

y≤x

A/py ⊂ I−i+1
A

is isomorphic to a dualizing complex D•

A of A in Db(Mod A).

In [11], the author defined a squarefree module over a polynomial ring, and many applications have been found. This idea
is also useful for our study. In fact, regarding A as a squarefree module over the polynomial ring Sym A1, Duval’s formula of
H i

m(A) can be proved quickly (Remark 2.6). Moreover, we can show that a theorem of Murai and Terai [7] on the h-vectors of
simplicial complexes also holds for simplicial posets (Theorem 5.6). In the present paper, wewill define a squarefreemodule
over A to study the interaction between the topological properties of Γ (P) and the homological properties of A.

The category Sq A of squarefree A-modules is an Abelian category with enough injectives, and A/px is an injective object.
Hence, I•A ∈ Db(Sq A), and D(−) := Hom•

A(−, I
•

A) gives a duality on Kb(Inj-Sq) (∼= Db(Sq A)), where Inj-Sq denotes the full
subcategory of Sq A consisting of all injective objects (i.e., finite direct sums of copies of A/px for various x ∈ P). Via the
forgetful functor Sq A → mod A, D coincides with the usual duality RHomA(−,D•

A) on Db(mod A).
By [13], to a squarefree A-module M we can assign the constructible sheaf M+ on (the underlying space X of) Γ (P).

In this context, the duality D corresponds to the Poincaré–Verdier duality on the derived category of the constructible
sheaves on X up to translation, as in [8,13]. In particular, the sheafification of the complex I•A [−1] coincides with the Verdier
dualizing complex of X with coefficients in k, where [−1] represents translation by −1. Using this argument, we can show
the following. At least for the Cohen–Macaulay property, the next result has been shown in Duval [1]. However, our proof
gives a new perspective.

Corollary 1.2 (See Theorem 4.4). The Cohen–Macaulay, Gorenstein* and Buchsbaum properties, and Serre’s condition (Si) of AP ,
depend only on the topology of the underlying space of Γ (P) and char(k). Here, we say that AP is Gorenstein* if AP is Gorenstein
and the graded canonical module ωAP is generated by its degree 0 part.
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While Theorem 1.1 and the results in Section 4 are similar to the corresponding ones for toric face rings [8], the
construction of a toric face ring and that of AP are not so similar. Both of them are generalizations of the notion of Stanley–
Reisner rings, but the directions of the generalizations are almost opposite (for example, Proposition 5.1 does not hold for
toric face rings). The prototype of the results in [8] and the present paper is found in [13]. However, the subject there is
‘‘sheaves on a poset’’, and the connection to our rings is not so straightforward.

2. The proof of Theorem 1.1

In the rest of the paper, P is a simplicial poset with rank P = d. We use the same conventions as in the preceding section;
in particular, A = AP , { y ∈ P | ρ(y) = 1 } = {y1, . . . , yn}, and ti := tyi ∈ A.

For a subsetU ⊂ [n] = { 1, . . . , n }, AU denotes the localization of A by themultiplicatively closed set {
∏

i∈U taii | ai ≥ 0 }.

Lemma 2.1. For x ∈ [U],

ux :=
tx∏

i∈U
ti

∈ AU

is an idempotent. Moreover, ux · ux′ = 0 for x, x′
∈ [U] with x ≠ x′, and

1AU =

−
x∈[U]

ux. (2.1)

Hence, we have a Zn-graded direct sum decomposition

AU =


x∈[U]

AU · ux

(if [U] = ∅, then AU = 0).

Proof. Since
∏

i∈U ti =
∑

x∈[U]
tx in A, the Eq. (2.1) is clear. For x, x′

∈ [U] with x ≠ x′, we have [x ∨ x′
] = ∅ and tx · tx′ = 0.

Hence, ux · ux′ = 0 and

ux = ux · 1AU = ux ·

−
x′′∈[U]

ux′′ = ux · ux.

Now, the last assertion is clear. �

Let Gr A be the category of Zn-graded A-modules, and grA its full subcategory consisting of finitely generated modules.
Here, a morphism f : M → N in Gr A is an A-homomorphism with f (Ma) ⊂ Na for all a ∈ Zn. As usual, for M and a ∈ Zn,
M(a) denotes the shifted module ofM with M(a)b = Ma+b. ForM,N ∈ Gr A,

HomA(M,N) :=


a∈Zn

HomGr A(M,N(a))

has a Zn-graded A-module structure. Similarly, ExtiA(M,N) ∈ Gr A can be defined. If M ∈ grA, the underlying module of
HomA(M,N) is isomorphic to HomA(M,N), and the same is true for ExtiA(M,N).

If M ∈ Gr A, then M∨
:=


a∈Zn Homk(M−a, k) can be regarded as a Zn-graded A-module, and (−)∨ gives an exact

contravariant functor from Gr A to itself, which is called the graded Matlis duality functor. For M ∈ Gr A, it is Matlis reflexive
(i.e.,M∨∨ ∼= M) if and only if dimk Ma < ∞ for all a ∈ Zn.

Lemma 2.2. AU · ux is Matlis reflexive, and EA(x) := (AU · ux)
∨ is injective in Gr A. Moreover, any indecomposable injective in

Gr A is isomorphic to EA(x)(a) for some x ∈ P and a ∈ Zn.

Proof. Clearly, AU ·ux is a Zn-graded free k[ t±1
i | i ∈ U ]-module. For a = (a1, . . . , an) ∈ Zn, let a′

∈ Zn be the vector whose
ith coordinate is

a′

i =


ai if i ∉ U ,
1 otherwise.

Then, we have dimk(AU · ux)a = dimk(A · tx)a′ ≤ dimk Aa′ < ∞, and AU · ux is Matlis reflexive.
The injectivity of EA(x) follows from the same argument as [6, Lemma 11.23]. In fact, we have a natural isomorphism

HomA(M, EA(x)) ∼= (M ⊗A EA(x)∨)∨

forM ∈ Gr A by [6, Lemma 11.16]. Since EA(x)∨ (∼= AU · ux) is a flat A-module, HomA(−, EA(x)) gives an exact functor.
Since EA(x) is the injective envelope of A/px in Gr A, and an associated prime of M ∈ Gr A is px for some x ∈ P , the last

assertion follows. �
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If (AU · ux)−a ≠ 0 for a ∈ Nn, then it is obvious that a ∈ NU (i.e., ai = 0 for i ∉ U). As shown in the proof above, we have
dimk(AU · ux)−a = 1 with t−a

· ux := ux/
∏

i∈U taii ∈ (AU · ux)−a in this case.
ForM ∈ Gr A, its ‘‘Nn-graded part’’M≥0 :=


a∈Nn Ma is a submodule ofM . Then we have a canonical injection

φx : A/px −→ EA(x)

defined as follows. The set of the monomials ta :=
∏

i∈U taii ∈ A/px ∼= k[ ti | i ∈ U ] with a ∈ NU forms a k-basis of A/px
(
∏

i∈U ti = tx here), and φx(ta) ∈ (EA(x))a = Homk( (AU · ux)−a, k ) for a ∈ NU is simply given by t−a
· ux −→ 1. Note that

φx induces the isomorphism

A/px ∼= EA(x)≥0. (2.2)

The Cěch complex C• of A with respect to t1, . . . , tn is of the form

0 → C0
→ C1

→ · · · → Cd
→ 0 with C i

=


U⊂[n]
#U=i

AU

(note that if #U > d = dim A then AU = 0). The differential map is given by

C i
⊃ AU ∋ a −→

−
U ′⊃U

#U ′=i+1

(−1)α(U
′
\U,U)fU ′,U(a) ∈


U ′⊃U

#U ′=i+1

AU ′ ⊂ C i+1,

where fU ′,U : AU → AU ′ is the natural map.
Since the radical of the ideal (t1, . . . , tn) is the graded maximal ideal m := (tx | 0̂ ≠ x ∈ P), the cohomology

H i(C•) of C• is isomorphic to the local cohomology H i
m(A). Moreover, C• is isomorphic to RΓmA in the bounded derived

category Db(Mod A). Here, RΓm : Db(Mod A) → Db(Mod A) is the right derived functor of Γm : Mod A → Mod A given by
Γm(M) = {s ∈ M | mis = 0 for i ≫ 0 }.

The same is true in the Zn-graded context. We may regard Γm as a functor from Gr A to itself, and let ∗RΓm : Db(Gr A) →

Db(Gr A) be its right derived functor. Then C• ∼=
∗RΓm(A) in Db(Gr A).

Let ∗D•

A be the Zn-graded normalized dualizing complex of A. By the Zn-graded version of the local duality theorem [2,
Theorem V.6.2], (∗D•

A)
∨ ∼=

∗RΓm(A) in Db(Gr A). Since ∗D•

A ∈ Db
grA(Gr A), it is Matlis reflexive, and we have

∗D•

A
∼= (∗D•

A)
∨∨ ∼=

∗RΓm(A)∨ ∼= (C•)∨.

Since each (C i)∨ is isomorphic to the injective object
x∈P
ρ(x)=i

EA(x)

in Gr A, (C•)∨ actually coincides with ∗D•

A. Hence,
∗D•

A is of the form

0 →


x∈P

ρ(x)=d

EA(x) →


x∈P

ρ(x)=d−1

EA(x) → · · · → EA(0̂) → 0,

where the cohomological degree is given by the same way as I•A .
For each i ∈ Z, we have an injection φi

: I iA →
∗Di

A given by

I iA =


ρ(x)=−i

A/px ⊃ A/px
φx

−→ EA(x) ⊂


ρ(x)=−i

EA(x) =
∗Di

A.

By the definition of φx : A/px −→ EA(x) = (AU · ux)
∨, we have a cochain map

φ•
: I•A →

∗D•

A.

Lemma 2.3. For all i, the cohomology H i(∗D•

A) of
∗D•

A is Nn-graded.

This lemma immediately follows from Duval’s description of H i
m(A) [1, Theorem 5.9], but we give another proof using

the notion of squarefree modules. This approach makes our proof more self-contained, and we will extend this idea in the
following sections.

Let S = k[x1, . . . , xn] be a polynomial ring, and regard it as a Zn-graded ring. For a = (a1, . . . , an) ∈ Nn, let xa denote
the monomial

∏
xaii ∈ S.

Definition 2.4 ([11]). With the above notation, a Zn-graded S-module M is called squarefree if it is finitely generated, Nn-
graded (i.e., M =


a∈Nn Ma), and the multiplication map Ma ∋ s −→ xis ∈ Ma+ei is bijective for all a = (a1, . . . , an) ∈ Nn

and all i with ai > 0. Here, ei ∈ Nn is the ith unit vector.



K. Yanagawa / Journal of Pure and Applied Algebra 215 (2011) 2231–2241 2235

The following lemma is easy, and we omit the proof.

Lemma 2.5. Consider the polynomial ring T := Sym A1 ∼= k[t1, . . . , tn] (note that T is not a subring of A). Then A is a squarefree
T-module.

Remark 2.6. Since A is a squarefree T -module, Duval’s formula on H i
m(A) immediately follows from [11, Lemma 2.9].

However, since H i
m(A) has a finer ‘‘grading’’ (see [1] or Corollary 3.6 below), the formula will be mentioned in Corollary 4.3.

The proof of Lemma 2.3. Let T be as in Lemma 2.5. For 1 := (1, 1, . . . , 1) ∈ Nn, T (−1) is the (Zn-graded) canonical module
of T . By the local duality theorem, we have

H i(∗D•

A)
∼= ExtiA(A,

∗D•

A)
∼= Extn+i

T (A, T (−1)).

By [11, Theorem 2.6], Extn+i
T (A, T (−1)) is a squarefree module; in particular, Nn-graded. �

The proof of Theorem 1.1. Recall the cochain map φ•
: I•A →

∗D•

A constructed before Lemma 2.3. By (2.2), φ•(I•A) coincides
with (∗D•

A)≥0. Hence, φ• is a quasi-isomorphism by Lemma 2.3. Since ∗D•

A
∼= D•

A in Db(Mod A), we are done. �

3. Squarefree modules over AP

In this section, we will define a squarefree module over the face ring A = AP of a simplicial poset P . For this purpose, we
equip A with a finer ‘‘grading’’, where the index set is no longer a monoid (a similar idea has appeared in [1,8]).

Recall the convention that { y ∈ P | ρ(y) = 1 } = {y1, . . . , yn} and ti = tyi ∈ A. For each x ∈ P , set

M(x) :=


yi≤x

N exi ,

where exi is a basis element. So M(x) ∼= Nρ(x) as additive monoids. For x, z with x ≤ z, we have an injection ιz,x : M(x) ∋

exi → ezi ∈ M(z) of monoids. Set

M := lim
−→
x∈P

M(x),

where the direct limit is taken in the category of sets with respect to ιz,x : M(x) → M(z) for x, z ∈ P with x ≤ z. Note that
M is no longer a monoid. Since all ιz,x is injective, we can regard M(x) as a subset of M. For each a ∈ M, {x ∈ P | a ∈ M(x)}
has the smallest element, which is denoted by σ(a).

We say that a monomial

m =

∏
x∈P

tnxx ∈ A (nx ∈ N)

is standard if { x ∈ P | nx ≠ 0 } is a chain. In this case, set σ(m) := max{ x ∈ P | nx ≠ 0}. If nx = 0 for all x ≠ 0̂, thenm = 1.
Hence, 1 is a standard monomial with σ(1) = 0̂. As shown in [9], the set of standard monomials forms a k-basis of A.

There is a one-to-one correspondence between the elements of M and the standard monomials of A. For a standard
monomial m, set U := { i ∈ [n] | yi ≤ σ(m) }. Then we have σ(m) ∈ [U]. There is a ∈ NU such that the image of m in
A/pσ(m) ∼= k[ ti | i ∈ U ] is a monomial of the form

∏
i∈U taii . So m corresponds to a ∈ M(σ (m)) (=


i∈U N eσ(m)i ) ⊂ M

whose eσ(m)i -coordinate is ai. We denote this m by ta.
Let a, b ∈ M. If [σ(a)∨σ(b)] ≠ ∅, thenwe can take the sum a+b ∈ M(x) for each x ∈ [σ(a)∨σ(b)]. Unless [σ(a)∨σ(b)]

consists of a single element, we cannot define a + b ∈ M. Hence, we denote each a + b ∈ M(x) by (a + b)|x.

Definition 3.1. M ∈ Mod A is said to be M-graded if the following are satisfied.

(1) M =


a∈M Ma as k-vector spaces.
(2) For a, b ∈ M, we have

taMb ⊂


x∈[σ(a)∨σ(b)]

M(a+b)|x.

Hence, if [σ(a) ∨ σ(b)] = ∅, then taMb = 0.

Clearly, A itself is an M-graded module with Aa = k ta. Since there is a natural map M → Nn, an M-graded module can
be seen as an Nn-graded module.

If M is an M-graded A-module, then

M≰x :=


a∉M(x)

Ma
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is an M-graded submodule for all x ∈ P , and

M≤x := M/M≰x

is a Zρ(x)-graded module over A/px ∼= k[ ti | yi ≤ x ].

Definition 3.2. We say that an M-graded A-module M is squarefree if M≤x is a squarefree module over the polynomial ring
A/px ∼= k[ ti | yi ≤ x ] for all x ∈ P .

Note that squarefree A-modules are automatically finitely generated, and can be seen as squarefree modules over
T = Sym A1.

Clearly, A itself, and px and A/px for x ∈ P , are squarefree. Let Sq A be the category of squarefree A-modules and their
A-homomorphisms f : M → M ′ with f (Ma) ⊂ M ′

a for all a ∈ M. For example, I•A is a complex in Sq A. To see the basic
properties of Sq A, we introduce the incidence algebra of the poset P as in [13] (see [13] for further information).

The incidence algebra Λ of P over k is the finite-dimensional associative k-algebra with basis { ex,y | x, y ∈ P, x ≥ y }

whose multiplication is defined by

ex,y · ez,w = δy,z ex,w,

where δy,z denotes Kronecker’s delta.
Set ex := ex,x for x ∈ P . Each ex is an idempotent, andΛex is indecomposable as a leftΛ-module. Clearly, ex · ey = 0 for

x ≠ y, and 1A =
∑

x∈P ex. Let modΛ be the category of finitely generated leftΛ-modules. As a k-vector space, N ∈ modΛ
has the decomposition N =


x∈P exN . Henceforth, we set Nx := exN . Clearly, ex,yNy ⊂ Nx, and ex,yNz = 0 if y ≠ z.

For each x ∈ P , we can construct a leftΛ-module as follows. Set

EΛ(x) :=


y∈P, y≤x

k ēy,

where the ēy are basis elements. The module structure of EΛ(x) is defined by

ez, w · ēy =


ēz ifw = y and z ≤ x;
0 otherwise.

Then EΛ(x) is indecomposable and injective in modΛ. Conversely, any indecomposable injective is of this form. Moreover,
modΛ is an Abelian category with enough injectives, and the injective dimension of each object is at most d.

Proposition 3.3. There is an equivalence between Sq A and modΛ. Hence, Sq A is an Abelian category with enough injectives,
and the injective dimension of each object is at most d. An object M ∈ Sq A is an indecomposable injective if and only if M ∼= A/px
for some x ∈ P.

Proof. LetN ∈ modΛ. To each a ∈ M, we assign a k-vector spaceMa with a bijectionµa : Nσ(a) → Ma. We put anM-graded
A-module structure onM :=


a∈M Ma by

ta s =

−
x∈[σ(a)∨σ(b)]

µ(a+b)|x(ex,σ (b) · µ−1
b (s)) for s ∈ Mb.

To see thatM is actually an A-module, note that both (ta tb) s and ta (tb s) equal−
x∈[σ(a)∨σ(b)∨σ(c)]

µ(a+b+c)|x(ex,σ (c) · µ−1
c (s)) for s ∈ Mc.

We can also show thatM is squarefree.
To construct the inverse correspondence, for x ∈ P with r = ρ(x), set a(x) := (r, r, . . . , r) ∈ Nr ∼= M(x) ⊂ M. If

x ≥ y, then there is a(x) − a(y) ∈ M(x) ⊂ M such that ta(x)−a(y)
· ta(y) = ta(x). (One might think a simpler definition

a(x) := (1, 1, . . . , 1) ∈ Nr works. However, this is not true. In this case, the candidate of a(x)−a(y) belongs toM(z) for some
z ∈ P with z < x. So (a(x)−a(y))+a(y)does not exist, unless #[y∨z] = 1.) Nowwe can constructN ∈ modΛ fromM ∈ Sq A
as follows. Set Nx := Ma(x), and define the multiplication map Ny ∋ s → ex,y · s ∈ Nx by Ma(y) ∋ s → ta(x)−a(y)s ∈ Ma(x) for
x, y ∈ P with x ≥ y.

By this correspondence, we have Sq A ∼= modΛ. For the last statement, note that EΛ(x) ∈ modΛ corresponds to
A/px ∈ Sq A. �

Let Inj-Sq be the full subcategory of Sq A consisting of all injective objects, that is, finite direct sums of copies of A/px for
various x ∈ P . As is well known, the bounded homotopy category Kb(Inj-Sq) is equivalent to Db(Sq A). Since

HomA(A/px, A/py) =


A/py if x ≥ y,
0 otherwise,

we have Hom•

A(J
•, I•A) ∈ Kb(Inj-Sq) for all J• ∈ Kb(Inj-Sq). Moreover, Hom•

A(−, I
•

A) gives a functor

D : Kb(Inj-Sq) → Kb(Inj-Sq)op.
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Proposition 3.4. Via the forgetful functorU : Inj-Sq → grA,D coincideswithRHomA(−,
∗D•

A). More precisely, we have a natural
isomorphism

Φ : U ◦ D
∼=

−→ RHomA(−,
∗D•

A) ◦ U.

Here, both U ◦ D and RHomA(−,
∗D•

A) ◦ U are functors from Kb(Inj-Sq) to Db(grA).

Proof. The cochain map φ•
: I•A →

∗D•

A induces the natural transformation Φ . It remains to prove that Φ(J•) : D(J•) →

RHomA(J
•, ∗D•

A) is a quasi-isomorphism for all J• ∈ Kb(Inj-Sq). For this fact, we use a similar argument to the final steps
of the previous section (while the same argument as the proof of [8, Proposition 5.4] also works here). Note that J• is a
complex of squarefree modules over the polynomial ring T := Sym A1. Since RHomA(J

•, ∗D•

A)
∼= RHomT (J

•, ∗D•

T ) by the
local duality theorem, the cohomologies of RHomA(J

•, ∗D•

A) are squarefree T -modules, in particular, Nn-graded. On the other
hand, throughΦ , D(J•) is isomorphic to the Nn-graded part of RHomA(J

•, ∗D•

A). �

Remark 3.5. By the equivalence Kb(Inj-Sq) ∼= Db(Sq A), D can be regarded as a contravariant functor from Db(Sq A) to itself.
Then, through the equivalence Sq R ∼= modΛ, D coincides with the functor D : Db(modΛ) → Db(modΛ)op defined in [13]
up to translation. Hence, for M•

∈ Db(Sq A), the complex D(M•) has the following description. The term of cohomological
degree p is

D(M•)p :=


i+ρ(x)=−p

(M i
a(x))

∗
⊗k A/px,

where (−)∗ denotes the k-dual, and a(x) ∈ M(x) ⊂ M is the one defined in the proof of Proposition 3.3. The differential is
given by

(M i
a(x))

∗
⊗k A/px ∋ f ⊗ 1A/px −→

−
y≤x,

ρ(y)=ρ(x)−1

ϵ(x, y) · fy ⊗ 1A/py + (−1)p · f ◦ ∂ i−1
M• ⊗ 1A/px ,

where fy ∈ (Ma(y))
∗ denotes Ma(y) ∋ s → f (ta(x)−a(y)

· s) ∈ k, and ϵ(x, y) is the incidence function. We also have
D ◦ D ∼= idDb(Sq A).

Since H−i(D(M)) ∼= Ext−i
A (M,

∗D•

A)
∼= H i

m(M)
∨ in Gr A, we have the following.

Corollary 3.6. If M ∈ Sq A, then the local cohomology H i
m(M)

∨ can be seen as a squarefree A-module.

4. Sheaves and Poincaré–Verdier duality

The results in this section are parallel to those in [8, Section 6] (or the earlier work [12]). Although the relation between
the rings treated there and our AP is not so direct, the argument is very similar. So we omit the detail of some proofs here.

Recall that a simplicial poset P gives a regular cell complex Γ (P). Let X be the underlying space of Γ (P), and c(x) the
open cell corresponding to 0̂ ≠ x ∈ P . Hence, for each x ∈ P with ρ(x) ≥ 2, c(x) is a subset of X homeomorphic to Rρ(x)−1 (if
ρ(x) = 1, then c(x) is a single point), and X is the disjoint union of the cells c(x). Moreover, x ≥ y if and only if c(x) ⊃ c(y).

As in the preceding section, let Λ be the incidence algebra of P , and modΛ the category of finitely generated left Λ-
modules. In [13], we assigned the constructible sheafNĎ on X toN ∈ modΛ. By the equivalence Sq A ∼= modΛ, we have the
constructible sheaf M+ on X corresponding to M ∈ Sq A. Here, we give a precise construction for the reader’s convenience.
For the sheaf theory, consult [3].

ForM ∈ Sq A, set

Spé(M) :=


0̂≠x∈P

c(x)× Ma(x),

where a(x) ∈ M(x) ⊂ M is the one defined in the proof of Proposition 3.3. Let π : Spé(M) → X be the projection map
which sends (p,m) ∈ c(x) × Ma(x) ⊂ Spé(M) to p ∈ c(x) ⊂ X . For an open subset U ⊂ X and a map s : U → Spé(M), we
will consider the following conditions.

(∗) π ◦ s = idU and sp = ta(x)−a(y)
· sq for all p ∈ c(x) ∩ U , q ∈ c(y) ∩ U with x ≥ y. Here, sp ∈ Ma(x) (resp. sq ∈ Ma(y)) is

the element with s(p) = (p, sp) (resp. s(q) = (q, sq)).
(∗∗) There is an open covering U =


i∈I Ui such that the restriction of s to Ui satisfies (∗) for all i ∈ I .

Now we define a sheafM+ on X as follows. For an open set U ⊂ X , set

M+(U) := { s | s : U → Spé(M) is a map satisfying (∗∗) },

and let the restriction mapM+(U) → M+(V ) for U ⊃ V be the natural one. It is easy to see thatM+ is a constructible sheaf
with respect to the cell decomposition Γ (P). For example, A+ is the k-constant sheaf kX on X , and (A/px)+ is (the extension
to X of) the k-constant sheaf on the closed cell c(x).
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Let Sh(X) be the category of sheaves of finite- dimensional k-vector spaces on X . The functor (−)+ : Sq A → Sh(X) is
exact.

As mentioned in the previous section, D : Db(Sq A) → Db(Sq A)op corresponds to T ◦ D : Db(modΛ) → Db(modΛ)op,
where D is the one defined in [13], and T is the translation functor (i.e., T(M•)i = M i+1). Through (−)Ď : modΛ → Sh(X),
D gives the Poincaré–Verdier duality on Db(Sh(X)), so we have the following.

Theorem 4.1. For M•
∈ Db(Sq A), we have

T−1
◦ D(M•)+ ∼= RHom((M•)+,D•

X )

inDb(Sh(X)). In particular, T−1((I•A)
+) ∼= D•

X , where I•A is the complex constructed in Theorem 1.1, andD•

X is the Verdier dualizing
complex of X with coefficients in k.

The next result follows from results in [13] (see also [8, Theorem 6.2]).

Theorem 4.2. For M ∈ Sq A, we have the decomposition H i
m(M) =


a∈M H i

m(M)−a by Corollary 3.6. Note that M has the
element 0. Then the following hold.

(a) There is an isomorphism

H i(X,M+) ∼= H i+1
m (M)0 for all i ≥ 1,

and an exact sequence

0 → H0
m(M)0 → M0 → H0(X,M+) → H1

m(M)0 → 0.

(b) If 0 ≠ a ∈ M with x = σ(a), then

H i
m(M)−a ∼= H i−1

c (Ux,M+
|Ux)

for all i ≥ 0. Here, Ux =


z≥x c(z) is an open set of X, and H•
c (−) stands for the cohomology with compact support.

Let H̃ i(X; k) denote the ith reduced cohomology of X with coefficients in k. That is, H̃ i(X; k) ∼= H i(X; k) for all i ≥ 1, and
H̃0(X; k)⊕ k ∼= H0(X; k), where H i(X; k) is the usual cohomology of X .

Corollary 4.3 (Duval [1, Theorem 5.9]). We have

[H i
m(A)]0 ∼= H̃ i−1(X; k) and [H i

m(A)]−a ∼= H i−1
c (Ux; k)

for all i ≥ 0 and all 0 ≠ a ∈ M with x = σ(a).
For this a ∈ M (but a can be 0 here), [H i

m(A)]−a is also isomorphic to the ith cohomology of the cochain complex

K •

x : 0 → Kρ(x)x → Kρ(x)+1
x → · · · → K d

x → 0 with K i
x =


z≥x
ρ(z)=i

k bz

(bz is a basis element) whose differential map is given by

bz −→

−
w≥z

ρ(w)=ρ(z)+1

ϵ(w, z) bw.

Duval uses the latter description, and he denotes H i(K •
x ) by H i−ρ(x)−1(lk x).

Proof. The former half follows from Theorem 4.2 by the same argument as [8, Corollary 6.3]. The latter part follows because
H i

m(A) ∼= H−i(D(A))∨ and (D(A)∨)−a = K •
x as complexes of k-vector spaces. �

Theorem 4.4 (c.f. Duval [1]). Set d := rank P = dim X + 1. Then we have the following.

(a) A is Cohen–Macaulay if and only if H i(D•

X ) = 0 for all i ≠ −d + 1, and H̃ i(X; k) = 0 for all i ≠ d − 1.
(b) Assume that A is Cohen–Macaulay and d ≥ 2. Then A is Gorenstein* if and only if H−d+1(D•

X )
∼= kX . (When d = 1, A is

Gorenstein* if and only if X consists of exactly two points.)
(c) A is Buchsbaum if and only if H i(D•

X ) = 0 for all i ≠ −d + 1.
(d) Set

di :=


dim(suppH−i(D•

X )) if H−i(D•

X ) ≠ 0,
−1 if H−i(D•

X ) = 0 and H̃ i(X; k) ≠ 0,
−∞ if H−i(D•

X ) = 0 and H̃ i(X; k) = 0.

Here, suppF = { p ∈ X | Fp ≠ 0 } for a sheaf F on X. Then, for r ≥ 2, A satisfies Serre’s condition (Sr) if and only if
di ≤ i − r for all i < d − 1.

Hence, the Cohen–Macaulay (resp. Gorenstein*, Buchsbaum) property and Serre’s condition (Sr) of A are topological properties of
X, while they may depend on char(k).
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As far as the author knows, even in the Stanley–Reisner ring case, (d) has not been mentioned in literature yet.
Recall that we say that A satisfies Serre’s condition (Sr) if depth Ap ≥ min{ r, ht p } for all prime ideal p of A. The next fact

is well known to the specialist, but we will sketch the proof here for the reader’s convenience.

Lemma 4.5. For r ≥ 2, A satisfies the condition (Sr) if and only if dimH−i(I•A) ≤ i − r for all i < d. Here, the dimension of the 0
module is −∞.

Proof. For a prime ideal p, the normalized dualizing complex of Ap is quasi-isomorphic to T− dim A/p(I•A ⊗A Ap). Hence, we
have

depth Ap = min{ i | (H−i(I•A)⊗A Ap) ≠ 0 } − dim A/p. (4.1)

Recall that, if A satisfies Serre’s condition (S2), then P is pure (equivalently, dim A/p = d for all minimal prime ideal p).
Similarly, if dimH−i(I•A) < i for all i < d, then P is pure. (In fact, if p is a minimal prime ideal of A with i := dim A/p < d,
then depth Ap = 0 implies that p is a minimal prime of H−i(I•A). It follows that dimH−i(I•A) = i. This is a contradiction.) So
we may assume that P is pure, and hence dim A/p + ht p = d for all p. Now, the assertion follows from (4.1). �

The proof of Theorem 4.4. We can prove (a)–(c) in the same way as [8, Theorems 6.4 and 6.7]. For (d), note that dj =

dimH−j−1(I•A)− 1. So the assertion follows from Lemma 4.5. �

5. Further discussion

This section is a collection of miscellaneous results related to the arguments in the previous sections.
For an integer i ≤ d − 1, the poset

P (i) := { x ∈ P | ρ(x) ≤ i + 1 }

is called the i-skeleton of P . Clearly, P (i) is simplicial again, and set A(i) := AP(i) . Then it is easy to see that the (Theorem 1.1
type) dualizing complex I•

A(i)
of A(i) coincides with the brutal truncation

0 → I−i−1
A → I−i

A → · · · → I0A → 0

of I•A . Since depth A = min{ i | H−i(I•A) ≠ 0 } and dim A = max{ i | H−i(I•A) ≠ 0 }, we have the equation

depth AP = 1 + max{ i | A(i) is Cohen–Macaulay }, (5.1)

which is [1, Corollary 6.5].
Contrary to the Gorenstein* property, the Gorenstein property of AP is not topological. This phenomenon occurs even

for Stanley–Reisner rings. But there is a characterization of P such that AP is Gorenstein. For posets P1, P2, we regard
P1 × P2 = { (x1, x2) | x1 ∈ P1, x2 ∈ P2 } as a poset by (x1, x2) ≥ (y1, y2)

def
⇐⇒ xi ≥ yi in Pi for each i = 1, 2.

Proposition 5.1. AP is Gorenstein if and only if P ∼= 2V
×Q as posets for a Boolean algebra 2V and a simplicial poset Q such that

AQ is Gorenstein*.

Proof. The sufficiency is clear. In fact, if P ∼= 2V
× Q , then A := AP is a polynomial ring over AQ . So it remains to prove the

necessity.
Recall that A is a squarefree module over the polynomial ring T := Sym A1 (Lemma 2.5). We say that a = (a1, . . . , an) ∈

Nn is squarefree if ai = 0, 1 for all i. If this is the case, we identify a with the subset { i | ai = 1 } ⊂ [n]. Hence, a subset
F ⊂ [n] sometimes means the corresponding squarefree vector in Nn.

Since A is Gorenstein (in particular, Cohen–Macaulay) now, a minimal Zn-graded T -free resolution of A is of the form

L• : 0 → Ln−d → · · · → L1 → L0 → 0 with Li =


F⊂[n]

T (−F)βi,F

by [11, Corollary 2.4].
Let 1 := (1, 1, . . . , 1) ∈ Nn. Note that Hom•

T (L•, T (−1)) is a minimal Zn-graded T -free resolution of the canonical
module ωA = Extn−d

T (A, T (−1)) of A up to translation, and ωA ∼= A(−V ) for some V ⊂ [n]. Set W := [n] \ V . Since
HomT (T (−F), T (−1)) ∼= T (−([n] \ F)), we have the following.
(∗) If βi,F ≠ 0 for some i, then F ⊂ W .
If [V ] = [


i∈V yi] = ∅, then, by the construction of A, there is some F ⊂ V with β1,F ≠ 0, and this contradicts the

statement (∗). If #[V ] ≥ 2, then β0,V ≠ 0, and this is a contradiction again. Hence, [V ] = {x} for some x ∈ P . We denote the
closed interval [0̂, x] by 2V .

Set

Q := { z ∈ P | z ≱ yi for all i ∈ V } =


U⊂W

[U].
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If #[x′
∨ z] ≠ 1 for some x′

∈ 2V and z ∈ Q , then βi,F ≠ 0 for i = 1 or 0 and for some F with F ∩ V ≠ ∅, and it contradicts
(∗). Hence, for all x′

∈ 2V and z ∈ Q , we have #[x′
∨ z] = 1. Denoting the element of [x′

∨ z] by x′
∨ z, we have an

order-preserving map

ψ : 2V
× Q ∋ (x′, z) −→ x′

∨ z ∈ P.

Moreover, since P =


U⊂[n][U], ψ is an isomorphism of posets, and we have

P ∼= 2V
× Q .

Clearly, Q is a simplicial poset. Set B := AQ . Since A ∼= B[ ti | i ∈ V ] and

A(−V ) ∼= ωA ∼= (ωB[ ti | i ∈ V ])(−V ),

B is Gorenstein*. �

LetΣ be a finite regular cell complex with the underlying topological space X(Σ), and Y , Z ⊂ X(Σ) closed subsets with
Y ⊃ Z ≠ ∅. Set U := Y \ Z , and let h : U ↩→ Y be the embedding map. We can define the Cohen–Macaulay property of the
pair (Y , Z), which generalizes the Cohen–Macaulay property of a relative simplicial complex introduced in [10, III. Section
7]. See Lemma 5.3 below.
Definition 5.2. We say that the pair (Y , Z) is Cohen–Macaulay (over k) if H i

c(U; k) = 0 for all i ≠ dimU and Rih∗D
•

U = 0
for all i ≠ − dimU . Here, D•

U is the Verdier dualizing complex of U with coefficients in k.
We say that an ideal I ⊂ A is squarefree if it is squarefree as an A-module. For a squarefree ideal I , σ(I) := { x ∈ P | tx ∈ I }

is an order filter (i.e., x ∈ σ(I) and y ≥ x imply that y ∈ σ(I)), and UI :=


x∈σ(I) c(x) is an open set of X . The sheaf I+ is (the
extension to X of) the k-constant sheaf on UI .
Proposition 5.3. (1) A squarefree ideal I with I ( m is a Cohen–Macaulay module if and only if (UI , UI \UI) is Cohen–Macaulay

in the sense of Definition 5.2.
(2) The sequentially Cohen–Macaulay (see [10, III. Definition 2.9]) property of A depends only on X (and char(k)).
Proof. (1) Set U := UI , and let h : U → U be the embedding map. The assertion follows from the fact that T−1(D(I)+|U)

∼=

Rh∗D
•

U and [H−i(D(I))]0 ∼= H i−1
c (U; k) by [13] (see also [12, Proposition 4.10] and its proof).

(2) Follows from (1) by the same argument as [14, Theorem 4.7]. �

Remark 5.4. While it is not stated in [8], the statements corresponding to Lemma 4.4, Eq. (5.1), and Proposition 5.3 hold for
a cone-wise normal toric face ring.

As in [13], we regard the finite regular cell complex Σ as a poset by σ ≥ τ
def

⇐⇒ σ ⊃ τ . Here, we use the convention
that ∅ ∈ Σ . We say that Σ is a meet-semilattice (or, satisfies the intersection property) if the largest common lower bound
σ ∧ τ ∈ Σ exists for all σ , τ ∈ Σ . It is easy to see thatΣ is a meet-semilattice if and only if #[σ ∨ τ ] ≤ 1 for all σ , τ ∈ Σ .
The underlying cell complex of a toric face ring (especially, a simplicial complex) is a meet-semilattice.

For σ ∈ Σ , let Uσ be the open subset

τ≥σ τ of X(Σ). As shown in [13], if X(Σ) is Cohen–Macaulay and Σ is

a meet-semilattice, then (Uσ , Uσ \ Uσ ) is Cohen–Macaulay for all σ . (If Σ is not a meet-semilattice, we have an easy
counterexample.)While a simplicial poset P is not ameet-semilattice in general, the above fact remains true.We also remark
that an indecomposable projective in Sq A is isomorphic to the ideal Jx := (ty | y ≥ x) ⊂ A for some x ∈ P .
Proposition 5.5. If A is Cohen–Macaulay (resp. Buchsbaum), then the ideal Jx := (ty | y ≥ x) is a Cohen–Macaulay module for
all x ∈ P (resp. for all 0̂ ≠ x ∈ P).
Proof. Let a ∈ M with σ(a) = y. With the notation of Proposition 4.3, recall that

RΓmA ∼= (D(A)∨)−a ∼= K •

y .

Similarly, we have

RΓmJx ∼= (D(Jx)∨)−a ∼=


z∈[x∨y]

K •

z .

To see the second isomorphism, note that, ifw ≥ x, y, then there exists a unique z ∈ [x ∨ y] such thatw ≥ z.
If A is Cohen–Macaulay (resp. Buchsbaum), then H i

m(A)−a ∼= H i(RΓmA)−a = 0 for all i < d and all a ∈ M (resp.
0 ≠ a ∈ M). Hence, we are done. �

Regarding A = AP as a Z-graded ring, we have−
i≥0

(dimk Ai) · λi =
h0 + h1λ+ · · · + hdλ

d

(1 − λ)d
,

for some integers h0, h1, . . . , hd by [9, Proposition 3.8]. We call (h0, . . . , hd) the h-vector of P . The behavior of the h-vectors
of simplicial complexes is an important subject of combinatorial commutative algebra. The h-vector of a simplicial poset
has also been studied, and striking results are given in [10,4].
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Recently, Murai and Terai gave nice results on the h-vector of a simplicial complex∆ such that the Stanley–Reisner ring
k[∆] satisfies Serre’s condition (Sr). We show that one of them also holds for simplicial posets.

Theorem 5.6 (see Murai–Terai [7, Theorem 1.1]). Let P be a simplicial poset with the h-vector (h0, h1, . . . , hd). If A satisfies
Serre’s condition (Sr), then hi ≥ 0 for all i ≤ r.

Proof. By virtue of Lemma 2.5, we can imitate the proof of [7, Theorem 1.1].
Let ∆ be a simplicial complex with the vertex set [n], S = k[x1, . . . , xn] the polynomial ring, and k[∆] = S/I∆ the

Stanley–Reisner ring of ∆. To prove our theorem, we replace k[∆] and S in their argument by A = AP and T = Sym A1,
respectively. In the former half of the proof, they treat k[∆] as just a finitely generated graded S-module, and the argument
is clearly applicable to our A and T . The latter half of their proof is based on the fact that ExtiS(k[∆], S(−1)) is a squarefree
S-module of dimension at most n − i − r . Hence, if the following holds, the argument in [7] works in our case.

Claim. ExtiT (A, T (−1)) is a squarefree T-module of dimension at most n − i − r.

The proof is easy. In fact, the squarefreeness follows from Lemma 2.5 and [11, Theorem 2.6]. Moreover, since
ExtiT (A, T (−1)) ∼= Ext−n+i

A (A, ∗D•

A)
∼= H−n+i(I•A) by the local duality, we have ExtiT (A, T (−1)) ≤ n − i − r by Lemma 4.5. �
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