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We analyze the thermodynamical properties of black holes in a modified theory of gravity, which 
was initially proposed to obtain correct dynamics of galaxies and galaxy clusters without dark matter. 
The thermodynamics of non-rotating and rotating black hole solutions resembles similar solutions in 
Einstein–Maxwell theory with the electric charge being replaced by a new mass dependent gravitational 
charge Q = √

αG N M . This new mass dependent charge modifies the effective Newtonian constant from 
G N to G = G N (1 + α), and this in turn critically affects the thermodynamics of the black holes. We also 
investigate the thermodynamics of regular solutions, and explore the limiting case when no horizons 
forms. So, it is possible that the modified gravity can lead to the absence of black hole horizons in our 
universe. Finally, we analyze corrections to the thermodynamics of a non-rotating black hole and obtain 
the usual logarithmic correction term.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

General relativity is one of the most successful and well-tested 
theories of gravitation to date. Nevertheless, there is still motiva-
tion to modify the framework at large scales. One of the main rea-
sons is the discrepancy between the observed dynamics of galaxies 
and clusters of galaxies and the amount of luminous matter these 
galaxies and clusters contain [1–3]. This is usually explained by 
postulating the existence of exotic dark matter. To date, no dark 
matter particle candidates have been detected in laboratory ex-
periments or in satellite missions. An alternative resolution to the 
problem of the galaxy and galaxy cluster dynamics is a modifica-
tion of the laws of gravitation on scales where Newtonian gravity 
or general relativity (GR) have not been extensively tested. One 
such framework called MOG (MOdified Gravity) [4] has been able 
to explain the dynamics of galaxies and galaxy clusters without the 
need for dark matter in the present epoch of the universe [5–8].

In one version of the MOG formulation called the Scalar-Tensor-
Vector Gravity (STVG) theory [4], the field content of general rel-
ativity has been increased to include scalar fields and a massive 
vector field. It has been used to describe the growth of structure, 
the matter power spectrum and the cosmic microwave background 
(CMB) acoustical power spectrum data in the early universe [9,10]. 
Solar system experiments are also in accordance with MOG [11], 
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and the dynamics of the Bullet Cluster has been explained with-
out dark matter [12]. It may be noted that even though MOG fits 
the galaxy rotation curves like the phenomenological MOND [13], 
the advantage of using MOG is that it is constructed from a fully 
covariant modification of the Einstein–Hilbert action in GR. Thus, 
it is possible to apply MOG to cases where the gravitational field 
is strong, and the weak field approximation breaks down. It may 
be noted that there are various other ways to obtain the modi-
fied Newtonian potential from a covariant formalism. In fact, one 
such approach proposed by Bekenstein, called Tensor-Vector-Scalar 
(TeVeS) gravity produces MOND in the weak field approxima-
tion [14].

In this paper, we will analyze black hole thermodynamics in 
MOG. It may be noted that an entropy has to be associated with 
black holes in order to prevent the violation of the second law 
of thermodynamics [15,16]. Black holes also have a temperature 
and they evaporate due to Hawking radiation. However, it has 
been demonstrated that the evaporation of asymptotically de Sitter 
black holes (whose size is comparable to that of the cosmological 
horizon) differs significantly from the evaporation of asymptoti-
cally flat black holes [17]. In fact, it has been observed that it is 
possible for quantum Schwarzschild-de Sitter black holes to anti-
evaporate. The evaporation and anti-evaporation of black holes has 
also been analyzed in f (T ) gravity [18] and F (R) gravity [19]. The 
black hole entropy gets generalized to Wald entropy [20–23]. The 
entropy formula can be used to compute the entropy of a black 
hole in any modified theory of gravity. The black hole entropy has 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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been studied in Gauss–Bonnet gravity [24,25], and Lovelock grav-
ity [26,27]. The black hole thermodynamics has also been studied 
in massive gravity [28,29].

The black holes have more entropy than any other object of the 
same volume [30,31], and this maximum entropy scales with the 
area of the black hole [32]. This observation has led to the de-
velopment of the holographic principle [33,34]. However, as the 
black holes get smaller in size due to Hawking radiation, quantum 
fluctuations are expected to correct the standard relation between 
the area and the entropy of a black hole. This in turn can modify 
the holographic principle [35,36]. Such corrections have been eval-
uated using several different approaches. Non-perturbative quan-
tum general relativity has been used to calculate the density of 
microstates for asymptotically flat black holes [37]. Here, the den-
sity of states has been obtained by using a suitable conformal 
field theory. It has been demonstrated using the Cardy formula 
that all black holes whose microscopic degrees of freedom are 
described by a conformal field theory will have logarithmic cor-
rections [38,39]. The exact partition function has been computed 
for BTZ black holes, and the logarithmic corrections have been ob-
tained from an exact partition function [38]. Such correction have 
also been obtained using matter fields in backgrounds of a black 
hole [40–42]. The logarithmic corrections are also produced from 
string theoretical effects [43–47]. Such corrections can also be gen-
erated from thermal fluctuations that occur in the thermodynamics 
of black holes [48,49]. We will analyze the corrections due to ther-
mal fluctuations for a MOG black hole, and observe that a MOG 
black hole also receives logarithmic corrections.

In this paper, we will focus on static and rotating black hole 
solutions in MOG [50,51], and will analyze their thermodynamics 
in the standard fashion. We show that the Hawking temperature 
and evaporation profile of the static MOG black hole is significantly 
modified over the standard Schwarzschild case. The rotating black 
hole is shown to admit remnant behavior. We also present cor-
rections to our derived thermodynamic expressions, and find the 
usual logarithmic form.

2. Modified gravity action and field equations

The action in the STVG formulation of MOG can be written 
as [4]:

S = SG + Sφ + S S + SM . (1)

Here, SG is the original Einstein–Hilbert gravity action, Sφ is the 
action of a massive vector field φμ , S S is the action of scalar fields 
and SM is the action for pressure-less matter:

SG = 1

16π

∫
1

G
(R + 2�)

√−g d4x, (2)

Sφ = − 1

4π

∫ [
K + V (φμ)

]√−g d4x, (3)

S S =
∫

1

G

[1

2
gαβ

(∇αG∇β G

G2
+ ∇αμ∇βμ

μ2

)

− V G(G)

G2
− Vμ(μ)

μ2

]√−g d4x, (4)

SM = −
∫

(ρ
√

uμuμ + Q uμφμ)
√−g d4x + Jμφμ, (5)

where R = gμν Rμν , g = det(gμν), ∇μ is the covariant derivative 
with respect to the metric gμν , the V s are potential contributions 
to the action and we use units for which c = 1 and the metric 
signature is (+, −, −, −). Moreover, K is the kinetic term for the 
φμ field. It is possible to choose it to be the usual kinetic term for
a vector field,

K = 1

4
BμνBμν, (6)

where

Bμν = ∂μφν − ∂νφμ. (7)

The STVG field equations are given by [4]:

Gμν − �gμν + Q μν = −8πGTμν, (8)

where

Q μν = G(�
gμν − ∇μ∇ν
), (9)

where Gμν = Rμν − 1/2gμν R , � is the cosmological constant and 

 = 1/G .

The field equations for Bμν are given by

∇ν Bμν + ∂V (φμ)

∂φμ
= − Jμ, (10)

and

∇σ Bμν + ∇μBνσ + ∇ν Bμσ = 0. (11)

Moreover, we have the field equations

�G = K (x), (12)

�μ = L(x), (13)

where � = ∇α∇α and

K (x) =
(

16π

3 + 16π

)[
3

8πG
(1 + 4π)∇αG∇αG − G

2μ2
�μ

+ 1

2
G2

(
T + �

4πG

)
+ 1√

αG N
T Mμνuνφμ

]
, (14)

and

L(x) = 1

G
∇αG∇αμ + 2

μ
∇αμ∇αμ + μ2G

∂V (φμ)

∂μ
. (15)

The covariant current density is defined to be

Jμ = κT Mμνuν, (16)

where T Mμν is the energy-momentum tensor for matter and κ =√
αG N , α = (G −G N )/G N is a scalar field, G N is Newton’s constant, 

uμ = dxμ/ds and s is the proper time along a particle trajectory. 
The perfect fluid energy-momentum tensor for matter is given by

T Mμν = (ρM + pM)uμuν − pM gμν, (17)

where ρM and pM are the density and pressure of matter, respec-
tively. We get from (16) and (17) by using uνuν = 1:

Jμ = κρM uμ. (18)

The gravitational source charge is given by

Q = κ

∫
d3x J 0(x). (19)

The values Q = √
αG N M and G = G N (1 + α) originate in 

the weak field approximation of the STVG field equations. The 
weak field approximation is based on a perturbation about the 
Minkowski metric ημν :

gμν = ημν + λhμν. (20)
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The test particle equation of motion is given by

d2xμ

ds2
+ �μ

αβ

dxα

ds

dxβ

ds
= q

m
Bμ

ν
dxν

ds
, (21)

where m and q = √
αG Nm are the test particle mass and gravita-

tional charge, respectively, and φμ = (φ0, φi) (i = 1, 2, 3). Assuming 
that V (φμ) is given by

V (φμ) = −1

2
μ2φμφμ, (22)

and ∂νφν = 0, the weak field spherically symmetric static, source-
free solution for φ0(r) is obtained from the equation (φ′

0 = dφ0/dr):

φ′′
0 + 2

r
φ′

0 − μ2φ0 = 0. (23)

The solution is given by

φ0(r) = −Q
exp(−μr)

r
, (24)

where the gravitational charge Q = √
αG N M and M is the mass of 

the source particle.
In the slow motion and weak field approximation, dr/ds ∼ dr/dt

and 2GM/r � 1, and for the radial acceleration of the test particle 
we get

d2r

dt2
+ GM

r2
= qQ

m

exp(−μr)

r2
(1 + μr). (25)

For qQ /m = αG N M and G = G N (1 + α), the modified Newtonian 
acceleration law for a point particle is given by [4]:

a(r) = − G N M

r2
[1 + α − α exp(−μr)(1 + μr)]. (26)

We observe that the acceleration of a particle is independent of its 
material content (weak equivalence principle). We can rewrite this 
modified acceleration equation as

a(r) = −G(r)M

r2
, (27)

where the effective gravitational coupling strength is given by

G(r) = G N [1 + α − α exp(−μr)(1 + μr)]. (28)

In our generalized gravitational theory electromagnetic waves 
(photons) and gravitational waves (gravitons) move with the speed 
of light [11]. The range of values of the parameter α for weak 
gravitational fields is locally dependent on the size scale of the as-
trophysical objects being investigated. A photon path is determined 
by a null geodesic and the weak field solar system bending of light 
and the Shapiro time delay experimental data are in agreement 
with GR for the parameter α having the bound α � 1 [4]. The 
perihelion advance of the planet Mercury’s orbit is in agreement 
with GR for α � 1 [4]. The enhanced gravitational interaction ex-
perienced by photons at the scale of galaxies and galactic clusters 
leads to an explanation of gravitational lensing data without dark 
matter for α > 1.

In the following, we will use the matter-free MOG field equa-
tions [50,51]:

Gμν = −8πGTφμν, (29)

∇ν Bμν = 0, (30)

∇σ Bμν + ∇μBνσ + ∇ν Bμσ = 0. (31)
The energy-momentum tensor of matter T Mμν in the gravitational 
field equations has been set equal to zero and we have

Tφμν = − 1

4π
(Bμ

α Bνα − 1

4
gμν Bαβ Bαβ). (32)

We have set the cosmological constant � to zero and neglected 
the vector field φμ mass μ. The best fits to galaxy and cluster 
dynamics yielded μ = 0.042 kpc−1 corresponding to a mass mφ =
2.6 × 10−28 eV [5,6]. This tiny mass can be neglected for the black 
holes solutions considered in the following.

There is no reason to choose the usual kinetic term for the vec-
tor field φμ; it is possible to consider a non-linear kinetic term. 
Even though such a kinetic term will reduce to the usual kinetic 
term in the low energy limit, it can affect the behavior of black 
hole solutions. It is possible to consider general non-linear kinetic 
K terms [52–58]:

K = f (B), (33)

where

B = Bμν Bμν. (34)

A regular black hole solution has been constructed by coupling 
the Einstein action to a non-linear electromagnetic field [52]. In 
fact, such a non-linear kinetic term has also been used in MOG 
for constructing regular black hole solutions [50]. We will explic-
itly consider such a non-linear kinetic term in MOG, without a 
singularity at radial coordinate r = 0. By using a Legendre trans-
formation, we can write K = 2P H p −H, where dH = H pdP . Now 
for a regular black hole, we can write H as

H = P

(
1 − 3

√
−2 Q 2 P

)
(

1 +
√

−2 Q 2 P
)3

− 3

2 Q 2s

( √
−2 Q 2 P

1 +
√

−2 Q 2 P

)5/2

, (35)

where s = Q /2M = √
αG N/2, and P is a negative invariant quan-

tity. The non-linear kinetic term corresponding to this can be writ-
ten [52]:

K = P

(
1 − 8

√
−2 Q 2 P − 6 Q 2 P

)
(

1 +
√

−2 Q 2 P
)4

− 3

4 Q 2s

(−2 Q 2 P )5/4
(

3 − 2
√

−2 Q 2 P
)

(
1 +

√
−2 Q 2 P

)7/2
. (36)

By using these non-linear kinetic terms, we can derive a regular 
solution [50], without a singularity at radial coordinate r = 0. Such 
regular solutions in MOG based on nonlinear dynamics for the Bμν

field can possess two horizons or no horizon, depending on the 
value of α [50]. For α < αcrit = 0.673 a particular regular solution 
possesses two horizons, while for α > αcrit the solution does not 
possess horizons and is also regular at r = 0. The latter solution is 
called a “grey hole”. It is expected that Hawking’s information loss 
paradox [59–61] will not occur for these gray holes.

An electrically neutral black hole in MOG will appear similar 
to a GR static, spherically symmetric electrically charged Reissner–
Nordström black hole [50,51], but the MOG black hole solution 
depends only on the mass M and α. The rotating black hole so-
lution in MOG will be similar to the Kerr–Newman solution in 
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GR, but will depend on the mass M , the angular momentum J
and not the electric charge. The Newtonian constant is modified 
by G = G N (1 + α), where α is a free parameter. For weak gravi-
tational fields the value of α is fixed by the fits of the modified 
Newtonian acceleration law to galaxy rotation curves and galaxy 
clusters: α = 8.89 [5,6,9]. However, for the strong gravitational 
fields of MOG black holes, the weak field determination of α is 
no longer valid. For a given action for the vector field φμ and the 
field strength Bμν , the uniqueness theorems for the MOG solutions 
still hold.

Real astrophysical bodies including black holes are not elec-
trically charged. If they do have a small electric charge Q e , it 
will have a negligible effect on the curvature of spacetime [62]. 
For this reason the Reissner–Nordström black hole is not a phys-
ically interesting solution. On the other hand, the vector field φμ

in MOG is expected to be a physically significant field with posi-
tive gravitational charge Q = κM = √

αG N M . Because there is no 
negative gravitational charge Q , MOG black holes are not grav-
itationally charge neutral. Furthermore, because the gravitational 
charge in MOG is not independent of the mass of the black hole, it 
is not possible to construct static spherically symmetric extremal 
solutions where a remnant is left after Hawking radiation evapora-
tion [30,59]. In fact, in this paper it will be demonstrated that for 
static spherically symmetric MOG black holes, it is not possible to 
have a solution where the black hole temperature vanishes.

3. Thermodynamics of static non-rotating black holes in MOG

The first solution we will analyze is a static, spherically sym-
metric solution to the field equations. The metric for this solution 
can be written as [50,51]:

ds2 =
(

1 − 2GM

r
+ G Q 2

r2

)
dt2 −

(
1 − 2GM

r
+ G Q 2

r2

)−1

dr2

− r2d�2, (37)

where the usual Newtonian constant G N gets modified to G =
G N (1 + α) and Q = √

αG N M . The metric exhibits two horizons:

r± = G N M
(

1 + α ± √
1 + α

)
. (38)

We observe that for α > 0, in contrast to the Reissner–Nordström
solution when M < |Q e| (Q e is the electric charge), the MOG black 
hole never has a naked singularity. Thus, as in the case of the 
Schwarzschild solution, the MOG black hole satisfies Penrose’s cos-
mic censorship postulate [63,64].

The temperature of the black hole can be calculated via the 
surface gravity method evaluated at the outer horizon:

T = κg

2π
, κg = 1

2

dg00

dr
(r = r+) , (39)

which gives

T = 1

2πG N M
· 1

(1 + √
1 + α)(1 + α + √

1 + α)
. (40)

This temperature can also be obtained by using the standard ex-
pression

T = r+ − r−
4πr2+

. (41)

When α = 0, the usual Schwarzschild black hole temperature 
is obtained, T = 1/8πG N M . It is known that it is possible to con-
struct an extremal solution for the electrically charged Reissner–
Nordström black hole. When the temperature vanishes T = 0 a 
Fig. 1. Non-rotating MOG black hole Hawking temperature for α = 10, 1, 0.1, 0 (from 
left to right). The gravitational constant has been set to G N = 1. When α = 0, the 
temperature reduces to the Schwarzschild black hole temperature. Increasing values 
of the parameter α serve to suppress the radiative power for larger values of M , 
but with increasing power for M → 0. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

remnant exists after the black hole has evaporated by Hawking 
radiation. Thus, the information loss paradox can be resolved for 
these extremal Reissner–Nordström black hole solutions. However, 
as we have explained, because electrically charged black holes 
are not expected to be physically reasonable, this is not a viable 
resolution of the information loss paradox. However, as we will 
demonstrate, since an extremal solution does not exist for a static 
spherically symmetric MOG black hole as long as α > 0, there is 
no solution for which T = 0 implying that there are no remnants 
remaining after Hawking evaporation.

The temperature is plotted in Fig. 1. Solutions for α < 0 are not 
considered, since it would result in a complex gravitational charge 
Q , an undefined temperature T as well as a negative gravitational 
constant.

The radiative power of the black hole is

dM

dt
= 4πr2+σ T 4, (42)

where σ is the Stefan–Boltzmann constant. The lifetime is thus

τ = −
0∫

MBH

dM

4πσ r2+T 4

= 4π3

3σ
(1 + √

1 + α)4(1 + α + √
1 + α)2G2

N M3
BH. (43)

Fig. 2 shows the ratio of the lifetime for various values of α to 
that of a Schwarzschild black hole (α = 0). The dependence on α
clearly influences the lifetime of such black holes. A value of α = 2
increases the value by roughly a factor of 20. A two-fold increase 
can be obtained with as small a value as α = 0.312.

Although algebraically similar to the Reissner–Nordström black 
hole solution, the MOG metric is fundamentally different in that 
the lack of electric charge implies that no zero-temperature rem-
nants may be obtained (in contrast to the extremal Reissner–
Nordström case). This is due to the fact that the gravitational 



532 J.R. Mureika et al. / Physics Letters B 757 (2016) 528–536
Fig. 2. MOG to Schwarzschild black hole lifetime ratios τ/τ0 for various values 
of α. The gravitational constant and the Stefan–Boltzmann constant have been set 
to G N = σ = 1.

charge Q is proportional to M . We note the “extremal limit” 
r+ = r− occurs only when α = −1, at which point the horizons 
vanish.

The entropy of the black hole can be derived from the temper-
ature by

ST =
MBH∫
0

dM

T
= πG N M2

BH

(√
1 + α + 1 + α

)(√
1 + α + 1

)
.

(44)

Written in this form, it is apparent that it is related to the entropy 
of the Schwarzschild black hole as given by the area-entropy law. 
Defining A+ = 4πr2+ and using Eq. (38), we find

SA = A+
4G

= πG N M2
BH

(
1 + √

1 + α
)2

. (45)

Thus, the entropy defined in standard thermodynamics is differ-
ent from the entropy calculated using the Bekenstein–Hawking
bound [16,30]. This can be taken as an indication that the 
Bekenstein–Hawking bound is modified in MOG. The MOG cor-
rection to the Bekenstein–Hawking bound can be written as

�S = ST − SA = πG N M2
BHα(1 + √

1 + α). (46)

The MOG leads to an interesting modification of black hole ther-
modynamics. The entropy reduces to the familiar Schwarzschild 
black hole value S = 4πG N M2

BH when α = 0.
The local and global thermodynamic stability of a black hole is 

determined by both the heat capacity and the free energy, respec-
tively [65,66]. A calculation of the heat capacity for the MOG black 
hole yields:

C = −2πG N M2(1 + √
1 + α)(1 + α + √

1 + α) < 0 , (47)

which typically indicates the black hole is thermodynamically un-
stable for all values of M . The free energy F can be obtained from

F = M − T S (48)
Note the result will differ depending on the choice of the entropy 
expression. Choosing the thermodynamic definition (44), one finds

F = M

2
(49)

while choosing the area entropy (45) yields

F = M

(
1 − 1

2
· 1 + √

1 + α)

1 + α + √
1 + α

)
(50)

using (44). Stability of the thermal system occurs when F is min-
imized. For (49), this is at M = 0, and so the system is globally 
unstable. In the latter case (50), M = 0 is again the minimized 
state since F ≥ 0 for α > 0. The MOG black hole is thus both lo-
cally and globally thermodynamically unstable.

4. Thermodynamics of rotating black holes in MOG

A solution for the rotating black holes in MOG has been con-
structed [50]. We will call this the Kerr-MOG solution, as it reduces 
to the usual Kerr solution in the limit α = 0. The Kerr-MOG metric 
can be written as (a = J/M):

ds2 = �

ρ2

(
dt − a sin2 θ dφ

)2 − sin2 θ

ρ2

[
(r2 + a2)dφ − adt

]2

− ρ2

�
dr2 − ρ2dθ2, (51)

which describes black holes with horizon radii:

r± = G N(1 + α)M

[
1 ±

√
1 − a2

G2
N(1 + α)2M2

− α

1 + α

]
. (52)

Moreover, � = r2 − 2GMr + a2 +αG N GM2 and ρ2 = r2 + a2 cos2 θ . 
The ergosphere is located at

re = G N(1 + α)M

[
1 +

√
1 − a2 cos2 θ

G2
N(1 + α)2M2

− α

1 + α

]
. (53)

This solution is again algebraically identical to the Kerr–Newman
metric but now with the gravitational charge Q = √

αG N M . The 
temperature for this Kerr-MOG black hole solution is determined 
by

T = κ

2π
, κ = r+ − r−

2(r2+ + a2)
. (54)

We obtain

T = 1

2πG N M
· β

2β(α + 1) + α + 2
, (55)

where

β =

√√√√α + 1 − a2

G2
N M2

(1 + α)2
. (56)

In contrast to the spherically symmetric static MOG black hole, the 
Kerr-MOG back holes possesses an extremal configuration when 
r+ = r− , or

1 − a2

G2
N M2(1 + α)2

− α

1 + α
= 0 
⇒ Mext = 1

G N

a√
1 + α

.

(57)

The Kerr-MOG black hole free energy can be calculated from 
(48), using the temperature (55) and entropy defined by (44), and 
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Fig. 3. Kerr-MOG temperature profile for spin parameter a = 1 and α = 0 (right), 0.5 
(center), 1 (left). The remnant mass values for each curve are M0 = 1, 0.816, 0.707
for α = 0, 0.5, 1, respectively. These reach maximum temperatures of Tmax =
0.023, 0.019, 0.016 for Mmax = 1.272, 1.040, 0.902, respectively. The curves do not 
appear to end at T H = 0 due to plotting resolution. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this 
article.)

is displayed in Fig. 5. The free energy is minimized at the same 
point that defines the transition point for the heat capacity. This 
strengthens the assertion that this represents a critical point in 
the thermodynamic stability, and the positivity of the free energy 
indicates global instability so the black hole undergoes complete 
evaporation.

It can be shown that the temperature (55) vanishes for a value 
of α, implying that this is a zero-temperature remnant. Corre-
sponding temperature profiles are plotted in Fig. 3, and the generic 
behavior of the heat capacity is shown in Fig. 4. The effect for 
increasing α > 0 is to shift the temperature curve to the left, re-
sulting in small remnants. Furthermore, the maximum temperature 
of the Kerr-MOG black hole is correspondingly decreased.

5. Regular MOG black hole

In this section, we will analyze the thermodynamics of regular 
solutions which occur in the full non-linear MOG action. It may 
be noted that a regular solution for electrically charged objects in 
GR has been constructed using non-linear electrodynamics [52]. As 
the kinetic part of the action of the vector field in MOG can be 
taken to be non-linear, it is possible to construct a regular black 
hole solution in MOG [50]. This MOG regular solution can have two 
horizons, an outer horizon r+ and an inner Cauchy horizon r− for 
α < αcrit = 0.673. However, for α > αcrit there are no horizons and 
no naked singularity exists. The case without a horizon is called 
a “gray hole”, and the gravity of this gray hole for a sufficiently 
large mass M is expected to be so strong that it effectively can be 
treated as a black hole. The redshift observed by an asymptotic ex-
ternal observer will be large and there is small probability for any 
object to leave its gravitational field. However, as this probability 
is not zero, it will not suffer from the black hole information loss 
paradox [59–61]. So, it is interesting to note that the modification 
of gravity which was phenomenologically proposed to explain the 
correct dynamics of galaxies might end up predicting the absence 
Fig. 4. Kerr-MOG heat capacity for α = 1 and a = 1. The black hole is thermodynam-
ically unstable when C < 0, and reaches a maximum temperature when C → ±∞
(Mmax ≈ 0.9 in this case). For M < Mmax, the heat capacity is positive and the black 
hole evaporates to a locally stable cold remnant.

Fig. 5. Kerr-MOG Gibbs free energy for α = 1 and a = 1. The curve reaches a mini-
mum near M ∼ 0.9, consistent with the transition point of the heat capacity.

of a horizons for objects in our universe, and hence end up solv-
ing the black hole information loss paradox for these astrophysical 
objects.

The metric function for the regular solution can be written 
as [50]:

ds2 = f (r)dt2 − dr2

f (r)
− r2d�2, (58)

where

f (r) = 1 − 2GMr2(
r2 + αG GM2

)3/2
+ αGG N M2r2

(r2 + αGG N M2)2
. (59)
N
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Fig. 6. Regular MOG metric function for values α = 0.3 (lower curve), α = αcrit ≈
0.673 (middle curve), and α = 1 (upper curve). The black hole mass is normal-
ized to M = 1, as is the gravitational constant G N = 1. The radial value for which 
f (rcrit) = 0 is rcrit ≈ 1.68. Note that the value of αcrit is independent of the mass.

It describes a Schwarzschild-MOG black hole for large r and the 
metric becomes asymptotically flat in the limit r → ∞. For small r, 
it describes a de Sitter (anti-de Sitter) core depending on the value 
of α with the effective cosmological constant:

� = 3

G2
N M2

(
α1/2 − 2

α3/2(1 + α)

)
. (60)

The metric function f (r) approaches 1 in the limit r = 0. Horizons 
are obtained as the roots of f (r) = 0, which depend on the critical 
value α = αcrit = 0.673. Fig. 6 shows the behavior of f (r) for a 
normalized mass M = 1 and G N = 1, in which the three phases of 
solutions are visible.

A gray hole can approach a black hole with horizons as a limit-
ing process, when α → αcrit. In general, the thermodynamic prop-
erties of the gray hole cannot be the same as a MOG black hole 
possessing horizons. It is expected that a gray hole’s entropy will 
be less than the entropy of a black hole of a similar size and mass, 
for it is not a maximum entropy object. It is possible to study the 
thermodynamic features of the regular solution as α → αcrit, when 
horizons form and an asymptotic observer will see that the red-
shift of light will approach infinity.

If MOG is the correct theory describing gravity, then it is pos-
sible that only a regular solution without horizons forms during 
gravitational collapse. Because there are no horizons the gray hole 
will have negligible or no Hawking radiation and there is no in-
formation loss paradox. However, we must caution that at present, 
we have no known physical law that demands that α > αcrit.

In order to evaluate the temperature for the regular black hole 
with α < αcrit, we proceed by the surface gravity method. The 
derivative of the metric function is given by

f ′(r) = −4(1 + α)Mr

ζ 3/2
+ 6(1 + α)Mr3

ζ 5/2

+ 2α(1 + α)M2r

ζ 2
− 4α(1 + α)M2r3

ζ 3
, (61)

where ζ = r2 + α(1 + α)M2 and the derivative is evaluated at 
the outer horizon r = r+ . The corresponding real, positive roots 
of f (r) = 0 are given in Table 1. Evaluating the temperature T =
Table 1
Inner and outer horizons r± for the regular MOG black 
hole for various values of α > 0.

α r− r+
0.1 0.163M 2.067M
0.2 0.135M 2.117M
0.3 0.438M 2.148M
0.4 0.676M 2.152M
0.5 0.904M 2.120M

f ′(r = r+)/4π for the values therein, one observes that T ∼ 1/M
for all values of r. This means that in the presence of horizons, the 
temperature diverges as the black hole evaporates, despite the reg-
ular nature of the solution at r = 0. Thus, the divergent behavior 
of the temperature T in the singular Schwarzschild black hole so-
lution is retained for the regular black hole solution with an outer 
horizon.

6. MOG black hole entropy corrections

It is expected that quantum fluctuations in the geometry will 
lead to thermal fluctuations in the thermodynamics of black holes. 
The explicit form of such corrections can be calculated by analyz-
ing the thermal fluctuations around a state of equilibrium [48,49]. 
This can be done using the path integral formalism. In the path in-
tegral formalism, it is possible to calculate the amplitude for a field 
configuration to propagate to another field configuration. This can 
be done using the Euclidean quantum gravity formalism, where 
the temporal coordinate is rotated in the complex plane [67–71]. 
Thus, the partition function for spacetime can be written as

Z =
∫

[D]exp(−S E), (62)

where S E = −i S is the Euclidean action corresponding to the MOG 
action S . Thus, S E is obtained from S by a rotation of the time axis 
in the complex plane.

It may be noted that the partition function can be related to 
the statistical mechanical partition function [72,73]:

Z =
∞∫

0

dEρ(E)exp(−βE), (63)

where β is the inverse of the temperature. The density of states 
can be written as

ρ(E) = 1

2π i

β0+i∞∫
β0−i∞

dβ exp[S(β)], (64)

where

S = βE + ln Z . (65)

Usually this entropy is measured around the equilibrium tempera-
ture β0, and all thermal fluctuations are neglected. This is done by 
making the identification T = β−1, and S0 = S(β)β=β0 = A/4G N , 
where as before A is the area of the black hole [74]. Identifying 
the temperature in (40) with β0 and using the entropy expressions 
(44) and (45) for S̃(β0) and S(β0), respectively, we can write the 
difference:

�S(β0) = S̃(β0) − S(β0)

= πG N M2α(1 + √
1 + α). (66)

Taking such thermal fluctuations into account, we can expand 
S(β) around the equilibrium temperature β0 [48,49] to obtain
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S = S0 + 1

2
(β − β0)

2
(

∂2 S(β)

∂β2

)
β=β0

, (67)

where we have neglected higher order corrections to the entropy 
and defined S0 = S(β)|β=β0 . The density of states can now be writ-
ten as

ρ(E) = exp(S0)

2π i

β0+i∞∫
β0−i∞

dβ

× exp

(
1

2
(β − β0)

2
(

∂2 S(β)

∂β2

)
β=β0

)
. (68)

After a change of variables, we get

ρ(E) = exp(S0)√
2π

[(
∂2 S(β)

∂β2

)
β=β0

]−1/2

, (69)

and it follows that

S = S0 − 1

2
ln

[(
∂2 S(β)

∂β2

)
β=β0

]
. (70)

The second derivative of entropy is actually a fluctuation squared 
of the energy.

It is possible to simplify this expression by using the micro-
scopic degrees of freedom calculated from a conformal field theory. 
The modular invariance of the conformal field’s partition function 
constraints take the form S(β) = aβ + bβ−1 [38], which can be 
generalized to the expression: S(β) = aβm + bβ−n [48,49], where 
all the constants satisfy, m, n, a, b > 0. This has an extremum at 
β0 = (nb/ma)1/m+n = T −1.

Expanding the entropy around this extremum, we get

S(β) = [(n/m)m/(m+n) + (m/n)n/(m+n)](anbm)1/(m+n)

+ 1

2
[(m + n)m(n+2)/(m+n)n(m−2)/(m+n)]

× (an+2bm−2)1/(m+n)(β − β0)
2. (71)

By comparing Eq. (67) to Eq. (71), we obtain

S0 = (n/m)m/(m+n) + (m/n)n/(m+n)(anbm)1/(m+n), (72)

and thus(
∂2 S(β)

∂β2

)
β=β0

= (m + n)m(n+2)/(m+n)n(m−2)/(m+n)

× (an+2bm−2)1/(m+n) . (73)

We can now find the values of a, b, and simplify the expression to 
obtain:(

∂2 S(β)

∂β2

)
β=β0

= Ymn S0T 2 , (74)

where

Ymn =
[(

(m + n)m(n+2)/(m+n)n(m−2)/(m+n)

(n/m)m/(m+n) + (m/n)n/(m+n)

)

×
( n

m

)2/(m+n)
]

. (75)

As the factors Ymn are independent of any black hole parame-
ters, they can be absorbed by a suitable redefinition (see [48,49]). 
We will use the corrected form for the entropy, which neglecting 
higher order corrections can be written as
S = S0 − 1

2
ln S0T 2. (76)

We can now write the corrected entropy as

SA = πG N M2(1 + √
1 + α)2

− 1

2
ln

1

4πG N

1

(1 + α + √
1 + α)2

. (77)

This is the expression for the corrected entropy of a static black 
hole in MOG, due to thermal fluctuations. If we use the definition 
of the entropy from its temperature, we obtain

S̃T = πG N M2(
√

α + 1 + 1 + α)(
√

α + 1 + 1)

− 1

2
ln

[
1

(
√

α + 1 + 1 + α)(
√

α + 1 + 1)

]
. (78)

We also have

�S = ST 0 − S A0 − 1

2
ln

(
ST 0

S A0

)
= πG N M2α(1 + √

1 + α)

− 1

2
ln

[
(1 + α + √

1 + α)

(1 + √
1 + α)

]
. (79)

The corrections are the standard logarithmic corrections for the 
entropy of the MOG black hole. They reduce to the entropy of a 
black hole expected from the holographic principle. Hence, these 
thermal fluctuations also lead to a violation of the holographic 
principle for these black holes. This is because the entropy of the 
black hole is reduced due to thermal fluctuations. This term by 
which the original entropy of the black hole is reduced is propor-
tional to ln S0T 2. It may be noted that as there are two different 
ways of defining MOG entropy i.e., ST 0 and S A0, the exact value of 
this term depends on such a definition chosen. However, in both 
these cases, the entropy of the MOG black hole reduces due to 
thermal fluctuations, and so these black holes will have less en-
tropy than what would be expected from the holographic principle. 
Such violation of the holographic principle only occurs at small 
scale, where the temperature of the MOG black hole is sufficiently 
large, and so the effect of thermal fluctuations cannot be neglected. 
It may be noted that at this stage, the effects of quantum fluctua-
tions can also not be neglected. In fact, the quantum fluctuations 
in the geometry of the black hole lead to these thermal fluctua-
tions in the thermodynamics of the black hole. The violation of the 
holographic principle due to quantum fluctuations has been stud-
ied previously [35,36]. We have demonstrated explicitly that such 
an effect occurs for MOG black holes due to thermal fluctuations.

7. Conclusions

We have analyzed the thermodynamics of black holes in a mod-
ified theory of gravity that contains a repulsive vector field φμ

with the gravitational charge Q = √
αG N M . In the absence of mat-

ter, the field equations have a non-zero energy-momentum tensor 
formed from the Bμν field. For non-vanishing values of the pa-
rameter α there are no pure vacuum solutions of the modified 
gravitational field equations. The thermodynamic properties of the 
solutions corresponding to a spherically symmetric black hole and 
a rotating black hole were analyzed, and it was found that the en-
tropy area law gets changed by increasing the size of the MOG 
parameter α. The thermodynamics of a regular black hole solu-
tion in MOG with α < αcrit with two horizons was investigated. 
We also considered a regular solution without horizons describing 
a “gray” hole. There is a small but finite probability for particles to 
escape the gray holes. Thus, the modification of gravity which was 
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initially proposed to explain the dynamics of galaxies and galaxy 
clusters without dark matter could end up predicting the absence 
of horizons for massive collapsed objects in our universe.

We also analyzed the corrections to the thermodynamics of a 
black hole in MOG. The standard partition function for a static 
black hole in the modified theory of gravity was used to perform 
this analysis. Thus, the thermodynamic properties of a MOG black 
hole were obtained using this partition function, and the thermal 
fluctuations to the thermodynamic quantities were computed. Mo-
tivated by a conformal field theory description, an explicit form 
for the corrections to the entropy of the static black hole was 
found. It was demonstrated that corrections had the standard log-
arithmic form. The entropy of the black hole is less than what is 
expected from the holographic principle. Hence, the thermal fluc-
tuations also lead to a violation of the holographic principle for 
static black holes in MOG.

It has been observed that a traversable MOG wormhole exists as 
a solution of the MOG field equations [50]. So, it will be interesting 
to analyze the effects of the corrections to the MOG thermodynam-
ics for such a wormhole solution.

Corrections to ordinary GR black holes have been obtained 
using the generalized uncertainty principle [75]. It was demon-
strated that such corrections can lead to the existence of black hole 
remnants, which can have important phenomenological conse-
quences [76]. It will be interesting to analyze such corrections for 
MOG black holes. Additional interesting and testable phenomeno-
logical characteristics can be extracted from the MOG black hole 
solutions, including quasinormal modes and gravitational wave sig-
natures of binary inspirals. The latter is of particular interest due 
to the definitive fingerprints of MOG in a black hole’s shadow [51], 
which are expected to be detectable by the Event Horizon Tele-
scope observations. If similar MOG effects are as pronounced for 
gravitational waves, then they should be detectable in the upcom-
ing run of LIGO [77]. Lastly, we can also consider other types of 
non-linear kinetic terms for MOG [52–58]

K1 = (−B)s,

K2 = 4b2(1 −
√

1 − (2b)−1B),

K3 = b2(exp(−b−2B) − 1),

K4 = −8b2 ln(1 + b−2B), (80)

where s, b are two parameters. It would be interesting to analyze 
the phenomenological consequences of such terms.
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