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Abstract

We study a supersymmetric field theory in six dimensions compactified on the orbifold T 2/Z2 with two
Wilson lines. After supersymmetry breaking, the Casimir energy fixes the shape moduli at fixed points in
field space where the symmetry of the torus lattice is enhanced. Localized Fayet–Iliopoulos terms stabilize
the volume modulus at a size much smaller than the inverse supersymmetry breaking scale. All moduli
masses are smaller than the gravitino mass.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Higher-dimensional theories provide a natural framework for extensions of the supersymmet-
ric standard model which unify gauge interactions with gravity [1]. In recent years, phenomeno-
logically attractive examples have been constructed in five and six dimensions compactified on
orbifolds, and it has become clear how to embed such orbifold GUTs into the heterotic string [2].

An important problem in orbifold compactifications is the stabilization of moduli. In the fol-
lowing we study this question for an SO(10) model in six dimensions (6D) [3,4] which, compared
to models derived from the heterotic string [5,6], has considerably simpler field content. The pa-
per extends previous work which demonstrated that the compact dimensions can be stabilized at
small radii, R ∼ 1/MGUT, much smaller than the inverse supersymmetry breaking scale 1/μ [7].
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A crucial ingredient for the stabilization of compact dimensions is the Casimir energy of
bulk fields [8]. Various aspects of the Casimir energy for 6D orbifolds have already been stud-
ied in [9–11]. Stabilization of the volume modulus can be achieved by means of massive bulk
fields, brane localized kinetic terms or bulk and brane cosmological terms [9]. Alternatively,
the interplay of one- and two-loop contributions to the Casimir energy can lead to a stabiliza-
tion at the length scale of higher-dimensional couplings [12]. Furthermore, fluxes and gaugino
condensates play an important role [13,14]. The mechanism studied in this paper is based on
expectation values O(MGUT) of bulk fields, induced by local Fayet–Iliopoulos (FI) terms, and
localized supersymmetry breaking leading to gaugino mediation [15,16]. In the framework of
moduli mediation this mechanism is discussed in [17].

For a rectangular torus it has been shown in [7] that the interplay of ‘classical’ and one-
loop contributions to the vacuum energy density can stabilize the compact dimensions at
R ∼ 1/MGUT. Here we study the stabilization of all three shape and volume moduli of the torus.
Remarkably, it turns out that the minimum occurs at a point with ‘enhanced symmetry’, where
the torus lattice corresponds to the root lattice of SO(5). Tori defined by Lie lattices are the
starting point for orbifold compactifications in string theory, which lead to large discrete sym-
metries [18]. These restrict Yukawa couplings and can forbid or strongly suppress the μ-term of
the supersymmetric standard model [6,19]. Enhanced discrete symmetries have previously been
discussed in connection with string vacua [20].

The paper is organized as follows. In Section 2 we discuss symmetries of the compact space
and the associated moduli fields, whereas the relevant features of the considered 6D orbifold
GUT model are briefly described in Section 3. The Casimir energies of scalar fields with dif-
ferent boundary conditions are analyzed in Section 4. These results are the basis for the moduli
stabilization discussed in Section 5. Appendix A deals with the evaluation of Casimir sums.

2. Modular symmetries of orbifolds

In this section we briefly discuss the geometry of the compact space and the associated three
moduli fields. The torus T 2, and also the T 2/Z2 orbifold, can be parameterized by the volume
parameter A and the complex shape parameter τ = τ1 + iτ2. Following [9], we choose the fol-
lowing metric for M4 × T 2,

ds2 = A−1gμν dxμ dxν + Aγij dyi dyj , (1)

where yi ∈ [0,L], and the metric γij on the torus is given by

γij = 1

τ2

(
1 τ1

τ1 |τ |2
)

. (2)

4D Minkowski space corresponds to gμν = ημν , and the induced metric at the orbifold fixed
points is g̃μν = A−1ημν . The kinetic terms of the moduli fields are obtained by dimensional
reduction from the 6D Einstein–Hilbert action,

S = M4
6

2

∫
d6x

√
GR(G)

= M4
6 L2

2

∫
d4x

√
g

(
R(g) + gμν∂μA∂ν A

A2
+ gμν∂μτ∂ντ

∗

2τ 2
2

)
. (3)

Here τ ∗ = τ1 − iτ2, and the Ricci scalar R is evaluated with the metric indicated in parenthesis.
Note, that M2L is not the 4D Planck mass, since gμν does not determine the physical distance
6
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Fig. 1. Fundamental domain for the modular groups SL(2,Z) and �(2).

in the non-compact dimensions, cf. (1). Once the area modulus A is stabilized at A0, a constant
Weyl rescaling gμν = A0ḡμν yields the physical Planck mass M4 = √

A0L2M2
6 , with A0L

2

being the area of the torus.
In this paper we extend previous work [7], where only a rectangular torus lattice was consid-

ered. Note, that the torus can alternatively be described by the two radii R1,2 of the torus lattice
and the angle θ between them. The relation between the two sets of parameters is given by

2πR1 = L

√
A
τ2

, 2πR2 = |τ |L
√

A
τ2

, θ = arccos
τ1

|τ | . (4)

The rectangular torus in [7] has been parameterized in terms of the two radii R1,2, corresponding
to τ1 = 0 and τ2 = R2/R1.

The group SL(2,Z) of modular transformations

τ → aτ + b

cτ + d
, a, b, c, d ∈ Z, ad − bc = 1, (5)

relates modular parameters of diffeomorphic tori. Distinct tori have modular parameters τ taking
values in the fundamental region |τ | � 1, −1/2 � τ1 � 1/2 and τ2 > 0 (cf. Fig. 1).

The Kaluza–Klein mode expansion of bulk fields on the torus can be written as

Φ(x,y) = 1√
AL

∞∑
m,n=−∞

φm,n(x) exp

{
2πi

L
√

Aτ2

[
m(τ2y1 − τ1y2) + ny2

]}
, (6)

with the corresponding Kaluza–Klein (KK) masses

M2
m,n = (2π)2

AL2τ2
|mτ − n|2. (7)

Note that the sum over all KK modes is modular invariant: the transformations associated with
the two SL(2,Z) generators, τ → τ + 1 and τ → −1/τ , correspond to the relabeling of terms
(m,n) → (m,n − m) and (m,n) → (−n,m), respectively.

In the case of non-zero Wilson lines the KK masses take the values [11]
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M2
m,n = (2π)2

AL2τ2

∣∣n + β − τ(m + α)
∣∣2

, (8)

where (α,β) are real numbers. For a T 2/Z2 orbifold, α and β are restricted, α,β ∈ {0,1/2}. The
modular transformation (5), with τ2 → τ2/(|cτ + d|2), now corresponds to the relabeling of KK
modes

m + α → a(m + α) − c(n + β), n + β → d(n + β) − b(m + α). (9)

Depending on the values of the discrete Wilson lines, the sum over KK modes is invariant under
the full modular group SL(2,Z) or some subgroup [21]. For α = β = 0, the Wilson lines are zero
and SL(2,Z) remains unbroken. In the case α = 0 and β = 1/2, modular invariance yields the
additional restriction c = 0 mod 2 and d = 1 mod 2. Correspondingly, for α = 1/2 and β = 0 one
finds the restriction a = 1 mod 2 and b = 0 mod 2, while for α = β = 1/2 one has a, d = 1 mod 2,
b, c = 0 mod 2 or a, d = 0 mod 2 and b, c = 1 mod 2. The largest common subgroup corresponds
to a, d = 1 mod 2 and b, c = 0 mod 2, which corresponds to �(2) [22]. The fundamental domain
of the groups �(2) and SL(2,Z) are compared in Fig. 1.

We are interested in fixed points of the modular group in the upper half plane, because the
effective potential V (τ1, τ2) has extrema at these fixed points. To this end notice that a matrix
M ∈ SL(2,Z),M �= ±1, has a fixed point in the upper half plane if and only if TrM < 2. This
can be seen from the fixed point equation Mz = z which implies

cz2 + (d − a)z − b = 0. (10)

Using the property ad − bc = 1, one obtains for the solutions of this equation

z = a − d ± √
(a + d)2 − 4

2c
. (11)

We see that only for (a +d)2 < 4 we have complex solutions in the upper half plane, whereas for
(a + d)2 � 4 there are only real solutions. Clearly, only points on the edge of the fundamental
domain can be fixed points, because points within the fundamental domain are inequivalent and
therefore cannot be mapped onto each other by a modular transformation.

It is well known that SL(2,Z) has two fixed points at (τ1, τ2) = (0,1) and (τ1, τ2) =
(1/2,

√
3/2), respectively. For the case c = 0 mod 2 and d = 1 mod 2 there is a fixed point at

(τ1, τ2) = (1/2,1/2), while for a = 1 mod 2 and b = 0 mod 2 there is a fixed point at (τ1, τ2) =
(1,1). Finally, in the case a, d = 0 mod 2 and b, c = 1 mod 2 there is a fixed point at (0,1). The
subgroup �(2) has no fixed points in the upper half plane.

3. An orbifold GUT model

As an example, we consider a 6D N = 1 SO(10) gauge theory compactified on an orbifold
T 2/Z3

2, corresponding to T 2/Z2 with two Wilson lines [3]. The model has four inequivalent fixed
points (‘branes’) with the unbroken gauge groups SO(10), the Pati–Salam group GPS = SU(4)×
SU(2)×SU(2), the extended Georgi–Glashow group GGG = SU(5)×U(1)X and flipped SU(5),
Gfl = SU(5)′ × U(1)′, respectively. The intersection of these GUT groups yields the standard
model group with an additional U(1) factor, G′

SM = SU(3)C × SU(2)L × U(1)Y × U(1)X , as
unbroken gauge symmetry below the compactification scale.

The model has three 16-plets of matter fields, localized at the Pati–Salam, the Georgi–
Glashow, and the flipped SU(5) branes. Further, there are two 16-plets, φ and φc, and two
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10-plets, H5 and H6, of bulk matter fields. Their mixing with the brane fields yields the charac-
teristic flavor structure of the model [3].

The Higgs sector consists of two 16-plets, Φ and Φc, and four 10-plets, H1, . . . ,H4, of bulk
hypermultiplets. The hypermultiplets H1 and H2 contain the two Higgs doublets of the supersym-
metric standard model as zero modes, whereas the zero modes of H3 and H4 are color triplets.
The zero modes of the 16-plets are singlets and color triplets,

Φ: Nc, Dc, Φc: N, D. (12)

The color triplets Dc and D, together with the zero modes of H3 and H4, acquire masses through
brane couplings.

Equal vacuum expectation values of Φ and Φc form a flat direction of the classical potential,

〈Φ〉 = 〈
Nc

〉 = 〈N〉 = 〈
Φc

〉
. (13)

Non-zero expectation values can be enforced by a brane superpotential term or by an FI-term
localized at the GG-brane where the U(1) factor commutes with the standard model gauge group.

The expectation values (13) break SO(10) to SU(5), and therefore also the additional U(1)X
symmetry, leading to bulk masses1

M2 � g2
6

〈
Φc

〉2
, (14)

where g6 is the 6D gauge coupling, which is related to the 4D gauge coupling by a volume factor,
g4 = g6/

√
AL2.

Supersymmetry breaking is naturally incorporated via gaugino mediation [4]. The non-
vanishing F -term of a brane field S generates mass terms for vector- and hypermultiplets. In
the considered model, S is localized at the SO(10) preserving brane, which yields the same mass
for all members of an SO(10) multiplet. For the 45 vector multiplet and the 10 and 16 hypermul-
tiplets of the Higgs sector one has

�S =
∫

d4x d2y
√

g̃δ2(y)

{∫
d2θ

h

2Λ3
S Tr

[
WαWα

] + h.c.

+
∫

d4θ

(
λ

Λ4
S†S

(
H

†
1 H1 + H

†
2 H2

) + λ′

Λ4
S†S

(
H

†
3 H3 + H

†
4 H4

)
+ λ′′

Λ4
S†S

(
Φ†Φ + Φc†Φc

))}
. (15)

Here g̃μν is the metric induced at the fixed point, and Wα(V ), H1, . . . ,H4, Φ , Φc are the 4D
N = 1 multiplets contained in the 6D N = 1 multiplets, which have positive parity at y = 0;
Λ is the UV cutoff of the model, which is much larger than the inverse size of the compact
dimensions. For the zero modes, the corresponding gaugino and scalar masses are given by

mg = hμ

AL2Λ2
, m2

H1,2
= − λμ2

AL2Λ2
,

m2
H3,4

= − λ′μ2

AL2Λ2
, m2

Φ = − λ′′μ2

AL2Λ2
, (16)

1 For more details concerning the parity assignments and gauge symmetry breaking, see [7].
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where AL2 is the volume of the compact dimensions and μ = FS/Λ. Note that the gaugino
mass is stronger volume suppressed than the scalar masses. This implies that the contribution
of the vector multiplet to the Casimir energy relative to the one of the hypermultiplets is also
suppressed, as shown in Appendix A.

4. Casimir energy on T 2/Z3
2

The Casimir energy of a real scalar field on the given orbifold background can be written as

VM = 1

2

[∑]
m,n

∫
d4kE

(2π)4
log

(
k2
E + M2

m,n

A + M2

A

)
, (17)

with [∑]m,n shorthand for the double sum and M2
m,n denoting the Kaluza–Klein masses, which

are given by (8) except for a factor of four due to the two additional Z2 symmetries, which have
been modded out. The mass M stands for bulk and brane mass terms.

The expression (17) for the Casimir energy is divergent. Following [9], we extract a finite
piece using zeta function regularization,

V = −dζ(s)

ds

∣∣∣∣
s=0

, (18)

where

ζ(s) = 1

2

[∑]
m,n

μ2s
r

∫
d4kE

(2π)4

(
k2
E + 4(2π)2

A2L2τ2

∣∣n + β − τ(m + α)
∣∣2 + M2

A

)−s

. (19)

Note that, as in dimensional regularization, a mass scale μr is introduced. The momentum inte-
gration can be performed, which yields

ζ(s) = 1

2

1

(2π)4
π2 �(s − 2)

�(s)

[∑]
m,n

μ2s
r

(
4(2π)2

A2L2τ2

∣∣n + β − τ(m + α)
∣∣2 + M2

A

)2−s

= μ2s
r 42−s(2π)−2sπ2

2A4−2sL4−2sτ 2−s
2 (s − 2)(s − 1)

×
[∑]

m,n

[(
n + β − (m + α)τ1

)2 + (m + α)2τ 2
2 + AL2τ2

4(2π)2
M2

]2−s

. (20)

Carrying out the summations (cf. Appendix A) we find for the Casimir energy

V
α,β
M = M6L2

3072π3 A

[
11

12
− log

(
M√

Aμr

)]

− M4

64π2 A2

[
3

4
− log

(
M√

Aμr

)]
δα0δβ0

− M3τ
3/2
2

4π3 A5/2L

∞∑
p=1

cos(2πpα)

p3
K3

(
p

√
ALM

2
√

τ2

)

− 32

A4L4τ 2
2

∞∑
p=1

∞∑
m=0

1

2δα0δm0

cos(2πp(β − (m + α)τ1))

p5/2

×
(

τ 2
2 (m + α)2 + AL2τ2M

2

(4π)2

) 5
4

K5/2

(
2πp

√
τ 2

2 (m + α)2 + AL2τ2M2

(4π)2

)
. (21)
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Fig. 2. The different contributions to the Casimir energy for the different boundary conditions. Note that the potential is
periodic in τ1 with period 1 for α = 0 and period 2 for α = 1/2.

The different contributions to the Casimir energy are displayed in Fig. 2 as function of the shape
moduli τ1 and τ2 for fixed volume modulus A.

In supersymmetric theories there is a cancellation between bosonic and fermionic contribu-
tions, and the expression for the Casimir energy is given by

V = A
(
V

0,0
M ′ − V

0,0
M

) + B
(
V

0,1/2
M ′ − V

0,1/2
M

)
+ C

(
V

1/2,0
M ′ − V

1/2,0
M

) + D
(
V

1/2,1/2
M ′ − V

1/2,1/2
M

)
, (22)

where M ′ = √
M2 + m2, with supersymmetric mass M and supersymmetry breaking mass m;

the coefficients A, B , C, D depend on the field content of the model. Note that even in the
supersymmetric framework there are divergent bulk and brane terms, which are proportional
to the supersymmetry breaking mass m2, unlike the case in Scherk–Schwarz breaking. These
divergencies have to be subtracted from the unrenormalized Casimir energy to obtain a finite
result, and to tune the four-dimensional cosmological constant to zero.

5. Stabilization

5.1. Shape moduli

Before discussing moduli stabilization for our particular orbifold GUT model, it is instructive
to consider the shape moduli potential for varying field content, i.e., for different coefficients
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Table 1
Modular symmetries (cf. (5)) of different contributions to the Casimir energy and the fixed points under those symmetries.
For general coefficients A, B , C, D in (22), the symmetry corresponds to the largest common subgroup, which is known
as �(2). However, if the coefficients fulfill certain relations, the modular symmetry can be enhanced as shown in the last
two lines.

a b c d Fixed points (τ1, τ2)

V 0,0 0 mod 1 0 mod 1 0 mod 1 0 mod 1 (0,1), (1/2,
√

3/2)

V 0,1/2 0 mod 1 0 mod 1 0 mod 2 1 mod 2 (1/2,1/2)

V 1/2,0 1 mod 2 0 mod 2 0 mod 1 0 mod 1 (1,1)

V 1/2,1/2 1 mod 2 0 mod 2 0 mod 2 1 mod 2
0 mod 2 1 mod 2 1 mod 2 0 mod 2 (0,1)

�(2) 1 mod 2 0 mod 2 0 mod 2 1 mod 2 –
V 0,0 + V 0,1/2 0 mod 1 0 mod 1/2 0 mod 2 0 mod 1 (0,1/2), (1/4,

√
3/4)

Vcasimir 0 mod 1 0 mod 1 0 mod 2 1 mod 2 (1/2,1/2)

A, B , C, D. The modular symmetries (5) of the four different contributions are given in Table 1.
They are obtained by requiring invariance of the Kaluza–Klein sums under the corresponding
modular transformation, as discussed in Section 2. Naively, one would expect that adding two
different contributions with different symmetries would lead to the largest common subgroup,
which is given by �(2). However, for certain relations between the coefficients A, B , C, D

there can be non-trivial cancellations, which lead to a larger modular symmetry. For example,
if the field content is such that A = B and D = C = 0, the parameters of the modular group
are restricted to b = 0 mod 1/2 and c = 0 mod 2. Surprisingly, the resulting symmetry is not only
larger than the symmetry of V 0,1/2, it is not even a subgroup of SL(2,Z).

The effective potential for the shape moduli τ1 and τ2 for different cases is illustrated in Fig. 3.
Fixed points under the modular symmetry are extrema of the effective potential, assuming that

the volume is stabilized. Hence, minima of the effective potential may correspond to such fixed
points. For fields with boundary condition (+,+), this is indeed the case. The Casimir energy
then has a minimum at (τ1, τ2) = (1/2,

√
3/2) and a saddle point at (τ1, τ2) = (0,1) [9]. This

implies that the shape moduli are stabilized at a torus lattice with R1 = R2 and θ = π/3, which
corresponds to the root lattice of the Lie algebras SU(3) or G2. For our example with A = B and
D = C = 0 on the other hand, there is a minimum at (τ1, τ2) = (1/4,

√
3/4) and a saddle point

at (τ1, τ2) = (0,1/2). The minimum corresponds to the lattice with R1 = 2R2 and θ = π/3.
Let us now turn to our model. The wanted repulsive behavior of the Casimir energy at small

volume can be obtained if the contribution of particular bulk hypermultiplets dominates [7],

Vcasimir = 12
(
V 0,0

mH
− V 0,0) + 12

(
V

0,1/2
mH

− V 0,1/2)
+ 8

(
V

1/2,0
mH

− V 1/2,0) + 8
(
V

1/2,1/2
mH

− V 1/2,1/2), (23)

with m2
H = −λ′μ2/(AL2Λ2) and λ′ < 0, |λ′| > |λ|, |λ′′| (cf. (16)). Remarkably, the potential

has an enhanced modular symmetry compared to �(2). The allowed transformations have c =
0 mod 2 and d = 1 mod 2, with a and b ∈ Z.

Solving the fixed point equation (11), one finds a fixed point in the upper half-plane: (τ1, τ2) =
(1/2,1/2) with a = −b = −d = 1 and c = 2. It corresponds to a minimum in the effective
potential. There is also a saddle point at (τ1, τ2) = (0,1/

√
2). For the minimum, the torus lattice

again has an enhanced symmetry: R1 = √
2R2 and θ = π/4, which corresponds to the root lattice

of SO(5). Its discrete symmetry is Z4.
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Fig. 3. Effective potential for the shape moduli τ1 and τ2. In the upper left (right) panel we plot the potential for V
0,0
M

(V 0,0
M

+V
0,1/2
M

). In the lower panels we show the potential for the shape moduli in the given model. Note that the scaling
in the τ2 direction is different. The different periodicities of the potential in the τ1 direction correspond to different values
of the parameter b in the modular transformations. For the given model there is a local minimum of the full potential at
(τ1, τ2) = (1/2,1/2) and a saddle point at (τ1, τ2) = (0,1/

√
2 ).

5.2. Volume modulus

In [7] it has been shown that spontaneous gauge symmetry breaking by bulk Higgs fields
together with supersymmetry breaking can stabilize the compact dimensions at the GUT scale.
The detailed mechanism of supersymmetry breaking is discussed in [17]. Consider the breaking
of U(1)X as discussed in Section 3. In orbifold compactifications of the heterotic string a vacuum
expectation value 〈Φc〉 can be induced by localized Fayet–Iliopoulos (FI) terms. Vanishing of the
D-terms then implies

〈
Φc

〉2 = CΛ2

, (24)
AL2
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Fig. 4. Effective potential for the volume modulus (full line). The different contributions to the potential are also shown
separately; Vbrane represents the brane counterterm.

where C 
 1 is a loop factor and Λ is the string scale or, more generally, the UV cutoff of
the model. The expectation value is volume suppressed because Φc is a bulk field and the FI-
terms are localized at fixed points. In terms of the bulk Higgs mass (14) one obtains, using
g2

6/(AL2) = g2
4 � 1/2,

M2 � g2
6

〈
Φc

〉2 � 1

2
CΛ2. (25)

For orbifold compactifications of the heterotic string one finds M ∼ MGUT.
Supersymmetry breaking by a brane field S, with μ = FS/Λ, leads to a ‘classical’ contribution

to the vacuum energy density,

Vcl =
∫

d2y

∫
d4θ

√
g̃δ2(y)

〈
S†S

(
1 − λ′′

Λ4

(
Φ†Φ + Φc†Φc

))〉

= F 2
S

A2
− 2λ′′μ2 M2

A3L2Λ2
+ · · · , (26)

where the first term is a tree level potential [17], and g̃μν = A−1ημν is the induced metric at the
fixed point y = 0. The first term proportional to F 2

S will be absorbed into the brane tension.
In the vicinity of τ1 = 1/2, the Casimir energy is to a good approximation given by

V
α,β
M = + M6L2

3072π3 A

[
11

12
− log

(
M√

Aμr

)]

− M4

64π2 A2

[
3

4
− log

(
M√

Aμr

)]
δα0δβ0

− M3τ
3/2
2

4π3 A5/2L

∞∑
p=1

cos(2πpα)

p3
K3

(
p

√
ALM

2
√

τ2

)

− M3τ
−3/2
2

32π3 A5/2L

∞∑
p=1

cos(2πpα)

p3
K3

(
p
√

Aτ2LM
)

+ M4

64π3τ 3
2 A2

∞∑ cos(2πpα)

p2
K4

(
p
√

Aτ2LM
)(

τ1 − 1

2

)2

, (27)

p=1
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where we have performed a Taylor expansion around τ1 = 1/2. This approximation is valid for
small τ2, and we have dropped additional terms in V

0,β
M , which cancel in the sum of V

0,0
M and

V
0,1/2
M .

Expanding the Bessel functions for small arguments and performing the summations over p,
we obtain for the four different contributions

V
0,0
M (A, τ1, τ2) = − 16π3τ 3

2

945A4L4
− π3

3780A4L4τ 3
2

+ π3(τ1 − 1/2)2

1260A4L4τ 5
2

+ πM2τ 2
2

180A3L2
+ πM2

2880A3L2τ 2
2

− πM2(τ1 − 1/2)2

5760A3L2τ 2
2

, (28)

V
0,1/2
M (A, τ1, τ2) = − 16π3τ 3

2

945A4L4
− π3

3780A4L4τ 3
2

+ π3(τ1 − 1/2)2

1260A4L4τ 5
2

+ πM2τ 2
2

180A3L2
+ πM2

2880A3L2τ 2
2

− πM2(τ1 − 1/2)2

5760A3L2τ 2
2

, (29)

V
1/2,0
M (A, τ1, τ2) = + 31π3τ 3

2

1890A4L4
+ 31π3

120960A4L4τ 3
2

− 31π3(τ1 − 1/2)2

40320A4L4τ 5
2

− 7πM2τ 2
2

1440A3L2
− 7πM2

23040A3L2τ 2
2

+ 7πM2(τ1 − 1/2)2

46080A3L2τ 2
2

, (30)

V
1/2,1/2
M (A, τ1, τ2) = + 31π3τ 3

2

1890A4L4
+ 31π3

120960A4L4τ 3
2

− 31π3(τ1 − 1/2)2

40320A4L4τ 5
2

− 7πM2τ 2
2

1440A3L2
− 7πM2

23040A3L2τ 2
2

+ 7πM2(τ1 − 1/2)2

46080A3L2τ 2
2

. (31)

The total effective potential is now given by the sum of the Casimir energy (23), the classical
energy density (26) and a brane tension,

Vtot(A, τ1, τ2) = Vcasimir(A, τ1, τ2) + Vcl(A) + Vbrane(A). (32)

Inserting the expansions (28)–(31) into the expression for the Casimir energy, one finally obtains

Vtot(A, τ1, τ2) = − πλ′μ2

288A4L4Λ2

(
16τ 2

2 + τ−2
2 − 2(τ1 − 1/2)2

τ 4
2

)
− 2λ′′μ2 M2

A3L2Λ2
+ κ

A2
,

(33)

where

κ = −36λ′′2μ2 M4

πλ′Λ2
> 0. (34)

The brane tension κ has been adjusted such that the potential Vtot vanishes at the local minimum.
The different contributions to the effective potential are shown in Fig. 4.

As discussed in the previous section, the Casimir energy, and therefore Vtot, has a local mini-
mum at τ1 = τ2 = 1/2. The volume modulus is then fixed at

A0L
2 = − πλ′ 1

. (35)

36λ′′ M2
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For |λ′| > λ′′, as required by a repulsive Casimir energy at small volume, one then obtains stabi-
lization of the compact dimensions at the inverse GUT scale,

√
AL2 ∼ 1/M ∼ 1/MGUT.

5.3. Moduli masses

The moduli fields A, τ1 and τ2 have masses much smaller than the inverse size of the com-
pact dimensions. Their Lagrangian is obtained by dimensional reduction (cf. [9]) and from the
effective potential (32),

L = √
g

{
M4

6 L2

2

(
R(g) + gμν∂μA∂ν A

A2
+ gμν∂μτ∂ντ

∗

2τ 2
2

)
− Vtot(A, τ1, τ2)

}
. (36)

After a constant Weyl rescaling, gμν = A0ḡμν (cf. (35)), the Lagrangian for the moduli depends

on A0 and the 4D Planck mass M4 =
√

A0L2M2
6 ,

L M = √
ḡ

{
M2

4

2

(
ḡμν∂μA∂ν A

A2
+ ḡμν∂μτ∂ντ

∗

2τ 2
2

)
− A2

0Vtot(A, τ1, τ2)

}
. (37)

Expanding the moduli fields around the minimum,

A = A0 + A0

M4
Ā, τ1,2 = 1

2
+ 1√

2M4
τ̄1,2, (38)

yields the Lagrangian for the canonically normalized fluctuations,

L M = √
ḡ

{
1

2

(
ḡμν∂μĀ∂ν Ā + ḡμν∂μτ̄1∂ν τ̄1 + ḡμν∂μτ̄2∂ν τ̄2

)

− A2
0

M2
4

( A2
0

2

∂̂2Vtot

∂A2
Ā2 + 1

4

∂̂2Vtot

∂τ 2
1

τ̄ 2
1 + 1

4

∂̂2Vtot

∂τ 2
2

τ̄ 2
2

)
+ · · ·

}
, (39)

where the hat denotes that the second derivatives of Vtot are evaluated at the minimum. Together
with Eqs. (33) and (35) we now obtain the moduli masses

m2
A = A4

0

M2
4

∂̂2Vtot

∂A2
= λ′′

A0L2

2M2μ2

Λ2M2
4

, (40)

m2
τ2

= A2
0

2M2
4

∂̂2Vtot

∂τ 2
2

= 4m2
A, (41)

m2
τ1

� m2
τ2

, (42)

which depend on the scale of supersymmetry breaking μ, the cutoff Λ and the size of the compact
dimensions

√
A0L2 ∼ 1/M > 1/Λ. The mass mτ1 has been obtained numerically, based on the

complete expression (23) for Vcasimir, since the analytical result (33) away from τ1 = 1/2 only
holds for small τ2 and not at the minimum τ1 = τ2 = 1/2.

The moduli masses can be related to the gravitino mass using μ = FS/Λ and m3/2 =
FS/(

√
3M4), which yields

m2
A = 6λ′′M2

2 4
m2

3/2. (43)
A0L Λ
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For a compactification scale
√

A0L2 ∼ 1/M, one obtains

m2
A = 6λ′′

A2
0L

4Λ4
m2

3/2, (44)

i.e., the moduli masses are volume suppressed compared to the gravitino mass [17].
An upper bound on the coupling λ′′ of the brane field S(x) to the bulk field Φ(x,y), and

therefore on the moduli masses, can be obtained by naive dimensional analysis (NDA) [23]. For
this purpose, one rewrites the relevant part of the 6D Lagrangian

L = L̂bulk
(
Φ(x,y)

) + δ2(y − yS)L̂S

(
Φ(x,y), S(x)

)
(45)

in terms of dimensionless fields Φ̂(x, y) and Ŝ(x), and the cutoff Λ,

L = Λ6

�6/C
L̂bulk

(
Φ̂(x, y)

) + δ2(y − yS)
Λ4

�4/C
L̂S

(
Φ̂(x, y), Ŝ(x)

)
, (46)

where �6 = 128π3 and �4 = 16π2; the factor C accounts for the multiplicity of fields in loop
diagrams, with C = 8 in the present model (cf. [4]). The rescaling of chiral bulk and brane
superfields reads

Φ(x,y) = Λ√
�6/C

Φ̂(x, y), S(x) = Λ√
�4/C

Ŝ(x). (47)

The ratio C/�D gives the typical suppression of loop diagrams. This suppression is canceled by
the factors �6/C and �4/C in front of the Lagrangians L̂ in Eq. (46). Consequently, all loops
will be of the same order of magnitude, provided that all couplings are O(1). Thus, according
to the NDA recipe the effective 6D theory remains weakly coupled up to the cutoff Λ, if the
dimensionless couplings in Eq. (46) are smaller than one.

Let us now apply the NDA recipe to the coupling λ′′. Using Eq. (47), we obtain

LS ⊃ Λ4

�4/C

∫
d4θ

Λ2

λ′′C
�6

Ŝ†Ŝ
(
Φ̂†Φ̂ + Φ̂c†Φ̂c

)
. (48)

The NDA requirement that all couplings be smaller than one implies λ′′ � �6/C = 16π3. This
translates into

m2
A � 96π3

A2
0L

4Λ4
m2

3/2. (49)

However, this bound cannot be saturated, since the same bound holds for |λ′| > λ′′. Further, one
has Λ � M6 � 10MGUT in the model under consideration [4]. This, together with the bound on
λ′′, leads to the estimate

m2
A � 0.1m2

3/2. (50)

Hence, all moduli masses are smaller than the gravitino mass.
It is instructive to compare the upper bound on the moduli masses with the upper bound on

the gaugino mass (16),

mg = hμ

AL2Λ2
�

√
3h√

A0L2Λ
m3/2. (51)

Compared to the moduli masses (44), the gaugino mass is weaker volume suppressed. Corre-
spondingly, the NDA analysis allows the gaugino mass to be larger or smaller than the gravitino
mass [24].
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6. Conclusions

We have studied a 6-dimensional orbifold GUT model, compactified on a T 2/Z2 orbifold with
two Wilson lines. The Casimir energy depends on the boundary conditions of the various bulk
fields and is a function of the shape moduli. It is remarkable that the minimum of the effective
potential occurs at a point in field space where the torus lattice has an ‘enhanced symmetry’
corresponding to the root lattice of SO(5).

The SO(5) lattice has a discrete Z4 symmetry which is larger than the Z2 symmetry of a
generic torus. Vacua with unbroken discrete symmetries are phenomenologically desirable since
they can explain certain features of the supersymmetric standard model, in particular the differ-
ence between Higgs and matter fields. Our analysis suggests that such discrete symmetries may
arise dynamically in the compactification of higher-dimensional field and string theories.

The interplay of a repulsive Casimir force at small volume and an attractive interaction gener-
ated by the coupling of a bulk Higgs field to a supersymmetry breaking brane field stabilizes the
volume modulus at the GUT scale, which is determined by the size of localized Fayet–Iliopoulos
terms. The masses of shape and volume moduli are smaller than the gravitino mass.

A full supergravity treatment of the described stabilization mechanism still remains to be
worked out. Also the phenomenological and cosmological consequences of moduli fields lighter
than the gravitino require further investigations.
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Appendix A. Evaluation of Casimir sums

Our evaluation of the Casimir double sums requires two single sums which we shall now
consider. The first sum reads

F̃ (s;a, c) ≡
∞∑

m=0

1

[(m + a)2 + c2]s . (52)

This is a series of the generalized Epstein–Hurwitz zeta type. The result can be found in [25] and
is given by

F̃ (s;a, c) = c−2s

�(s)

∞∑
m=0

(−1)m�(m + s)

m! c−2mζH (−2m,a) + √
π

�(s − 1
2 )

2�(s)
c1−2s

+ 2πs

�(s)
c1/2−s

∞∑
p=1

ps−1/2 cos(2πpa)Ks−1/2(2πpc), (53)

where ζH (s, a) is the Hurwitz zeta-function. Note that this is not a convergent series but an
asymptotic one. In the following it will be important that ζH (−2m,0) = ζH (−2n,1/2) = 0 for
m ∈ N and n ∈ N0. In our case, the first sum in F̃ (s;a, c) thus reduces to a single term. For
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a = 1/2 the sum vanishes, and for a = 0 only the first term contributes; with ζH (0,0) = 1/2 one
obtains c−2s/2.

The second, related sum is given by

F(s;a, c) ≡
∞∑

m=−∞

1

[(m + a)2 + c2]s . (54)

Using the two identities (m ∈ N)

ζH (−2m,a) = −ζH (−2m,1 − a), (55)

F(s;a, c) = F̃ (s;a, c) + F̃ (s;1 − a, c), (56)

one easily obtains, in agreement with [9],

F(s;a, c) =
√

π

�(s)
|c|1−2s

[
�

(
s − 1

2

)
+ 4

∞∑
p=1

cos(2πpa)
(
πp|c|)s− 1

2 K
s− 1

2

(
2πp|c|)

]
.

(57)

These two sums provide the basis for our evaluation of the Casimir sums.

A.1. Casimir sum (I) on T 2/Z3
2

We first consider the summation

[∑]
m,n

=
∞∑

m=0

∞∑
n=−∞

. (58)

In this case the Casimir energy is obtained from

∞∑
m=0

∞∑
n=−∞

[(
n + β − (m + α)τ1

)2 + (m + α)2τ 2
2 + κ2]−s

, (59)

where we have shifted s → s +2 and defined κ2 = AL2τ2
4(2π)2 M2. Using the expression for F(s;a, c)

we can perform the sum over n,

∞∑
m=0

∞∑
n=−∞

[(
n + β − (m + α)τ1

)2 + (m + α)2τ 2
2 + κ2]−s

= √
π

�(s − 1
2 )

�(s)

∞∑
m=0

(
τ 2

2 (m + α)2 + κ2)1/2−s

+ 4
√

π

�(s)

∞∑
p=1

cos
(
2πp

(
β − (m + α)τ1

)) ∞∑
m=0

(πp)s−
1
2

(√
τ 2

2 (m + α)2 + κ2
) 1

2 −s

× K
s− 1

2

(
2πp

√
τ 2

2 (m + α)2 + κ2
)

≡ f1(s) + f2(s). (60)

Let us consider f1(s) first. The sum over m can be performed with the help of F̃ (s;a, c),
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f1(s) = √
π

�(s − 1
2 )

�(s)

∞∑
m=0

(
τ 2

2 (m + α)2 + κ2)1/2−s

= √
π

�(s − 1/2)

�(s)
κ1−2sζH (0, α) + π

2(s − 1)

κ2−2s

τ2

+ 2πs

�(s)
τ−s

2 κ1−s
∞∑

p=1

ps−1 cos(2πpα)Ks−1

(
2πp

(
κ

τ2

))
. (61)

Recalling the shift in s, we can now write ζ(s) as

ζ(s) = μ2s+4
r 4−s(2π)−2s−4π2

2A−2sL−2sτ−s
2 s(s + 1)

{
√

π
�(s − 1/2)

�(s)
κ1−2sζH (0, α) + π

2(s − 1)

κ2−2s

τ2

+ 2πs

�(s)
τ−s

2 κ1−s

∞∑
p=1

ps−1 cos(2πpα)Ks−1

(
2πp

(
κ

τ2

))

+ 4
√

π

�(s)

∞∑
p=1

cos
(
2πp

(
β − (m + α)τ1

)) ∞∑
m=0

(πp)s−
1
2

(√
τ 2

2 (m + α)2 + κ2
) 1

2 −s

× K
s− 1

2

(
2πp

√
τ 2

2 (m + α)2 + κ2
)}

. (62)

Now we have to differentiate with respect to s and set s = −2. Since �(−2) = ∞, the derivative
has only to act on �(s) if the corresponding term is inversely proportional to �(s). Performing
the differentiation, using

d

ds

1

�(s)

∣∣∣∣
s=−2

= − �′(s)
�(s)2

∣∣∣∣
s=−2

= +2, (63)

as well as Ka(z) = K−a(z) and substituting again κ =
√

Aτ2ML
4π

we finally obtain for the Casimir
energy,

V
α,β(I)
M = − 4π2

A4L4τ 2
2

{
−16π

15

A5/2L5τ
5/2
2 M5

(4π)5
ζH (0, α)

+ π A3L6τ 2
2 M6

36(4π)6

[
−11 + 12 log

(
M√

Aμr

)]

+ 4

π2
τ 2

2
A3/2L3τ

3/2
2 M3

(4π)3

∞∑
p=1

cos(2πpα)

p3
K3

(
2πp

(√
ALM

4π
√

τ2

))

+ 8

π2

∞∑
p=1

cos(2πp(β − (m + α)τ1))

p5/2

∞∑
m=0

(
τ 2

2 (m + α)2 + AL2τ2M
2

(4π)2

) 5
4

× K5/2

(
2πp

√
τ 2

2 (m + α)2 + AL2τ2M2

(4π)2

)}
. (64)
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A.2. Casimir sum (II) on T 2/Z3
2

The second relevant summation is

[∑]
m,n

=
[
δ0,m

∞∑
n=0

+
∞∑

m=1

∞∑
n=−∞

]
. (65)

For the corresponding boundary conditions one has α = 0. The Casimir sum can then be written
as [

δ0,m

∞∑
n=0

+
∞∑

m=0

∞∑
n=−∞

−δm,0

∞∑
n=−∞

][
(n + β − mτ1)

2 + m2τ 2
2 + κ2]−s

, (66)

where we again shifted s → s + 2. The double sum is the sum (I) which we have already calcu-
lated. Using

−1∑
n=−∞

[
(n + β)2 + κ2]−s =

∞∑
n=0

[
(n + 1 − β)2 + κ2]−s (67)

one easily finds for the remaining piece2

f3(s) = −
∞∑

n=0

[
(n + 1 − β)2 + κ2]−s

= −κ−2sζH (0,1 − β) − √
π

�(s − 1
2 )

2�(s)
κ1−2s

− 2πs

�(s)
κ1/2−s

∞∑
p=1

ps−1/2 cos
(
2πp(1 − β)

)
Ks−1/2(2πpκ). (68)

Differentiating the corresponding contribution to ζ(s), setting s = −2, and substituting κ yields
the Casimir energy,

V
α,β(II)
M = V

α,β(I)
M

+ 4π2

A4L4τ 2
2

{
A2L4τ 2

2 M4

(4π)4

[
3

2
− 2 log

(
M√

Aμr

)]
ζH (0,1 − β)

− 8π

15

A5/2L5τ
5/2
2 M5

(4π)5

+ 4

π2

(
(Aτ2)

1/2LM

(4π)

)5/2 ∞∑
p=1

cos(2πp(1 − β))

p5/2
K5/2

(
2πp

√
Aτ2LM

4π

)}
.

(69)

2 Note that ζH (0,1) = −1/2 and ζH (−2m,1) = 0.
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A.3. Result

Putting everything together the Casimir energy can be written as

V
α,β
M = + M6L2

3072π3 A

[
11

12
− log

(
M√

Aμr

)]

− M4

64π2 A2

[
3

4
− log

(
M√

Aμr

)]
δα0δβ0

− M3τ
3/2
2

4π3 A5/2L

∞∑
p=1

cos(2πpα)

p3
K3

(
p

√
ALM

2
√

τ2

)

− 32

A4L4τ 2
2

∞∑
p=1

∞∑
m=0

1

2δα0δm0

cos(2πp(β − (m + α)τ1))

p5/2

×
(

τ 2
2 (m + α)2 + AL2τ2M

2

(4π)2

) 5
4

K5/2

(
2πp

√
τ 2

2 (m + α)2 + AL2τ2M2

(4π)2

)
(70)

or in terms of the moduli R1, R2 and θ (and in the frame used in [7])

V
αβ
M = +M6R1R2

768π
sin θ

(
11

12
− log

(
M

μr

))

−δα0δβ0
M4

64π2

(
3

4
− log

(
M

μr

))

− 1

8π4

M3R2

R2
1

sin θ

∞∑
p=1

cos(2πpα)

p3
K3(πpMR1)

− 2

π4

1

R4
2

1

sin4 θ

∞∑
p=1

∞∑
m=0

1

2δα0δm0

cos(2πp[β − (m + α)R2/R1 cos θ ])
p5/2

×
(

R2

R1
sin θ

√
(m + α)2 + M2R2

1

4

)5/2

× K5/2

(
2πp

R2

R1
sin θ

√
(m + α)2 + M2R2

1

4

)
. (71)

For θ = π
2 this agrees with the expression for a rectangular torus [7], as expected.

Appendix B. Contributions from vector- and hypermultiplets

In this appendix we compare the leading contributions to the Casimir energy from vector
and hypermultiplets, respectively. We will see that the contribution of the vector multiplets is
generically suppressed compared to the one of the hypermultiplets, and hence it was justified to
neglect this contribution in Eq. (23).

The relative suppression can be seen by an explicit investigation of the mass matrices of the
gauginos and the hyperscalars, respectively. For simplicity we only focus on one single scalar Φ

and one gaugino ψ . For the present discussion, the relevant part of the 4D Lagrangian reads
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L = −
∑

i

ΦiM
s2
i Φ∗

i −
∑

i

ψiM
f
i χi + λμ2

Λ2

∑
ij

ΦiC
Φ
ij Φ∗

j − hμ

2Λ2

∑
ij

ψiC
ψ
ij ψj , (72)

where for the mode expansion we used the notation

Φ(x,y) =
∑

i

Φi(x)ξi(y),

∫
d2y ξi(y)ξj (y) = δij , (73)

with Kaluza–Klein mass Ms
i and

CΦ
ij = ξi(0)ξj (0). (74)

In the fermionic case the notation is analogous. Here χ is the Weyl fermion which, together
with the gaugino, forms the four-component spinor of the six-dimensional vector multiplet. For
simplicity we did not consider any mass terms coming from gauge symmetry breaking, although
to include also these terms would be straightforward. The first two terms in Eq. (72) follow
directly from the KK mode expansion and dimensional reduction, whereas the last two terms
come from supersymmetry breaking with μ the supersymmetry breaking mass. From Eq. (72)
one can read off the scalar as well as the fermionic mass matrix squared. The fermionic mass
matrix squared reads explicitly (in the basis (ψ,χ ))

Mf 2 =
(

M
f 2
i δik + ( h

2Λ2 )2 ∑
j C

ψ
ij C

ψ
jkμ

2 h

2Λ2 C
ψ
jkμM

f
k

h

2Λ2 C
ψ
jkμM

f
k M

f 2
i δik

)
. (75)

Both, the scalars and the gauginos give a contribution to the Casimir energy which is propor-
tional to the Trace-Log operator Tr log(k2 + M2). One can decompose the matrix M2 as the sum
of two terms M2 = M2

0 + �M2 (diagonal plus corrections). In the fermionic case this reads

Mf 2
0 =

(
M

f 2
i δik 0

0 M
f 2
i δik

)
,

�Mf 2 =
(

( h

2Λ2 )2 ∑
j C

ψ
ij C

ψ
jkμ

2 h

2Λ2 C
ψ
jkμM

f
k

h

2Λ2 C
ψ
jkμM

f
k 0

)
. (76)

Expanding the Trace-Log operator in powers of �M2/(k2 + M2
0) leads to the expression

Tr log
(
k2 + M2) = Tr log

(
k2 + M2

0

) + Tr

(
1

k2 + M2
0

�M2
)

− 1

2
Tr

(
1

k2 + M2
0

�M2 1

k2 + M2
0

�M2
)

+ · · · , (77)

which in the fermionic case reads

Tr log
(
k2 + Mf 2) = Tr log

(
k2 + Mf 2

0

) +
(

h

2Λ2

)2 ∑
i

1

k2 + M
f 2
i

∑
k

C
ψ
ikC

ψ
kiμ

2

− 1

2

∑
ij

1

k2 + M
f 2
i

1

k2 + M
f 2
j

(
h

2Λ2

)2 ∑
k

C
ψ
ikC

ψ
kjμ

2M
f
i M

f
j + · · · .

(78)
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Performing the analogous steps in the scalar case we obtain

Tr log
(
k2 + Ms2) = Tr log

(
k2 + Ms2

0

) + λ

Λ2

∑
i

1

k2 + Ms2
i

CΦ
ii μ

2

− 1

2

∑
ij

1

k2 + Ms2
i

1

k2 + Ms2
j

(
λ

Λ2

)2 ∑
k

CΦ
ikC

Φ
kjμ

4 + · · · . (79)

Since Cψ,Φ ∼ 1/AL2, we see that the leading contribution to the Casimir energy from the vector
multiplet is generically volume and cutoff suppressed compared to the one from the hypermulti-
plets.
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