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Similar results were obtained for the different OAR.  
From plan difference the mean doses of OAR and targets were within 
±1%. 
Conclusions: This study showed the good agreement of CCC 
calculations from measured fluences with respect to both Acuros XB 
and AAA algorithms from treatment planning system.  
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Purpose/Objective: Aim of this study is to compare dose calculation 
algorithms Analytical Anisotropic Algorithm (AAA) and AcurosXB(AXB) 
in terms of different dose calculation grid sizes for brain cases using 
Volumetric Modulated Arc Therapy(VMAT) where maximum dose is 
more concern for serial organs. 
Materials and Methods: AcurosXB algorithm recently available in 
varian 3D treatment planning system was compared with AAA 
algorithm. In this study we selected 10 brain cases where optic 
apparatus and brainstem very close to or merged within the Planning 
Target Volume(PTV). All the cases 3mm CT slices were taken and full 
arc or semi arc VMAT plans were created using Varian Eclipse 
treatment planning system(TPS)(V10). Plans were optimized using 
Progressive Resolution Optimization(PRO) III algorithm and dose was 
calculated using AAA and AXB algorithms for different grid sizes 
1.5mm, 2.0mm & 2.5mm. Plans were compared dosimetrically in 
terms of dose and volume. PTV was analyzed in terms of maximum 
dose (1% of PTV volume receiving dose), dose received by 95% volume 
of PTV V95% and conformity index(CI) whereas critical organs 
maximum dose was compared for optic chiasma, optic nerve and 
brainstem. In addition Verification plans were created and measured 
for all plans on multi cube phantom (with iMatrixx 2D array) and dose 
calculations were performed with AAA & AXB for the same gird size 
combinations. Measured dose was kept as reference and all other dose 
calculated plans were compared in terms of gamma analysis. 
Results: The mean percentage of PTV maximum dose difference of 
AAA over AXB(taken as reference) was found to be 1.992±0.20, 
1.342±0.76 & 1.599±0.21, the average PTV V95% dose percentage 
difference was 2.822±0.48, 2.825±0.42 & 2.944±0.42 and mean 
Conformity index percentage difference was 5.784±1.34, 5.639±1.73 & 
5.872±1.51 for 1.5mm, 2.0mm & 2.5mm grid sizes respectively. 
Regarding critical organs the mean percentage difference of maximum 
dose for optic chiasm was 1.398±0.27, 1.326±0.23 & 0.780±0.34, left 
optic nerve 0.924±0.43, 1.022±0.20 & 0.498±1.18, right optic nerve 
0.924±0.43, 1.022±0.20 & 0.498±1.18 and brainstem 1.582±0.23, 
1.402±0.23 & 1.590±0.56 for 1.5mm, 2.0mm & 2.5mm grid sizes 
respectively. 2D planar gamma evaluation for 3mm/3% criteria area 
gamma for AAA & AXB were 98.62±0.89, 98.67±0.65, 98.86±0.47 and 
98.87±0.58, 98.94±0.65, 99.14±1.02 for 1.5mm, 2.0mm & 2.5mm grid 
sizes respectively. 
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1.5mm 1.992 2.822 5.784 1.398 0.924 0.712 1.582 98.62 98.87 

2.0mm 1.342 2.825 5.639 1.326 1.022 0.514 1.402 98.67 98.94 

2.5mm 1.599 2.944 5.872 0.780 0.498 0.222 1.590 98.86 99.14 

 
Conclusions: The results showed that AAA compared with AXB 
overestimates dose by maximum of 3%. Delivered & measured dose 
analysis shows good agreement between measured and AXB than AAA. 
Little overestimation of AAA as compared to AXB can be attributed to 
better modeling of spot size,penumbra & electron contamination in 
AXB. 2.5mm grid size is considered acceptable for most of the VMAT 
brain plans but at least in the high gradient area 1.5mm grid size is 
required.  
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Purpose/Objective: Small animal image-guided precision radiotherapy 
is rapidly advancing through the use of dedicated micro-irradiation 
(micro-IR) devices. However, precise modeling of these devices in 
model-based dose-calculation algorithms such as Monte Carlo(MC) 
simulations continue to present challenges due to the required high 
mechanical tolerances placed on beam collimation, positioning and 
long calculation times. We believe that source generation may benefit 
from alternative analytical techniques since the majority of 
calculation time in MC algorithms is electron transport and 
bremsstrahlung generation that is potential unnecessary given that 
fast spectrum generating codes now exist. The specific intent of this 
investigation is to introduce and demonstrate the viability of a fast 
analytical source model for use in either investigating improvements 
in collimator design or for use in faster dose calculations.  
Materials and Methods: An image-guided small animal micro-IR 
(P225Cx, PXInc, CT, USA) was modeled in MC (EGSnrc, NRC, Ottawa), 
including the electron beam distribution for several circular and 
square fields with sizes ranging from 1-mm to 25-mm in diameter. An 
analytical source model was developed in Matlab (Mathworks, MA, 
USA) that consists of two distinct steps. The first step is the 
generation of a fluence intensity distribution, and the second step 
consists of generating a phase-space file from the fluence intensity 
distribution. The analytical model uses a pinhole image of the focal 
spot, a pre-calculated x-ray spectrum, and collimator-specific 
entrance and exit aperture geometries. MC phase-space files (PSFMC) 
and analytical model phase-space files (PSFAM) were generated at the 
exit of the collimators for a tube potential of 225kVp. Simulations 
using each phase-space file were performed in a voxelized water 
phantom and in a realistic mouse phantom. Beam profiles and 3D dose 
distributions between the analytical source and full MC source model 
were compared.  
Results: Beam profiles between the analytically generated source 
model and the full MC source model agreed well. There was negligible 
difference between the pre-calculated spectrum and the full MC 
generated spectrum. Relative 3D dose distributions were comparable 
with the analytical model showing smoother isodose contours due to 
the nature of the analytical phase-space. The analytical model source 
generation demonstrated a speed increase of 30x over efficient MC 
source generation for the largest beams and were up to 400 times 
faster for the smallest beams. The analytical source model also 
demonstrated that the shape and output of the beam is highly 
dependent on the size and shape of the electron beam distribution 
and collimator alignment.  
Conclusions: The presented analytical source model is a useful tool 
for rapidly generating a source model.  
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Purpose/Objective: To validate a simplified kV x-ray beam model and 
dose computation method (kVDoseCalc) for CBCT in block, round, and 
anthropomorphic geometries.  
Materials and Methods: We characterized Varian® OBI® beam output 
for four imaging modalities using three different energies and two 
different bow tie filters. (See Table 1) 
 

 
The spatially varying spectrum of the beam was obtained by matching 
the nominal kVp and the measured HVL to a spectrum computed using 
the freeware Spektr.1,2 The transverse beam fluence Φ(x)was 
calculated from Eq. (1) using in-air dose measurements. The term 
U(x,E) represents the spectrum obtained from Spektr, while the mass-
absorption coefficient (µen(E)/ρ)was taken from the NIST database.3 A 
similar fluence was obtained along the radial axis. The two fluences 
were multiplied together to create a two-dimensional array that was 
back-projected to the position of the x-ray tube anode to form the x-
ray source.1 This source was used as input for kVDoseCalc,our in-house 
x-ray dose computation software.4 




