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Abstract

We prove sharp Lp � Lq endpoint bounds for singular fractional integral operators

and related Fourier integral operators, under the nonvanishing rotational curvature

hypothesis.

r 2003 Elsevier Science (USA). All rights reserved.

Keywords: Fractional integrals; Singular Radon transforms; Fractional Radon transforms; Fourier

integral operators; Angular Littlewood-Paley decomposition

1. Introduction

Let OC *O be open sets in Rd ; ICRd�c be an open neighborhood of the origin and
let Z be a compactly supported smooth function on O� I ; we assume that Zð�; 0Þ
does not vanish identically. For each xAO let t/Gðx; tÞC *O be a regular

parametrization of a submanifold MxC *O with codimension c: We assume that
Gðx; tÞCO if ðx; tÞAsupp Z; and that G satisfies Gðx; 0Þ ¼ x and depends smoothly
on ðx; tÞ:

We shall consider the singular fractional integral operator (or weakly singular
Radon transform) Rs; defined by

Rsf ðxÞ ¼
Z

Zðx; tÞf ðGðx; tÞÞjtj�ðd�c�sÞ
dt; ð1:1Þ
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under suitable ‘‘curvature’’ assumptions on the singular support and the wavefront
sets of the distribution kernel of the integral operator.

To formulate these assumptions, we shall work with a submanifold M of
codimension c in O� O; so that

D :¼ fðx; xÞ : xAOgCM: ð1:2Þ

To relate this to the operator in (1.1) we assume that Zðx; tÞ vanishes unless jtjod for
small d and note that the differential of the map ðx; tÞ/gðx; tÞ has maximal rank
d þ c; then we take

M ¼ fðx; yÞ : xAO; y ¼ Gðx; tÞ for some jtjodg:

Moreover, we assume the following standard hypotheses in the theory of Fourier
integral operators:

Nondegeneracy hypotheses:

(H1) The natural projections ðx; yÞ/x and ðx; yÞ/y are submersions when
restricted to M:

(H2) The twisted normal bundle NnM0CTnO� TnO is locally the graph of a

canonical transformation. Here NnM0 consists of all ðx; x; y;�ZÞ where

ðx; yÞAM and ðx; ZÞATn

ðx;yÞM annihilates the tangent vectors in Tðx;yÞM:

Hypothesis (H1) implies that the sections

Mx ¼ fyAO : ðx; yÞAMg; ð1:3Þ

My ¼ fxAO : ðx; yÞAMg ð1:4Þ

are immersed submanifolds of O; of codimension c: We may assume that M is given
by a defining function

M ¼ fðx; yÞ :Fðx; yÞ ¼ 0g; ð1:5Þ

where F is Rc-valued satisfying Fðx; xÞ ¼ 0 so that (1.2) is satisfied and rank
Fx ¼ rankFy ¼ c so that (H1) is satisfied.

Hypothesis (H2) can be reformulated as follows. Let Cðx; y; tÞ ¼ t � Fðx; yÞ: Then
the assumption (H2) on NnM0 is equivalent with

det
Cxy Cxt

Cty Ctt

 !
¼ det

t � Fxy Fx

Fy 0

 !
a0 for all tASc�1; ð1:6Þ

see [12]; in (1.6) Fx should be read as a d � c-matrix and Fy as an c� d-matrix. For

c ¼ 1 hypothesis (H2) is just the rotational curvature assumption of Phong and Stein
[16]. We note that for (H2) to hold the codimension c has to be sufficiently small, and
we are mainly interested in the case of hypersurfaces.

A. Seeger, S. Wainger / Journal of Functional Analysis 199 (2003) 48–91 49



Theorem 1.1. Suppose that 1pppqpN; 0osod � c and suppose that M satisfies

the nondegeneracy assumptions (H1) and (H2). Then Rs maps LpðOÞ-Lqð *OÞ if and

only if the following conditions are satisfied:

(a) ð1=p; 1=qÞ belongs to the triangle with corners ð0; 0Þ; ð1; 1Þ and d
dþc;

c
dþc

� �
:

(b) ð1=p; 1=qÞ belongs to the halfplane defined by ðd þ cÞ 1
p
� 1

q

� �
ps:

A special translation invariant case is due to Christ [3], extending earlier
results by Ricci and Stein [18]. These authors consider the translation

invariant case where Fðx; yÞ ¼ xd � yd � jx0 � y0j2 and a related model case
on the Heisenberg group. For these dilation invariant examples one actually
proves global results which one could deduce from local ones by scaling
arguments.

The weakly singular Radon transforms are special cases of oscillatory integrals
with singular symbols as considered by Melrose [13], Greenleaf and Uhlmann [11]
and others. Let Ir;�sðO� O;M;DÞ denote the class of distribution kernels
introduced in [11]; we denote by Ir;�sðO� O;M;DÞ the associated class
of operators and refer for a general discussion and other references to previous
work to [11].

Possibly after a change of variable we may locally parametrize M as a graph of an

Rc valued function,

y00 ¼ Sðx; y0Þ ð1:7Þ

with y0 ¼ ðy1;y; yd�cÞ; y00 ¼ ðyd�cþ1;y; ydÞ; S ¼ ðSd�cþ1;y;SdÞ; so that

rank Sx00 ¼ c ð1:8Þ

and

det
y � Sx0y0 Sx0

y � Sx00y0 Sx00

 !
a0 ð1:9Þ

for all yARc
\f0g:

We recall from [5,11] that a distribution kernel K belongs to Ir;�sðO� O;M;DÞ if
it is a locally finite sum of Kn; so that each Kn can be written after a change of
variable in O as an oscillatory integralZ Z

Rd�c�Rc
ei½/t;y00�Sðx;y0ÞSþ/x;x0�y0Saðx; y; t; xÞ dt dx: ð1:10Þ

Here S satisfies (1.8) and (1.9) and the symbol a satisfies the differential
inequalities

j@g
x;y@

a
t@

b
xaðx; y; t; xÞjpCa;b;gð1þ jtj þ jxjÞr�jajð1þ jxjÞ�s�jbj: ð1:11Þ
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We refer to the class of symbols satisfying (1.11) as Sr;�sðO� O;Rc;Rd�cÞ: We shall
sometimes denote the operator with kernel (1.10) as T½a:

It is well known that the weakly singular Radon transform as considered in

Theorem 1.1 is an operator in I0;�sðO� O;M;DÞ (see e.g. [11]). Namely after an
appropriate localization it suffices to work with

Rsf ðxÞ ¼
Z

f ðy0;Sðx; y0ÞÞjx0 � y0jsþc�dwðx0;Sðx; y0Þ; y0Þ dy0; ð1:12Þ

where w has small support. Then the distribution kernel is given by

dðy00 � Sðx; y0ÞÞjx0 � y0js�dþc
gðx; y0Þ;

where d is the Dirac measure at the origin in Rc and g is smooth and compactly

supported. We expand the Dirac measure using the Fourier inversion formula in Rc

and apply the Fourier inversion formula in Rd�c to the function h-jhjs�dþc
gðx; x0 þ

hÞ: As a result we can write the distribution kernel in form (1.10) where the symbol a

is given by

aðx; y; t; xÞ ¼ ð2pÞ�d

Z
jw0js�dþc

gðx; x0 þ w0Þe�i/x;w0S dw0:

We now formulate estimates for general operators of class Ir;�s: Since the
composition of a standard pseudodifferential operator of order m with an operator

in Ir;�sðO� O;M;DÞ belongs to Irþm;�sðO� O;M;DÞ (see [5,11]) the following

results yield Lp
a-L

q
aþm Sobolev estimates for weakly singular Radon transforms.

Theorem 1.2. Suppose that 1pppqpN: Let TAIr;�sðO� O;M;DÞ; with com-

pactly supported distribution kernel, and assume that the nondegeneracy assumptions

(H1) and (H2) hold.

1.2.1. Suppose 0orod�c
2

and 2rosod � c: Then T maps Lp to Lq if the following

two conditions are satisfied.

(a) ð1=p; 1=qÞ belongs to the closed triangle with corners r
d�c;

r
d�c

� �
; d�c�r

d�c ; d�c�r
d�c

� �
and d�r

dþc;
rþc
dþc

� �
:

(b) ð1=p; 1=qÞ belongs to the halfspace defined by ðd þ cÞ 1
p
� 1

q

� �
ps� 2r:

1.2.2. Suppose r ¼ 0 and 0osod � c: Then T maps Lp to Lq if the following two

conditions are satisfied.

(a) ð1=p; 1=qÞ belongs to the closed triangle with corners ð0; 0Þ; ð1; 1Þ and d
dþc;

c
dþc

� �
;

with the possible exception of the points ð0; 0Þ and ð1; 1Þ:
(b) ð1=p; 1=qÞ belongs to the halfspace defined by ðd þ cÞ 1

p
� 1

q

� �
ps:
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Moreover, T is bounded from the Hardy space H1 to L1 and from LN to BMO:

1.2.3. Suppose �coro0 and �rd�c
c osod � c: Then T maps Lp to Lq if the

following two conditions are satisfied.

(a) ð1=p; 1=qÞ belongs to the pentagon with corners ð1; 1Þ; ð0; 0Þ; 1; rþc
c

� �
; �r

c ; 0
� �

and

d�r
dþc;

rþc
dþc

� �
; with the possible exceptions of the points 1; rþc

c

� �
; �r

c ; 0
� �

:

(b) ð1=p; 1=qÞ belongs to the halfspace defined by ðd þ cÞ 1
p
� 1

q

� �
ps� 2r:

1.2.4. Suppose �coro0 and 0osp� rd�c
c : Then T maps Lp to Lq if ð1=p; 1=qÞ

belongs to the quadrilateral with corners ð1; 1Þ; ð0; 0Þ; 1; d�s�c
d�c

� �
and s

d�c; 0
� �

; with the

possible exception of the points 1; d�s�c
d�c

� �
and s

d�c; 0
� �

:

We remark that the analytic family of fractional integrals considered by Grafakos
[9] in the translation invariant case can be considered as a model family of operators

of class Ir;�s; however, the L2 endpoint case in this family belongs to I
d�c
2

;c�d but

satisfies better L2 estimates than the general operator in I
d�c
2

;c�d :

Operators in I0;0 are bounded on Lp for 1opoN; see [11], and for the main
special case of singular Radon transforms Phong and Stein [16,17]. The endpoint
Lp-Lp estimates for the case 2r ¼ s; pr ¼ ðd � c� rÞ=ðd � cÞ or p0

r ¼ r=ðd � cÞ
may fail as demonstrated by Christ [4]. It is likely that the best possible Lorentz-

space endpoint estimate, namely an Lpr-Lpr;2 bound holds; a proof of this estimate
in the translation-invariant case was given by Seeger and Tao [20].

A variant of the methods in this paper has been used by Seeger and Wainger [21]
to prove new Lp theorems for variable-coefficient maximal and singular

integral operators associated to families of curves in R2 (extending results
in [2,19]).

It is well known that at least under the assumption of nonvanishing rotational
curvature certain parabolic cutoffs can be used to write a singular integral
along a hypersurface as a sum of two operators, where one of them is a

pseudodifferential operator of type 1
2
; 1
2

� �
and the other one a Fourier integral

operator, of type 1
2
; 1
2

� �
: This decomposition is due to Melrose (see [11,13]), but

related arguments had been used by Nagel et al. [15], see also [17] for a different
version. In the course of this paper, we shall make use of (variants of) all these
decompositions.

The paper is organized as follows: Section 2 contains some preparations and the
discussion of a crucial change of variables. Section 3 contains preliminary estimates
for dyadic pieces of fractional Radon transforms. After appropriate localizations
these are reduced to standard estimates for Fourier integral operators via parabolic
scalings. In Section 4 we consider some variants of fractional integrals which are
relevant for the estimation of the pseudodifferential contribution to operators in
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Ir;�s when rp0: Here, we shall also see that part 1.2.4 follows in a straight-
forward way from estimates for a class for certain product-type fractional
integrals. In Section 5 we give the proof of Theorem 1.1. It turns out that after
some changes of variables angular Littlewood–Paley decompositions may be applied
just as in the previously known translation-invariant case [3]. As in that case a
positivity argument is crucial; however, the estimates for the error terms are more
involved. In Section 5 we also bound a family of less singular positive operators
which dominate operators in Ir;�s when ro0; thus we can then give a proof of
1.2.3. Finally, in Section 5, we discuss standard examples which show the sharpness
of the results. In Section 6 we establish Lp-Lp bounds by suitable interpolation

between L2-L2 and Hardy-space estimates. Section 7 contains estimates for general

operators in I0;�s and additional interpolation arguments to finish the proof of
Theorem 1.2.

2. Preliminaries

2.0. Notation

2.0.1. Be will denote the open ball in Rd of radius e centered at the origin.

2.0.2. mðDÞ denotes the convolution operator with Fourier multiplier mðxÞ: We split

variables in Rd ¼ Rd�c � Rc as x ¼ ðx0; x00Þ and denote by hðD00Þ the convolution

operator with Fourier multiplier hðx00Þ:

2.0.3. A function F on fz : 0pReðzÞp1g is called of admissible growth if

jFðzÞjpCeAjzj for some A40; CX0:

2.0.4. The differentiability inequalities (1.11) are supposed to hold for all

multiindices of length pM0 where M0 is large, say M0 ¼ 10100d; those multiindices
are termed admissible. Exponents N;N0;y;N4 in Sections 4 and 7 are assumed to

be Xd þ 1 and p1010d:

2.0.5. We denote by z0 � o0 an even CN

0 ðRÞ function with z0ðsÞ ¼ 1 for jsjp1=2 and
z0ðsÞ ¼ 0 for jsjX1: Also let zðsÞ ¼ z0ðs=2Þ � z0ðsÞ; oðsÞ ¼ o0ðs=4Þ � o0ðsÞ so that z
is supported in ½1=2; 2 and o is supported in ½1=4; 4; moreover

z0ðsÞ þ
XN
j¼1

zð2�jsÞ ¼ 1;

o0ðsÞ þ
XN
j¼1

oð4�jsÞ ¼ 1

for all sAR:
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2.0.6. For two quantities A and B we write AtB or B\A if there exists an absolute
positive constant C so that apCb: We write AEB if both AtB and A\B hold.

2.1. Standard assumptions

For our Fourier integrals (1.10) and for the weakly singular Radon transforms any
contribution away from the diagonal is handled by standard estimates for Fourier
integral operators, see Lemma 3.1. Therefore, in view of the compact support
assumption on the kernel it is sufficient to prove Theorems 1.1 and 1.2 under the
assumption that the kernels of our operators are supported in a small neighborhood
of a given point ðP;PÞAD: We shall introduce coordinates that vanish at P; and

assume that in these coordinates the kernels are supported where jxj; jyjpe10; e is
chosen in (2.16).

For further preparation choose e040 so that in a neighborhood of the closure of
Be0 � Be0 the manifold M is given as a graph

y00 ¼ Sðx; y0Þ ð2:1Þ

by performing a linear transformation we can also assume that

Sx0 ð0; 0Þ ¼ Oc;d�c ð2:2Þ

(the c� ðd � cÞ zero-matrix).
Since DCM we have

x00 ¼ Sðx; x0Þ ð2:3Þ

for all xABe0 and consequently

Sx0 ðx; x0Þ þ Sy0 ðx; x0Þ ¼ 0; ð2:4Þ

Sx0x0 ðx; x0Þ þ 2Sx0y0 ðx; x0Þ þ Sy0y0 ðx; x0Þ ¼ 0; ð2:5Þ

Sx00 ðx; x0Þ ¼ Ic;c; ð2:6Þ

where Ic;c denotes the c� c identity matrix.

We shall also assume that for some constant C0X1X
jajp10100d

sup
jxjpe0
jy0jpe0

j@a
x;y0Sðx; y0ÞjpC0: ð2:7Þ

Moreover, by assumption (1.9) and by (2.2) we have for some positive c0o1

jjðy � Sx0y0 ð0; 0ÞÞ�1jjpc�1
0 ð2:8Þ

for all unit vectors yASc�1; here jj � jj denotes the Hilbert–Schmidt norm.
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2.2. Straightening near the diagonal

We now introduce a family of changes of variables, depending on unit vectors

u in Rd�c

w/Qðw; uÞ :¼ ðw0;w00 þ Fðw; uÞÞ

so that

F 0
wð0; uÞ ¼ 0; ð2:9:1Þ

Fð0; uÞ ¼ 0 ð2:9:2Þ

and so that

y00 ¼ Sðx; y0Þ3z00 ¼ S̃ðw; z0; uÞ;

if y ¼ Qðz; uÞ; x ¼ Qðw; uÞ ð2:10Þ

and

/u;rw0SS̃iðw;w0; uÞ ¼ 0; i ¼ d � cþ 1;y; d: ð2:11Þ

To describe this change of variables let B ¼ BðuÞ be a rotation on Rd�c depending

smoothly on u such that Be1 ¼ u (with e1 ¼ ð1; 0;y; 0Þ). We define an Rc-valued
function G ¼ Gð�; uÞ by requiring that G satisfies the following system of ordinary
differential equations, with respect to the variable w1 and initial data depending on
the parameters w2;y;wd :

@G

@w1
ðwÞ ¼ /u;Sy0SðBw0;w00 þ GðwÞ;Bw0Þ;

Gð0;w2;y;wdÞ ¼ 0:

Set

FðwÞ � Fðw; uÞ ¼ GðB�1w0;w00; uÞ;

then F satisfies (2.9) and

/u;rw0SFðwÞ ¼ /u;Sy0 ðw0;w00 þ FðwÞ;w0ÞS: ð2:12Þ

For the following discussion fix u: Since the functions S and S̃ are related by (2.10)
we have

S̃ðw; z0Þ þ Fðz0; S̃ðw; zÞÞ ¼ Sðw0;w00 þ FðwÞ; z0Þ: ð2:13Þ
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Denote by Du ¼ /u;rz0S the directional derivative with respect to u: Differentiation
of (2.13) yields

DuS̃ðw; z0Þ þ DuFðz0; S̃ðw; zÞÞ þ Fz00 ðz0; S̃ðw; zÞÞDuS̃ðw; zÞ

¼ /u;ry0SSðw0;w00 þ FðwÞ; z0Þ

and by (2.12) we obtain

DuS̃ðw; z0Þ þ/u;Sy0 ðz0; S̃ðw; z0Þ þ Fðz0; S̃ðw; z0ÞÞ; z0ÞSþ Fz00 ðz0; S̃ðw; z0ÞÞDuS̃ðw; z0Þ

¼ /u;Sy0 ðw0;w00 þ FðwÞ; z0ÞS:

Now we evaluate for w ¼ z and take into account that S̃ðz; z0Þ ¼ z00: This
yields

ðI þ Fz00 ðzÞÞDuS̃ðz; z0Þ ¼ 0:

Since Fz00 ð0Þ ¼ 0 by (2.9), we obtain /u;rz0SS̃ðz; z0Þ ¼ 0 in a neighborhood of ð0; 0Þ;
and since also S̃w0 ðw;w0Þ þ S̃z0 ðw;w0Þ ¼ 0 this yields (2.11).

In view of (2.9) we may fix a number d15e0 so that

Bd=2CQðw; uÞBdCB2d for dpd1;wABd: ð2:14Þ

Let

C1 ¼ sup
jajp10100d

sup
jwjpd1

jF ðaÞðwÞj þ C0; ð2:15Þ

where C0 is as in (2.7). We may assume throughout this paper that the cutoff
function w in (1.12) satisfies

supp wCfðx; y0Þ : jxj þ jy0jpeg where 0oeoð100dC1=c0Þ�1d1: ð2:16Þ

Moreover the distribution kernels of the Fourier integrals defined by (1.10) are
assumed to be supported in Be10 � Be10 :

Note also that for jxj; jyjpe

jjSx0 jj þ jjSx00 � Ic;cjj5e95d1 ð2:17Þ

jjFwjj5e95d1: ð2:18Þ

2.3. Adjoint operators

Suppose that M is given as a graph (1.7) with (1.8) and the symbol has small
ðx; yÞ support then we may solve the equation y00 ¼ Sðx; y0Þ in x00 so that
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y00 ¼ Sðx0;Sðy; x0Þ; y0Þ and

y00 � Sðx0; x00; y0Þ ¼ Cðx; yÞðx00 � Sðy0; y00; x0ÞÞ ð2:19Þ

in a neighborhood of M; with Cðx; yÞ is an invertible c� c matrix depending
smoothly on ðx; yÞ: If in the oscillatory integral (1.10) we make a linear change

in the t-variables, *t ¼ Cðx; yÞTt; then we see that (1.10) can be rewritten as a
linear combination of integrals with phase function /t; x00 � Sðy; x0ÞS: This shows
that for an operator in Ir;�sðO� O;M;DÞ the adjoint operator belongs

to Ir;�sðO� O;Mn;DÞ where Mn ¼ fðx; yÞ : ðy; xÞAMg (and Mn satisfies (H1)
and (H2)).

3. Nonsingular Radon transforms and scaling

We first recall a well-known result on Lp-Lq estimates for Fourier
integral operators associated to a canonical graph. These estimates take care of
contributions of the kernels away from the diagonal. In the formulation
of this lemma the order of a Fourier integral operator is as in the standard theory
of Fourier integral operators; thus the standard Radon-type operators is of
order �ðd � cÞ=2:

Lemma 3.1. Suppose �corod�c
2
:

Let T be a Fourier integral operator of order r� d�c
2

associated to a local canonical

graph CCTnO\f0g � TnO\f0g: Suppose that the restrictions C of the projections

ðx; yÞ-x and ðx; yÞ-y have differentials with maximal rank d and that the projection

C-O� O has a differential with constant rank p2d � c: Suppose that the distribution

kernel of T has compact support.
ðiÞ If r40 then T maps Lp to Lq if ð1=p; 1=qÞ belongs to the closed triangle with

corners r
d�c;

r
d�c

� �
; d�c�r

d�c ; d�c�r
d�c

� �
and d�r

dþc;
rþc
dþc

� �
:

ðiiÞ If r ¼ 0 then T maps Lp to Lq if ð1=p; 1=qÞ belongs to the closed triangle with

corners ð0; 0Þ; ð1; 1Þ and d
dþc;

c
dþc

� �
; with the possible exception of the corners ð0; 0Þ and

ð1; 1Þ; then an H1-H1 or LN-BMO bound holds.
ðiiiÞ If �coro0 then T maps Lp to Lq if ð1=p; 1=qÞ belongs to the pentagon with

corners ð1; 1Þ; ð0; 0Þ; 1; cþr
c

� �
; �r

c ; 0
� �

and d�r
dþc;

rþc
dþc

� �
; with the possible exceptions of the

points 1; cþr
r

� �
; �r

c ; 0
� �

:

Sketch of the argument. The main Lp-Lp0 estimates are essentially proved in [1].

We sketch the argument. Consider first the main endpoint L
dþc
d�r-L

dþc
rþc estimate. In

view of the constant rank assumptions on the projection of C to the base space we
may after appropriate localization and choice of coordinates write the kernel as the

A. Seeger, S. Wainger / Journal of Functional Analysis 199 (2003) 48–91 57



sum
P

kX1 Kkðx; yÞ and a CN

0 function; here

Kkðx; yÞ ¼ 2kr
Z

ei/t;y00�Sðx;y0ÞSakðx; y; tÞ dt;

where the integral is extended over a conic open set of Rc; S is as in the introduction,
the symbols ak are of order 0 with uniform bounds in kX1; and akðx; y; yÞ ¼ 0 if

jyjeð2k�1; 2kþ1Þ:
Let Tk be the operator with kernel Kk: Standard L2 theory (see [12,22]) shows that

Tk is bounded on L2; with norm O 2k r�d�c
2

� �
 �
: Clearly jKkðx; yÞjt2kðrþcÞ: Thus Tk

maps L1 to LN with norm t2kðrþcÞ: Interpolation yields that Tk maps L
dþc
d�r to L

dþc
rþc

with bounds uniform in k: Since we assume that the canonical relation C does not

meet f0g � TnO and TnO� f0g one can use standard integration by parts
arguments [12] and Littlewood–Paley theory to put the pieces together and

one obtains the desired L
dþc
d�r-L

dþc
rþc estimate, cf. also [1]. For the endpoint

Lp-Lp (or H1-L1 estimate) and more references see [22, Chapter IX].
Finally assume �coro0: Then an integration by parts argument shows that

jKkðx; yÞjt2kðcþrÞð1þ 2kjy00 � Sðx; y0ÞjÞ�N

and therefore the sum in k is bounded by jy00 � Sðx; y0Þj�ðrþcÞ: In view of the compact

support of the kernel we see that Kðx; �Þ and Kð�; yÞ are uniformly in Weak-L
c

cþr:

Thus the operator maps L1 to Weak-L
c

cþr: A similar argument applies to the adjoint
operator. Now one uses the Marcinkiewicz interpolation to interpolate with the

endpoint L
dþc
d�r-L

rþc
dþc estimate and further interpolation with the trivial L1 and LN

estimates to conclude. &

Let wACN

0 ðRd � RdÞ be a nonnegative function. Now let �corp0; 0osod � c:
If also ro0 we define the distribution kernel Gr;s by

Gr;sðx; yÞ ¼ wðx; yÞjx0 � y0j�ðd�c�sÞ
cc;rjy00 � Sðx; y0Þj�ðrþcÞ if � coro0; ð3:1Þ

where

cc;r ¼ 2rp�c=2 Gð
cþr
2
Þ

Gð�r
2
Þ ;

so that the Fourier transform on Rc of cc;rj � j�ðcþrÞ is jxjr; see [8]. Define G0;s ¼
limr-0� Gr;s where the limit is taken in the sense of distributions; clearly

G0;sðx; yÞ ¼ dðy00 � Sðx; y0ÞÞjx0 � y0j�ðd�c�sÞwðx; yÞ: ð3:2Þ
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Define the operator Rr;s by

Rr;sf ðxÞ ¼ /Gr;sðx; �Þ; fS; ð3:3Þ

so that for r ¼ 0 we recover the weakly singular Radon transform. We wish to apply
Lemma 3.1 to dyadic pieces localized in x0 � y0; after a suitable rescaling. Therefore,
we decompose dyadically

Rr;s ¼
X

j

ðRr;s
j þ E

r;s
j Þ ð3:4Þ

with

R
r;s
j f ðxÞ ¼ 2jðd�c�sÞ/b

r;s
j ðx; �Þ; fS; ð3:4Þ

E
r;s
j f ðxÞ ¼ 2jðd�c�sÞ/h

r;s
j ðx; �Þ; fS; ð3:5Þ

where

b
r;s
j ðx; yÞ ¼ 2�jðd�c�sÞzð2jjx0 � y0jÞz0 jy00�Sðx;y0Þj

jx0�y0 j2

� �
Gr;sðx; yÞ ð3:6Þ

and

h
r;s
j ðx; yÞ ¼ 2�jðd�c�sÞzð2jjx0 � y0jÞ 1� z0

jy00�Sðx;y0Þj
jx0�y0 j2

� �� �
Gr;sðx; yÞ: ð3:7Þ

Note that this implies h0;s � 0:

Proposition 3.2. Let 0osod � c; �corp0 and let R
r;s
j be as in (3.1).

(i) Suppose that ð1=p; 1=qÞ belongs to the triangle with corners ð0; 0Þ; ð1; 1Þ and

d
dþc;

c
dþc

� �
: Then

jjR0;s
j f jjqt2

j½ðdþcÞ 1
p
�1

q

� �
�s

jj f jjp:

(ii) Suppose that �coro0: Then the inequality

jjRr;s
j f jjqt2

j½ðdþcÞ 1
p
�1

q

� �
þ2r�s

jj f jjp

holds if ð1=p; 1=qÞ belongs to the pentagon with corners ð1; 1Þ; ð0; 0Þ; 1; cþr
c

� �
; �r

c ; 0
� �

and d�r
dþc;

rþc
dþc

� �
; with the possible exception of the points 1; cþr

c

� �
; �r

c ; 0
� �

:

Proof. Let d40 and

Bða; dÞ ¼ fy : jy0 � a0jpd; jy00 � a00 �/Sy0 ða; a0Þ; y0 � a0Sjpd2g: ð3:8Þ
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A sufficiently small neighborhood U of the origin is then made into a space of
homogeneous space with the balls Bðx; dÞ (see [16,22] at least for the case c ¼ 1), and

for sufficiently large j we can cover U with a family of balls Bðxn; 2
�jÞ which have

bounded overlap.

Fix j and observe that if f is supported in Bðxn; 2
�jÞ then Rj f is supported in

Bðxn;C2�jÞ for a fixed C: Therefore, in order to prove the asserted inequality it
suffices to verify it under the assumption that f is supported in a ball Bða; dÞ where
aAO is near the origin.

Fix a: Then we perform an affine change of variables, so that in the

new coordinates we can write R
r;s
j as in (3.4) and (3.6) with Sðx; y1Þ replaced by

sðx; y1Þ satisfying

sx0 ða; a0Þ ¼ 0; sy0 ða; a0Þ ¼ 0: ð3:9Þ

Eq. (3.9) implies that the ball Bða; 2�jÞ is contained in

fy : jy0 � a0jpA2�j; jy00 � a00jpA2�2jg

for suitable A: Moreover, we also see the rotational curvature in (1.9) at ða; a0Þ is
given by det y � sx0y0 ða; a0Þ since we still have sx00 ða; a0Þ ¼ Ic;c; cf. (2.6).

We now perform a scaling argument and write

R
r;s
j f ða0 þ 2�jv0; a00 þ 2�2jv00Þ ¼ 2jð2r�sÞ *Rr;s

j fjðvÞ;

where

*R
r;s
j gðvÞ ¼/b̃

r;s
j ðv; �Þ; gS;

fjðw0;w00Þ ¼ f ða0 þ 2�jw0; a00 þ 2�2jw00Þ;

Sj;aðv;w0Þ ¼ 22jð�a00 þ sða0 þ 2�jv0; a00 þ 2�2jv00; a0 þ 2�jw0ÞÞ;

b̃
r;s
j ðv;wÞ ¼ b

r;s
j ða0 þ 2�jv0; a00 þ 2�2jv00; a0 þ 2�jw0; a00 þ 2�2jw00Þ:

In view of sða; a0Þ ¼ a00 and sx0 ða; a0Þ ¼ 0 we check that the derivatives of Sj;a

are uniformly bounded (in a fixed neighborhood of ð0; 0Þ; which can be
chosen independently of j and a) and also that the rotational curvature is bounded
below.

The rescaled operators *R
r;s
j are standard Fourier integral operators, to

which Lemma 3.1(ii) and (iii) can be applied, the resulting Lp-Lq bounds are
uniform in j; and in a:We apply Lemma 3.1 with the relevant choice of p and q and it
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follows that

2
j

dþc
q jjRr;s

j f jjq ¼ 2jð2r�sÞjj *Rj fj jjqt2jð2r�sÞjj fjjjpt2jð2r�sÞ2
j

dþc
p jj f jjp;

which proves the proposition. &

For the estimation of the error term involving the terms E
r;s
j see

Proposition 4.2.

4. Regular and product type fractional integrals

In this section, we study nonisotropic and product type-pseudodifferential
operators, which come up as low frequency contributions to operators in Ir;�s; in
particular we prove Lp-Lq estimates for the error term in (3.4). We recall a sharp
version of Young’s inequality (see [6, Theorem (6.35)]) which states that the
conditions 1opoqoN and

sup
x

jjKðx; �ÞjjLr;N þ sup
y

jjKð�; yÞjjLr;NoN;
1

r
¼ 1� 1

p
þ 1

q
; ð4:1Þ

imply that the integral operator with kernel Kðx; yÞ is bounded from Lp-Lq:

Lemma 4.1. Suppose 1opoqoN: Define

K
r;s
1 ðx; yÞ ¼ wðx; yÞjx0 � y0js�dþcjy00 � Sðx; y0Þj�r�c; ð4:2Þ

K
r;s
2 ðx; yÞ ¼ wðx; yÞðjx0 � y0j þ jy00 � Sðx; y0Þj1=2Þs�2r�d�c ð4:3Þ

and

K
r;s
3 ðx; yÞ ¼

wðx; yÞjx0 � y0js�dþcjy00 � Sðx; y0Þj�r�c
if jx0 � y0j2

p10jy00 � Sðx; y0Þj;
0 if jx0 � y0j2

X10jy00 � Sðx; y0Þj:

8>>>><>>>>: ð4:4Þ

ðiÞ Assume 0osod � c; �coro0; ðd � cÞð1=p � 1=qÞps; cð1=p � 1=qÞp� r:
Then the integral operator with kernel K

r;s
1 maps Lp to Lq:

ðiiÞ Assume �corp0; 0osod � c and ðd þ cÞð1=p � 1=qÞps� 2r: Then the

integral operator with kernel K
r;s
2 maps Lp to Lq:
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ðiiiÞ Assume �corp0; �rðd � cÞ=cosod � c and ðd þ cÞð1=p � 1=qÞps� 2r:
Then the integral operator with kernel K

r;s
3 maps Lp to Lq:

Proof. We first consider (i). Let Jx0;y0 denote the integral operator acting on

functions in Rc; with kernel

Jx0;y0 ðx00; y00Þ ¼ wðx0; x00; y0; y00Þjy00 � Sðx; y0Þj�r�c:

If cð1=p � 1=qÞp� r then supx00 jjJx0;y0 ðx00; �ÞjjLr;NpC for 1=r ¼ 1� 1=p þ 1=q;

uniformly in x0; y0: Since the quantities jy00 � Sðx; y0Þj and jx00 � Sðy; x0Þj are
comparable (cf. Section 2.3) we also have supy00 jjJx0;y0 ð�; y00ÞjjLr;NpC: Thus, by the

sharp form of Young’s inequality stated above the condition cð1=p � 1=qÞp� r
implies that Jx0;y0 maps LpðRcÞ to LqðRcÞ; with bounds independent of x0; y0:

Likewise, since ðd � cÞð1=p � 1=qÞps the integral operator with kernel *wðx0; y0Þjx0 �
y0js�dþc maps LpðRd�cÞ to LqðRd�cÞ if *w is compactly supported. Thus by

Minkowski’s inequality (if T
r;s
1 is the integral operator with kernel K

r;s
1 )

jjTr;s
1 f jjqp

Z Z
*wðx0; y0Þjx0 � y0js�dþcjjJx0;y0 ½f ðy0; �ÞjjLqðRcÞ dy0

� �q

dx0

 �1=q

t
Z Z

*wðx0; y0Þjx0 � y0js�dþcjj f ðy0; �ÞjjLpðRcÞ dy0
� �q

dx0

 �1=q

t
Z

jj f ðx0; �Þjjp
LpðRcÞ dx0


 �1=p

and hence T
r;s
1 is bounded from LpðRdÞ to LqðRdÞ: This proves (i).

(ii) is proved by checking directly condition (4.1) for rp dþc
dþcþ2r�s; the calculation is

standard and therefore omitted.

It remains to consider the operator with kernel K
r;s
3 : We now fix x and prove

jjKr;s
3 ðx; �ÞjjLr;NpC with C independent of x; here again r ¼ dþc

dþcþ2r�s: Let v0 ¼
y0 � x0 and v00 ¼ y00 � Sðx; y0Þ:

For a40 let

OðaÞ ¼ fðv0; v00Þ : jv0js�dþcjv00j�r�c4a; jv0j2p10jv00j1=2; jv00jpC2g:

We have to show that the set OðaÞ has measure Oða�rÞ: If vAOðaÞ then

jv0j2p10jv00jp10a
� 1
rþcjv0j�

d�c�s
rþc and this implies jv0j2þ

d�c�s
cþr ta

� 1
rþc or

jv0jta
� 1

dþcþ2r�s: Thus

jOðaÞjt
Z
jv0 jta

� 1
dþcþ2r�s

a
� c
rþcjv0j�

d�c�s
rþc c

dv0:
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Now the condition �r d�c
c os is equivalent with �d�c�s

rþc c4� ðd � cÞ and therefore

one can verify

jOðaÞjpCa
� c
cþra

� 1
dþcþ2r�s d�c�ðd�c�sÞc

cþr

� �
¼ Ca

� dþc
dþcþ2r�s

and thus supx jjK
r;s
3 ðx; �ÞjjLr;NoN: The verification of the condition

supy jjK
r;s
3 ð�; yÞjjLr;NoN is similar. &

Proposition 4.2. Suppose that 1oppqoN; �coro0 and 0osod � c: Let Er;s ¼P
j E

r;s
j (as defined in (3.5)) Then Er;s is bounded from Lp to Lq if either one of the

following two conditions is satisfied.

(i) �rd�c
c osod � c and ðd þ cÞð1=p � 1=qÞps� 2r;

(ii) 0osp� rd�c
c and ðd � cÞð1=p � 1=qÞps:

Proof. The kernel of Er;s can be estimated by both K
r;s
1 and K

r;s
3 in Lemma 4.1. For

(i) apply the estimate for the integral operator with kernel K
r;s
3 : To prove (ii) from

Lemma 4.1 observe that inequality cð1=p � 1=qÞp� r is implied by 0osp� rd�c
c

and ðd � cÞð1=p � 1=qÞps: &

We shall now look at the basic dyadic pieces in decompositions of operators
in Ir;�s: Let

bk;mðx; y; t; xÞ ¼

oð2�2kjtjÞzð2�mjxjÞ if k40; m40;

o0ðjtjÞzð2�mjxjÞ if m40; k ¼ 0;

oð2�2kjtjÞz0ðjxjÞ if k40; m ¼ 0;

o0ðjtjÞz0ðjxjÞ if k ¼ m ¼ 0:

8>>>><>>>>: ð4:5Þ

Suppose aASr;�s: Let

Kk;mðx; yÞ ¼
Z Z

Rd�c�Rc
ei½/t;y00�Sðx;y0ÞSþ/x;x0�y0Sðabk;mÞðx; y; t; xÞ dt dx: ð4:6Þ

Let Tk;m be the integral operator with kernel Kk;mðx; yÞ:

Lemma 4.3. If aASr;�s then

ðiÞ

jKk;mðx; yÞjt22kr�ms 22kc

ð1þ 22kjy00 � Sðx; y0ÞjÞN

2mðd�cÞ

ð1þ 2mjx0 � y0jÞN
; ð4:7Þ
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moreover

jrKk;mðx; yÞjtmaxf4k; 2mg22kr�ms 22kc

ð1þ 22kjy00 � Sðx; y0ÞjÞN

2mðd�cÞ

ð1þ 2mjx0 � y0jÞN
:

ð4:8Þ

ðiiÞ Let K be the Schwartz kernel of an operator in Ir;�s given by (1.10), and assume

that �coro0; 0osod � c: Then K satisfies

jKðx; yÞjtjy00 � Sðx; y0Þj�r�cjx0 � y0js�dþc:

Proof. Condition (i) follows by integration by parts. Condition (ii) is deduced from
(i) by summing geometric series. &

Proof of Theorem 1.2.4. Immediate from Lemmas 4.3(ii) and 4.1. &

We shall now look at a general operator in Ir;�s and consider the contribution
which gives rise to a nonisotropic pseudodifferential operator.

Proposition 4.4. Let aASr;�s and suppose that 1oppqoN: Suppose that �corp0

and that �rd�c
c osod � c and ðd þ cÞð1=p � 1=qÞps� 2r: Then the operatorP

kX0

P
mXk Tk;m is bounded from Lp to Lq:

Proof. We use the kernel estimates (4.7) and sum. We find that the kernel Pðx; yÞ ofP
kX0

P
mXk Tk;m satisfies the estimate

jPðx; yÞjt
jx0 � y0js�2r�d�c if jy00 � Sðx; yÞj1=2tjx0 � y0j;
jx0 � y0jc�dþsjy00 � Sðx; y0Þj�r�c if jy00 � Sðx; yÞj1=2\jx0 � y0j:

(

Thus

jPðx; yÞjtK
r;s
2 ðx; yÞ þ K

r;s
3 ðx; yÞ

and the assertion follows from Lemma 4.1. &

For later use we also write down a similar estimate for an operator with
localization in jx0 � y0j:

Lemma 4.5. Let aAS0;�s and Kk;m as in (4.6), with r ¼ 0: Denote by Wk;m

the operator with kernel Kk;mðx; yÞz0ð2kðjx0 � y0jÞÞ: Suppose 1oppqoN and
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ðd þ cÞð1=p � 1=qÞps; 0osod � c: Then for s40 the operator
P

k4s Wk;k�s is

bounded from Lp to Lq; with operator norm Oð2�sðd�c�sÞÞ:

Proof. This follows in a straightforward manner from (4.7) and Lemma 4.1. We
have the estimate

jKk;k�sðx; yÞjt 2kðdþc�sÞ2�sðd�c�sÞ

ð1þ 22kjy00 � Sðx; y0Þj þ 2k�sjx0 � y0jÞN
jz0ð2kðx0 � y0ÞÞj

here we choose N4ðd þ c� sÞ: If jy00 � Sðx; y0Þjpjx0 � y0jE2�k we simply

dominate by 2kðdþc�sÞ2�sðd�c�sÞ which is in the present case controlled by

2�sðd�c�sÞKr;s
2 ðx; yÞ (cf. (4.3)).

If jy00�Sðx; y0ÞjXjx0�y0jE2�k then jKk;k�sðx; yÞjt2�sðd�c�sÞjy00�Sðx; y0Þj�ðdþc�sÞ=2

and in the case under consideration this is also controlled by 2�sðd�c�sÞKr;s
2 ðx; yÞ:

Since for fixed ðx; yÞ the sum
P

k4s Kk;k�sðx; yÞ contains at most three terms, we

see that the assertion follows from Lemma 4.1. &

5. Weakly singular Radon transforms and some variants

In this section, we give a proof of Theorem 1 and part 1.2.3 of Theorem 1.2. We
first introduce an additional angular localization in the angular variable.

Let vARd�c be a unit vector. Let

kðx; yÞ ¼ wðx; yÞz0 e�10 x0 � y0

jx0 � y0j � v

���� ����
 �
z0

jy00 � Sðx; y0Þj
jx0 � y0j2

 !
;

kjðx; yÞ ¼ kðx; yÞzð2jðjx0 � y0jÞ

here w is a nonnegative smooth function supported where jxj þ jy0jpe10

(see (2.16)). Thus

supp kC ðx; yÞ : x0 � y0

jx0 � y0j � v

���� ����5e10; jxjpe10; jyjpe10; jy00 � Sðx; y0Þjpjx0 � y0j2
� �

:

ð5:1Þ

Let Gr;s be as in (3.1) and define

Rr;sf ðxÞ ¼ /Gr;sðx; �Þkðx; �Þ; fS: ð5:2Þ

The operator R0;s introduced in Section 3 is a finite sum of operators of type R0;s

(with suitable choices of w and v). Moreover, for ro0 we recover the operators Rr;s
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modulo error terms which are already estimated by Proposition 4.2. The case r ¼ 0
of the following result implies the assertion of Theorem 1.1.

Theorem 5.1. Let 1pppqpN:
ðiÞ Suppose that ð1=p; 1=qÞ belongs to the intersection of the halfspace defined by

ðd þ cÞ 1
p
� 1

q

� �
ps with the triangle with corners ð0; 0Þ; ð1; 1Þ and d

dþc;
c

dþc

� �
: Then R0;s

maps Lp to Lq:

ðiiÞ Suppose �coro0 and �rd�c
c osod � c: Suppose that ð1=p; 1=qÞ belongs to

the intersection of the halfspace defined by ðd þ cÞ 1
p
� 1

q

� �
ps� 2r with the pentagon

with corners ð1; 1Þ; ð0; 0Þ; 1; cþr
c

� �
; �r

c ; 0
� �

and d�r
dþc;

rþc
dþc

� �
; with the exception of the

points 1; cþr
c

� �
; �r

c ; 0
� �

: Then Rr;s maps Lp to Lq:

For the rest of this section we fix r; s and will not explicitly indicate the
dependence on these parameters. If p ¼ q the assertion is easily verified by
Minkowski’s inequality. This also applies to the cases p ¼ 1 and qoc=ðcþ rÞ; and
q ¼ N and po� c=r (when �coro0). Thus we may assume 1opoqoN; and
that ð1=p; 1=qÞ satisfies the restrictions in Theorem 5.1; moreover, we may assume
pp2 since the case p42 follows by considering the adjoint operator. It is always

assumed that the function f is supported where jyjpe10 and e is as in (2.16). These
assumptions are always assumed but not explicitly stated in various lemmas
throughout this section.

Define

Rj f ðxÞ ¼ /Gr;sðx; �Þkjðx; �Þ; fS: ð5:3Þ

Then Rj is bounded from Lp to Lq with a bound independent of j; by Proposition

3.2. Let M be such that 2M
Xðec0Þ�10 (with c0 as in (2.8)) and let J be a finite set of

integers, all of them XM: Let

Rf ¼
X
jAJ

Rj f : ð5:4Þ

A priori, we know that R is bounded from Lp-Lq with norm OðcardðJÞÞ;
and our task is to improve this to show that the Lp-Lq bound is independent
of the cardinality of J: Once this is proved the Lp-Lq boundedness of
Rr;s follows immediately from applications of the monotone convergence
theorem.

We begin by cutting out the low frequencies (here we follow essentially [2,11]) and
split R ¼ AþB with

A ¼
X
jAJ

o0ð2�2jjD00jÞRj; ð5:5:1Þ
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B ¼
X
jAJ

ðI � o0ð2�2jjD00jÞÞRj: ð5:5:2Þ

We first prove

Lemma 5.2. The operator A is bounded from Lp to Lq; with norm independent of the

family J:

Proof. Since the convolution kernel o0ð2�2jjD00jÞ is Oð22jcð1þ 22jjx00jÞ�N we see that
for ro0

jo0ð2�2j jD00jÞRj f ðxÞj

t
Z Z Z

jy00�Sðx0;w00;y0Þjt2�2j

jx0�y0 jE2�j

22jc

ð1þ 22jjx00 � w00jÞN
Gr;sðx0;w00; y0; y00Þj f ðy0; y00Þj dy0 dy00 dw00

t
Z Z

fðy0;y00Þ:
jx0�y0 jE2�jg

j f ðy0; y00Þj2jðd�c�sÞ

�
Z
jw00�Sðy0;y00;x0Þj

t2�2j

22jc

ð1þ 22jjx00 � w00jÞN
jw00 � Sðy0; y00;x0Þj�r�c

dw00 dy0 dy00

t
Z Z

jx0�y0 jE2�j

2jðdþcþ2r�sÞ

ð1þ 22jjx00 � Sðy0; y00; x0ÞjÞN
j f ðy0; y00Þj dy0 dy00;

here S is as in Section 2.3. The same estimate applies to the case r ¼ 0 (with only
notational changes in the argument).

We see that the kernel of o0ð2�2jD00ÞRj can be estimated by K
r;s
2 (as in (4.3)),

uniformly in j: This bound also applies to the sum
P

jAJ o0ð2�2jD00ÞRj since the

kernel of o0ð2�2jD00ÞRj is supported where jx0 � y0jE2�j: Thus the assertion follows

from Lemma 4.1. &

We now turn to the operator B and we shall first prove estimates for a frequency
localized variant.

Proposition 5.3. Let W be a fixed unit vector in Rc and let u be unit vector in

Rd�c so that

j/u;rx0S/v;ry0SW � Sð0; 0Þj ¼ max
UASd�c

j/U ;rx0S/v;ry0SW � Sð0; 0Þj: ð5:6Þ

Suppose further that the standard assumptions of Section 2.1 and (2.16) hold and

/u;rx0SSðx; x0Þ ¼ 0 ð5:7Þ

A. Seeger, S. Wainger / Journal of Functional Analysis 199 (2003) 48–91 67



for all jxjpe: Let aðZ00Þ be supported in fZ00 : j Z00jZ00 j � Wjpe5g and satisfy

j@aaðZ00ÞjtjZ00j�jaj
for all admissible multiindices a: Let

Y ¼ aðDÞ:

Then the operator YB is bounded from Lp to Lq and its operator norm satisfies the

estimate

jjYBjjLp-Lqt1þ jjRjj1�
p
2

Lp-Lq :

Proof. We can rewrite B as

B ¼
X
jAJ

X
k4j

oð2�2kjD00jÞRj:

Let Lk be defined by

dLkfLkf ðZÞ ¼ oð2�2kjZ00jÞaðZ00Þ;

then YB ¼
P

jAJ

P
k4j LkRj:

We shall now introduce an angular Littlewood–Paley decomposition (as in [14])
and proceed for the proof of our endpoint estimate using a well-known argument by
Christ (his preprint [3] is unpublished but the argument has been used in various
related articles on Lp improving properties of convolution operators; for a rather

general formulation see [10]). Define operators Pk;j; P̃k;j by

Pk;j ¼
XM

i¼�M

zð2�2kþjþij/u;D0SjÞ; ð5:8:1Þ

P̃k;j ¼
XMþ10

i¼�M�10

zð2�2kþjþij/u;D0SjÞ ð5:8:2Þ

(we have chosen 2M
Xc�1

0 e�10). Define also

L̃k ¼
X10

i¼�10

oð2�2kþijD00jÞ:

The operator YB is then decomposed as

YB ¼
X
jAJ

X
k4j

LkRj ¼ Tþ E1 þ E2 þ E3;
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where

T ¼
X
jAJ

X
k4j

LkPk;jRj P̃k;j L̃k; ð5:9Þ

E1 ¼
X
jAJ

X
k4j

LkðI � Pk;jÞRj P̃k;j L̃k; ð5:10Þ

E2 ¼
X
jAJ

X
k4j

LkRjðI � P̃k;jÞL̃k; ð5:11Þ

E3 ¼
X
jAJ

X
k4j

LkRjðI � L̃kÞ: ð5:12Þ

The main term is represented by T; and we shall show that the operators E1; E2

and E3 have quantitative properties similar to or better than the operator considered
in Lemma 5.2.

For the main term we use the known argument in the translation invariant

case [3]. Let Tvect denote the operator acting on Lpðc2ðZ2ÞÞ functions F ¼ fFj;kg by

½TvectF j;k ¼ RjFj;k:

By Littlewood–Paley theory and complex interpolation (note that pp2)

jjTjjLp-Lq tjjTvectjjLpðc2Þ-Lqðc2Þ

tjjTvectjjp=2LpðcpÞ-LqðcpÞjjTvectjj1�p=2
LpðcNÞ-LqðcNÞ: ð5:13Þ

From Proposition 3.2 and Minkowski’s inequality it follows that

jjTvectjjLpðcpÞ-LqðcpÞt1: ð5:14Þ

Also by the pointwise inequality jRjðf ÞjpRðj f jÞ and the positivity of R we have

sup
j;k

jRjFj;kðxÞjpR sup
j;k

jFj;kj
" #

ðxÞ

so that

jjTvectjjLpðcNÞ-LqðcNÞtjjRjjLp-Lq : ð5:15Þ

Therefore in view of Lemma 5.2 and (5.13)–(5.15)

jjTjjLp-LqpCð1þ jjRjj1�p=2
Lp-Lq þ

X3
i¼1

jjEijjLp-LqÞ: ð5:16Þ
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Consequently, the proof of Proposition 5.3 will be complete once we verify the

uniform Lp-Lq boundedness of the operators E1; E2; E3:
It will be convenient to work with oscillatory integral representations of the

kernels of Rj: Since the Fourier transform of cc;rj � jrþc is jxjr (see [8]) we can write

the kernel Rj of Rj as an oscillatory integral

Rjðx; yÞ ¼ kjðx; yÞjx0 � y0js�dþc
Z

ei/t;y00�Sðx;y0ÞSjtjr dt:

For kX1 we denote by Rk
j the operator with integral kernel

Rk
j ðx; yÞ ¼ kjðx; yÞjx0 � y0j�ðd�c�sÞ

Z
ei/t;y00�Sðx;y0ÞSoð2�2kjtjÞz0 e�4 t

jtj � W
���� ����
 �

jtjr dt;

the operator R0
j is defined similarly but with oð2�2kjtjÞ replaced by o0ðjtjÞ:

Lemma 5.4. ðiÞ The operator
P

j R
0
j maps Lp to Lq:

ðiiÞ Let sX0: Let Zsðx; yÞ denote the distribution kernel of the operatorP
j LjþsðRj �

P4
i¼�4 R

jþsþi
j Þ: Then

jZsðx; yÞjt4�sjKr;s
2 ðx; yÞj

where K
r;s
2 is defined in (4.3). Thus this operator maps Lp-Lq with operator norm

Oð4�sÞ:

Proof. (i) It is easy to see that by the theorem on fractional integration the operatorP
j R

0
j maps Lp to Lq; provided that 1opoqoN and ðd � cÞð1=p � 1=qÞps:

However, the condition ðd � cÞð1=p � 1=qÞps is implied by the conditions
ðd þ cÞð1=p � 1=qÞps� 2r and �rðd � cÞ=cps which are assumed throughout
this section.

(ii) Note that

Rj �
X4
i¼�4

R
jþsþi
j ¼

X
rX5

R
jþsþr
j þS0

j;jþs þ
X

rX�4

Vj;jþsþr þV0
j;jþs;

where the kernels S0
j;k; Vj;k and V0

j;k of S0
j;k; Vj;k and V0

j;k are given by

S0
j;kðx; yÞ ¼ kjðx; yÞjx0 � y0j�ðd�c�sÞ

Z
ei/t;y00�Sðx;y0ÞSo0ð2�2ðk�5ÞjtjÞ

� jtjrz0 e�4 t
jtj � W
���� ����
 �

dt;
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Vj;kðx; yÞ ¼ kjðx; yÞjx0 � y0j�ðd�c�sÞ
Z

ei/t;y00�Sðx;y0ÞSoð2�2kjtjÞ

� jtjr 1� z0 e�4 t
jtj � W
���� ����
 �
 �

dt;

V0
j;kðx; yÞ ¼ kjðx; yÞjx0 � y0j�ðd�c�sÞ

Z
ei/t;y00�Sðx;y0ÞSo0ð2�2ðk�5ÞjtjÞ

� jtjr 1� z0 e�4 t
jtj � W
���� ����
 �
 �

dt:

We shall now show that the distribution kernel of
P

j LjþsR
jþsþr
j is for rX5

controlled by 4�ðsþrÞKr;s
2 (cf. (4.3)). Also the kernels of

P
j LjþsS

0
j;jþs andP

j LjþsV
0
j;jþs are bounded by 4�sK

r;s
2 ; we shall omit the entirely analogous

argument.

The kernel of LnR
k
j is given by

Kj;k;nðx; yÞ ¼ ð2pÞ�c
Z Z Z

ei½/x00�w00;Z00Sþ/t;y00�Sðx0;w00;y0ÞS

� oð2�2kjtjÞjtjroð2�2njZ00jÞaðZ00Þ

� z0 e�5 t
jtj � W
���� ����
 �

kjðx0;w00; y0; y00Þ
jx0 � y0jd�c�s dw00 dZ00 dt:

We need to estimate this kernel when kXn þ 5; and nXj: The w00-gradient of the

phase function is �Z00 � rw00 ðt � Sðw; y0ÞÞ and since jjSw00 � Ic;cjj5e1=2 this gradient is
now E22k (note that it would be E22n if we worked with LnS0

j;n).

We use integration by parts with respect to w00 followed by integration by
parts with respect to t and Z: Observe that with each differentiation of

kjðx0;w00; yÞ we loose a factor of 22j ; the main contribution coming from

differentiating z0ðjw00 � Sðx0;w00; y0Þj=jw0 � y0j2Þ: Thus, we gain 2�2kþ2j with each

integration by parts in w00: As a result we obtain that the kernel of LnR
k
j is

dominated by a constant times

2�ð2k�2jÞN0

Z
jx0 � y0js�dþc 22kðcþrÞ

ð1þ 22kjy00 � Sðx0;w00; y0ÞjÞN1

22nc

ð1þ 22njx00 � w00jÞN1
dw00

tminf2�ð2n�2jÞðN0�N1Þ; 2�ð2k�2jÞðN0�N1Þgjx0 � y0js�dþc 22kðcþrÞ

ð1þ 22kjy00 � Sðx0; x00; y0ÞjÞN1
;
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here we choose N0bN1: Moreover, the kernel of the operator LnSj;k is of course

supported where jx0 � y0jE2�j: The asserted pointwise estimate for
P

j LjþsR
jþsþr
j is

now a consequence of summing geometric series.
The same argument applies to the operators

P
j LjþsVj;jþsþr; rX� 4: Note

that the above restriction r44 (or k4n þ 4) is not necessary now in view of the

factor ð1� z0ðe�4j tjtj � WjÞÞ; namely the assumptions Z00Asupp a (hence jZ00=jZ00j�
Wjpe5) and jt=jtj � WjXe4=2be5 guarantee that j � Z00 � t � Sw00 ðw; y0ÞjE
maxfjZ00j; jtjg which is sufficient to carry out the above integration by parts
arguments. &

We shall now bound the operators E1; E2 and E3 in (5.10)–(5.12). However, we
first modify these operators by replacing LkRj in the definitions (5.10)–(5.12) byP4

i¼�4 LkR
kþi
j : Let for i ¼ �4;y; 4

E1
j;k;i ¼ LkðI � Pk;jÞRkþi

j P̃k;j L̃k; ð5:17:1Þ

E2
j;k;i ¼ LkR

kþi
j ðI � P̃k;jÞL̃k ð5:17:2Þ

and

E3
j;k;i ¼ LkR

kþi
j ðI � L̃kÞ ð5:18Þ

and let

*E1;i ¼
X
jAJ

X
k4j

E1
j;k;i; i ¼ �4;y; 4; ð5:19Þ

similarly define *E2;i; *E3;i:

Lemma 5.5. The operators E1 �
P4

i¼�4
*E1;i; E2 �

P4
i¼�4

*E2;i; and E3 �
P4

i¼�4
*E3;i

are bounded from Lp to Lq:

Proof. This is a consequence of Lemma 5.4. We use it in conjunction
with Littlewood–Paley theory, the iterated version of the Fefferman–Stein
vector-valued maximal function and the Marcinkiewicz–Zygmund theorem on
vector-valued extensions of Lp-Lq bounded operators [7,22]. We use the
pointwise estimate jPk;jgjpMg where M denotes the strong maximal
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function. Let Fr;s be the fractional integral operator with distribution kernel

K
r;s
2 : Then

E1f �
X4
i¼�4

*E1;if

�����
�����

�����
�����
q

t
X
sX0

X
jAJ

jðI � Pjþs;jÞLjþs

 �����
�����

� Rj �
X4
i¼�4

R
jþsþi
j

 !
P̃jþs;j L̃jþsf j2

!1=2
������
������
q

t
X
sX0

4�s
X
jAJ

½MFr;s½jP̃jþs;j L̃jþsf j2
 !1=2
������

������
������

������
q

t
X
sX0

4�s
X
jAJ

½Fr;s½jP̃jþs;j L̃jþsf j2
 !1=2
������

������
������

������
q

t
X
sX0

4�s
X
jAJ

jP̃jþs;j L̃jþsf j2
 !1=2
������

������
������

������
p

tjj f jjp:

The other estimates are proved in a similar way. &

As a consequence of Lemma 5.5 it remains, in order to conclude the proof of

Proposition 5.3, to show that the operators *E1;i; *E2;i; *E3;i are bounded from Lp to Lq:

We shall show that *E1;i maps Lp to Lq: The proof of the boundedness of *E2;i is
very similar and will therefore be omitted. Finally, the arguments in the proof

of Lemma 5.4 show the Lp-Lq boundedness of *E3;i; the details will be omitted
as well.

Boundedness of *E1;i: We analyze the kernel of LkðI � Pk;jÞRkþi
j which is given by

Kk;j;iðx; yÞ ¼ ð2pÞ�c�1

Z Z Z Z Z
eijðx;t;h

00;y;t;l;Z00Þ

� ak;j;iðx; t; h00; y; t; l; Z00Þ dt dZ00 dl dh00 dt; ð5:20Þ

where

jðx; t; h00; y; t; l; Z00Þ ¼ �tl�/Z00; h00S�/t;Sðx0 þ tu; x00 þ h00; y0Þ � y00S ð5:21Þ
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and

ak;j;iðx; t; h00; y; t; l; Z00Þ ¼ aðZ00Þoð2�2kjZ00jÞoð2�2ðkþiÞjtjÞjtjr ð5:22Þ

� z0ðe�1
2 jt=jtj � WjÞwðx0 þ tu; x00 þ h00; yÞkjðx0 þ tu; x00 þ h00; yÞ

jx0 þ tu � y0js�dþcð1� zMð2�2kþjjljÞÞ

with zM ¼
PM

s¼�M zð2s�Þ:

Claim. For sX0; i ¼ �4;y; 4 we have

jKjþs;j;iðx; yÞjt4�sjKr;s
2 ðx; yÞj

uniformly in j: Here the right hand side is defined in (4.3).

Taking the claim for granted, we can argue as in the proof of Lemma 5.5 and
obtain using Littlewood–Paley theory and the boundedness of the operator Fr;s with

kernel K
r;s
2

jjẼ1;if jjq ¼
X
s40

X
jAJ

LjþsðI � Pjþs;jÞRjþsþi
j P̃jþs;j L̃jþsf

�����
�����

�����
�����
q

t
X
s40

X
jAJ

jLjþsðI � Pjþs;jÞRjþsþi
j P̃jþs;j L̃jþsf j2

 !1=2
������

������
������

������
q

t
X
s40

4�s
X
jAJ

jFr;s½jP̃jþs;j L̃jþsf jj2
 !1=2
������

������
������

������
q

t
X
s40

4�s
X
jAJ

jP̃jþs;j L̃jþsf j2
 !1=2
������

������
������

������
p

tjj f jjp:

We proceed to prove the pointwise estimate claimed above. We note that

ak;j;iðx; t; h00; y; t; l; Z00Þ ¼ 0 if jljA½22k�j�Mþ4; 22k�jþM�4: ð5:23Þ

Now we first integrate by parts many times in (5.20) with respect to t; this is then
followed by an integration by parts in the ðl; Z00; tÞ variables.
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Note that because of /u;rw0Sðy0;w00; y0ÞS ¼ 0 we may expand

@tjðx; t; h00; y0; t; l; ZÞ ¼ � l�/u; t � Sx0 ðx0 þ tu; x00 þ h00; y0ÞS

¼ � lþ/u; t � Sx0x0 ðy0; x00 þ h00; y0Þðx0 þ tu � y0ÞS

þ t � r1ðx; y0; t; h00Þ

¼ � lþ/u; t � Sx0x0 ð0; 0; 0Þðx0 þ tu � y0ÞS

þ t �
X
n¼1;2

rnðx; y0; t; h00Þ
 !

; ð5:24Þ

where

jr1ðx; y0; t; h00ÞjpC1jy0 � x0 � tuj2;

jr2ðx; y0; t; h00ÞjpC1e10jy0 � x0 � tuj:

Differentiating (5.7) we see that

/u; S̃x0x0 ðx; x0Þ þ S̃x0y0 ðx; x0ÞS ¼ 0

and by (2.7) and (2.8) and the choice of u we deduce that

c02
2k�j�2pj/u; t � Sx0x0 ð0; 0; 0Þðx0 þ tu � y0ÞSjpc�1

0 22k�jþ3

and consequently, by our choice of M

22k�j�Mþ5p c02
2k�j�2pj@tjðx; t; h00; y0; t; l; Z00Þ þ lj

p c�1
0 22k�jþ3p22k�jþM�5

on the support of the symbol; hence by (5.23)

j@tjðx; t; h00; y0; t; l; Z00Þj\maxfl; 22k�jg:

Moreover, the higher derivatives of the phase functions are Oð22k�jÞ: Taking

s derivatives of kj with respect to w0 (in any direction) causes a blowup of size Oð22jsÞ
which would be too much for our argument. Fortunately, in view of the assumption
/u;rx0Sðy0;w00; y0ÞS ¼ 0 we have the better estimate

ð/u;rw0 Þskjðw; yÞÞS ¼ Oð2jsÞ:

Thus, we may perform integration by parts in the t variables and gain factors of

size 2ð2j�2kÞN : This is then followed by an integration by parts in the frequency
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variables and we obtain

jKk;j;iðx; yÞjt2jðd�c�sÞ22kr2�ð2k�2jÞN1

Z
wjðx0 þ tu � y0Þwðx0 þ tu; x00 þ h00; yÞ

� 22k�j

ð1þ 22k�j jtjÞN2

22kc

ð1þ 22kjh00jÞN2

� 22kc

ð1þ 22kjy00 � Sðx0 þ tu; x00 þ h00; y0ÞjÞN3
dt dh00:

Now observe that

jSðx0 þ tu; x00 þ h00; y0Þ � Sðx; y0Þjtjh00j þ 2�j jtj þ jtj2

and therefore

22kc

ð1þ 22kjy00 � Sðx0 þ tu; x00 þ h00; y0ÞjÞN3

t
22kc

ð1þ 22kjy00 � Sðx; y0ÞjÞN3
ð1þ 22k�j jtj þ jtj2 þ 22kjh00jÞN3 :

This yields

jKk;j;iðx; yÞjt2�ð2k�2jÞðN1�r�cÞ2jðdþc�sþ2rÞð1þ 22kjy00 � Sðx; y0ÞjÞ�N3

�
Z Z

R�Rc
wjðx0 � y0 � tuÞwðx00 þ tu; x00 þ h00; yÞ 22k�j

ð1þ 22k�j jtjÞN2�N3

� 22kc

ð1þ 22kjh00jÞÞN2�N3
dt dh00;

where wj denotes the characteristic function of ½2�j�1; 2�jþ1,½�2�jþ1;�2�j�1:
This integral is straightforward to estimate. Observe that 2jðdþc�sþ2rÞð1þ 22kjy00 �

Sðx; y0ÞjÞ�N3 is bounded by jy00 � Sðx; y0Þj�ðdþc�sþ2rÞ=2; thus if jx0 � y0jpC2�j we use

either this bound or the bound 2jðdþc�sþ2rÞ and estimate jKk;j;iðx; yÞj by

C2�ð2k�2jÞðN1�r�cÞKr;s
2 ðx; yÞ:

Next, if C2�jrjx0 � y0jpe and jy00 � Sðx; yÞjpe then wjðx0 � y0 � tuÞ vanishes

unless jtjXcjx0 � y0j: In this case the contribution of the t integral above is

Oðð2j�2kjx0 � y0j�1ÞN2�N3�1Þ þ Oðð2�2kjx0 � y0j�1ÞN2�N3�dþcÞ:

Thus in this case

jKk;j;iðx; yÞjt2�ð2k�2jÞðN1�r�cÞ2jðdþc�sþ2rÞð1þ 2jjx0 � y0jÞ�2Nð1þ 22kjy00 � Sðx; y0ÞjÞ�N ;
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where 2N ¼ minfN2 � N3 � d þ c;N3g: We may choose 2NpN1 þ 2d and Nbd

and again the bound jKk;j;iðx; yÞj by C2�ð2k�2jÞðN1�r�cÞKr;s
2 ðx; yÞ is straightforward.

Thus we have established the pointwise estimate claimed above. This concludes the
proof of Proposition 5.3.

Proof of Theorem 5.1 (Conclusion). We have to prove thatR in (5.4) maps Lp to Lq;
assuming the angular localization (5.1) in the x0 � y0 variables. We split the identity
operator as E0 þ

P
n Yn where E0 ¼ Z0ðD00Þ and Z0 is compactly supported in

fZ00 : jZ00jp1000g: Moreover, let Yn ¼ anðD00Þ where an is a constant coefficient
symbol of order 0 supported in

Z00 :
Z00

jZ00j � Wn

���� ����pe5; jZ00jX100

� �

we can arrange this decomposition so that the sum in n is extended over Oðe�5ðc�1ÞÞ
terms. Clearly it suffices to bound E0R and YnR for all n: We first note that
the argument of Lemma 5.2 shows that E0R maps Lp-Lq if ðd þ cÞ
ð1=p � 1=qÞps� 2r:

It remains to consider YnR
s for fixed n: Let un be a unit vector in Rc so that

j/un;rx0S/v;ry0SWn � Sð0; 0Þj ¼ max
UASd�c

j/U ;rx0S/v;ry0SWn � Sð0; 0Þj:

Now denote by Qn the change of variable Qð�; unÞ as defined in Section 2.2, moreover

define QnhðwÞ ¼ hðQnwÞ for functions supported in Be9 : Let R
n ¼ QnRQ�1

n ; then the

assumptions of Proposition 5.3 apply to Rn (with u ¼ un).

Define *Yn ¼ ãnðD00Þ so that ãn is supported in Z00 : j Z00jZ00j � Wnjpe2; jZ00jX10
n o

; and

ãnðZ00Þ ¼ 1 if j Z00jZ00j � Wnjpe2 and jZ00jX20g: Then by Proposition 5.3 and Lemma 5.2

jj *YnR
njjLp-LqpC 1þ jjRnjj1�

p
2

Lp-Lq


 �
: ð5:26Þ

But in view of the support properties of the kernel of R and the local Lp and Lq

boundedness of the operators Qn and Q�1
n we get

jjRnjjLp-LqtjjRjjLp-Lq :

To conclude the proof we split

R ¼E0Rþ
X
n

YnQ
�1
n RnQn

¼E0Rþ
X
n

YnQ
�1
n

*YnR
nQn þ

X
n

YnQ
�1
n ðI � *YnÞRnQn:
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By (5.26)

jjYnQ
�1
n

*YnR
nQnjjLp-Lqt1þ jjRjj1�p=2

Lp-Lq ð5:27Þ

and it remains to show that

jjYnQ
�1
n ðI � *YnÞRnQnjjLp-Lqt1: ð5:28Þ

Now let L0 ¼ o0ðjD00jÞ and Lk ¼ oð4�kjD00jÞ: We analyze the kernel of

LkYnQ
�1
n ðI � *YnÞLk0 ; denoted by Hk;k0;nðx0; x00; y00Þ: The inverse change of variable

Q�1
n is of the form x/ðx0;GnðxÞÞ; with jjðGnÞx00 � Ic;cjjpe7 (cf. (2.17/18)). Thus

Hk;k0;n is given by

Hk;k0;nðx0; x00; y00Þ

¼
Z Z Z

eið/x00�z00;Z00Sþ/Gnðx0;z00Þ�y00;x00SÞoð4�kjZ00jÞoð4�k0 jx00jÞanðZ00Þ

� ð1� ãnðx00ÞÞ dz00 dx00 dZ00:

The z00-gradient of the phase function is of size Emaxf4k; 4k0 g; therefore we may
argue as in the proof of Lemma 5.4. In particular, after additional integration by

parts in x00; Z00 when x is large we obtain that

jHk;k0;nðx0; x00; y00Þjtminf4�kN1 ; 4�k0N1gð1þ jx00jÞ�N2 :

In view of the localization properties of Rn and the Lp boundedness of Rn it
follows that

jjLkYnQ
�1
n ðI � *YnÞLk0R

nQnjjLp-Lqtminf4�k; 4�k0 g

and as a consequence (5.28) holds.
Putting all the estimates together we obtain that

jjRjjLp-Lqt1þ jjRjj1�p=2
Lp-Lq ð5:29Þ

and since we already know the finiteness of jjRjjLp-Lq estimate (5.29) implies a

bound uniform in the family J: &

We can now give the

Proof of Theorem 1.2.3. By summing geometrical series we see from Lemma 4.3 that
the operator

P
mX0

P
k4m Tk;m can be pointwise bounded by a combination of

operators handled in Theorem 5.1; in this calculation we use that r is negative.
Moreover, the operator

P
mX0

P
kpm Tk;m is bounded by Proposition 4.4. The

assertion 1.2.3 follows. &
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Necessary conditions. The necessity of the conditions in Theorems 1.1 and 5.1
follows from standard examples. For the sake of completeness we shall
briefly describe them. We assume that rp0 and 1pppqpN and consider
the operator Rr;s: We remark that for the case r40; the conditions in 1.2.1 also
cannot be improved. This is because any strict improvement would yield to an
improvement in the case r ¼ 0; by interpolation with the estimates for a negative r1
close to 0.

Let Bd be the ball of radius d5e10; centered at the origin, and let wd be the

characteristic function of Bd: Then jjwdjjp\dd=p and Rr;swd\dd�c�r on the set

fx : jx0jpd2; jx00 � Sð0; x0Þjpcdg for small c: Thus jjRr;swdjjq\dd�c�r�ðd�cÞ=q and we

see that the condition d=p � c=qpd � c� r is necessary. By applying the same
example to the adjoint operator we get the necessary condition c=p � d=qp� r:
Thus ð1=p; 1=qÞ belongs to the pentagon with corners ð1; 1Þ; ð0; 0Þ; 1; rþc

c

� �
; �r

c ; 0
� �

and d�r
dþc;

rþc
dþc

� �
and this pentagon becomes the triangle in Theorem 1.1 when r ¼ 0:

If ro0 then the operator Rr;s is not bounded from L1 to Lc=cþr as one checks that

one has the lower bound Rr;swd\dd jx00 � Sð0; x0Þj�r�c if Cdpjx00 � Sð0; xÞjpe;
with C large. By applying this to the adjoint operator it follows that Rr;s is not

bounded from L�r=c to LN:
Next let Pd be the plate fy : jy0jpd; jy00jpdg and let fd be the characteristic function

of Pd; thus jj fdjjptdðdþcÞ=p: One checks that in a fixed fraction of Pd one has the

lower bound Rr;sfdðxÞ\ds�2r; in this calculation we use (2.2) and (2.6). Thus,

jjRr;sfdjjq\ds�2rþðdþcÞ=q and the condition ðd þ cÞð1=p � 1=qÞps� 2r is necessary.

This concludes the proof of necessity in Theorems 1.1 and 5.1.
A third necessary condition for the Lp-Lq boundedness of Rr;s is

ðd � cÞð1=p � 1=qÞps: To see this let gd be the characteristic function of
fy : jy0jpd; jy00jpeg: Then Rr;sgdXds for all x in a fixed fraction of this set and
from this one deduces the necessity of the condition ðd � cÞð1=p � 1=qÞps: Notice
that the condition ðd � cÞð1=p � 1=qÞps is more restrictive than ðd þ cÞð1=p �
1=qÞps� 2r if and only if so� rðd � cÞ=c; thus this example is only relevant to
show the sharpness of 1.2.4.

6. Lp estimates for Fourier integral operators

It will be convenient to introduce some normalized classes of symbols.
Let k40 and 0omok: Then we denote by Sk;m the class of symbols aðx; y; x; tÞ

supported in

fðx; y; t; xÞ : jxj þ jyjpe; 22k�1pjtjp22kþ1; 2m�1pjxjp2mþ1g if 0omok;

fðx; y; t; xÞ : jxj þ jyjpe; 22k�1pjtjp22kþ1; jxjp2g if m ¼ 0 ð6:1Þ
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for which (1.11) holds, with r ¼ s ¼ 0: Moreover, if m40 let Sm be the class of
symbols aðx; y; x; tÞ supported in

fðx; y; t; xÞ : jxj þ jyjpe; jtjp22mþ1; 2m�1pjxjp2mþ1g ð6:2Þ

such that (1.11) holds with r ¼ s ¼ 0:
We recall that T½a denotes the integral operator with kernel (1.10).

6.1. L2 estimates

We shall assume that aAIr;�s and begin by proving L2 estimates. These are quick
consequences of what is already proved in [11], and we shall be brief. It is shown in

[11] that L2 boundedness holds if 2r� sp0; 0psod � c: Although the endpoint
estimate corresponding to ðr; sÞ ¼ ððd � cÞ=2; d � cÞ may fail the proof of the
estimates in [11] still provides useful information which will be used in an
interpolation argument in Section 7.

Lemma 6.1. ðiÞ Let amASm and suppose that supmX1 jcmjp1: Then
P

N

m¼1 cmT½am is

bounded on L2:

ðiiÞ Let aAS
d�c
2

;c�d and suppose that aðx; y; t; xÞ ¼ 0 if jtjXjxj2: Then T½a is

bounded on L2:

Proof. We note that the phase function Fðx; y; x; tÞ ¼ /x; x0 � y0Sþ/t; y00 �
Sðx; y0ÞS parametrizes the diagonal in TnO� TnO as a Lagrangian manifold; that
is fðx;Fx; y;�FyÞ :Fx ¼ 0;Ft ¼ 0g is a subset of fðx; x; x; xÞg:

Because of the support restriction of am the symbol
P

m40 cmam belongs to the

Calderón–Vaillancourt symbol class S0
1=2;1=2: It is shown in the proof of Proposition

2.7 in [11] that Hörmander’s equivalence of phase function theorem remains valid

with S0
1=2;1=2 symbols and that consequently

P
N

m¼1 cmT½am is a pseudodifferential

operator of order 0, with symbols of type ð1=2; 1=2Þ: Thus, the L2 boundedness
follows from the Calderón–Vaillancourt theorem. Condition (ii) is an immediate
consequence of (i). &

Lemma 6.2. ðiÞ Let m0X0 be fixed and for k4m0 let mðkÞ be an integer such that

m0pmðkÞok: Suppose that supkX1 jckjp1 and that akASk;mðkÞ:

Then the operator
P

k4m0
ck4

k
d�c
2 2�mðkÞðd�cÞT½ak is bounded on L2; with norm

independent of the chosen sequence fmðkÞg:
ðiiÞ Suppose aAS

d�c
2

;c�d and suppose that aðx; y; t; xÞ ¼ 0 if jtjpCjxj1=2; and, for

m40; let amðx; y; t; xÞ ¼ zð2�mjxjÞaðx; y; t; xÞ: Then T½am is bounded on L2 with

operator norm independently on m:

ðiiiÞ Let fakg be as in ðiÞ and let ZAS0
1=2;1=2ðO� O;RdÞ: Then the statement in ðiiÞ

remains valid if ak is replaced by Zak:
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Proof. For (i) we note that the kernel of T½ak is given byZ
ei/t;y00�Sðx;y0ÞSbkðx; y; tÞ dt; ð6:3Þ

where

bkðx; y; tÞ ¼
Z

akðx; y; t; xÞei/x0�y0;xS dx: ð6:4Þ

Note that for every k the x integration is extended over a dyadic annulus

fx : jxjE2mðkÞg and thus jbk;mðx; y; tÞjt4kðd�cÞ=2Ejtjðd�cÞ=2: Moreover, by examining

the derivatives of bk;m one checks as in [11] that bk is a symbol of order ðd � cÞ=2 and
type ð1=2; 1=2Þ: Since the phase function involves c frequency variables one may
argue as in [11] and deduce that

P
kXm0

ckT½ak are Fourier integral operators of

order 0 and type ð1=2; 1=2Þ; hence bounded in L2 (with bounds independent of the
sequence fakg).

Part (ii) follows from part (i) with the choice mðkÞ ¼ m if we observe that the
symbols am with the assumed support property can be decomposed as

C
P

k4m 2kðd�cÞ=22mðc�dÞck;mak;m where ck;mp1 and ak;mASk;m: Clearly the above

argument also proves (iii). &

Remark. Variant (iii) is included in order to cover localizations of the form

ak;mðx; y; t; xÞzð2jðjx0 � y0jÞÞ if jpk; these are of type ð1=2; 1=2Þ since ak;m is

supported where tE22k:

6.2. H1-L1 estimates

Lemma 6.3. Suppose 0psod � c; aAS0;�s; and suppose that aðx; y; t; xÞ is supported

where jxjX1
2
jtj1=2: Let

amðx; y; t; xÞ ¼
aðx; y; t; xÞzð2�mjxjÞ if m40;

aðx; y; t; xÞz0ðjxjÞ if m ¼ 0:

(
ð6:5Þ

Then T½am maps L1 boundedly to L1; with operator norm Oðð1þ mÞ2�msÞ:

Proof. The kernel Km can be written as
P

kpm Kk;m where Kk;m is as in (4.6) and

satisfies (4.7) with r ¼ 0: The operator with kernel Kk;m is clearly bounded on L1;
with norm Oð2�msÞ: &

Lemma 6.4. Suppose aAS0;�s; 0psod � c and suppose that aðx; y; t; xÞ is supported

where jxjp2jtj1=2: Let am be as in (6.5). Then T½am maps H1 boundedly to L1; with

operator norm dominated by C2�ms:
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Proof. By the theorem on the atomic decomposition [7,22] it suffices to estimate

T½amfQ where fQ is an L2 function supported on a cube Q with center yQ and

sidelength dQ51 so that jj fQjj2pd�d=2
Q and

R
fQdx ¼ 0:

We define the exceptional set

WQ ¼ fx : jx0 � ð yQÞ0jpe; jx00 � Sð yQ; x0ÞjpCdQg

for large but fixed C; on this set we shall use a mixed norm L1ðL2Þ estimate.

We define phase functions and amplitudes on Rc depending on the parameters
x0; y0: Let

bx0;y0
m ðx00; y00; tÞ ¼

Z
amðx0; x00; y0; y00; t; xÞei/x0�y0;xS dx

and

Fx0;y0 ðx00; y00; tÞ ¼ /t;Sðx0; x00; y0Þ � y00S:

Denote by Tx0;y0
m the operator with kernel

Kx0;y0
m ðx00; y00Þ ¼

Z
eiF

x0 ;y0 ðx00 ;y00;tÞbx0;y0
m ðx00; y00; tÞ dt:

By an integration by parts one sees that

j@a
x00;y00@

b
t bx0;y0

m jpCa;b
2mðd�c�sÞ

ð1þ 2mjx0 � y0jÞN

and by the standard theory for pseudodifferential operators and their behavior
under changes of variables it follows that

jjTx0;y0
m jjL2ðRcÞ-L2ðRcÞt

2mðd�c�sÞ

ð1þ 2mjx0 � y0jÞN
:

We now estimate the contribution on WQ: For fixed x0 set W x0
Q ¼

fx00 : ðx0; x00ÞAWQg: Let f y0 ð y00Þ ¼ f ð y0; y00Þ; then

Tm fQðx0; x00Þ ¼
Z

y0
Tx0;y0

m f y0 dy0:
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On WQ we boundZ
WQ

jTm fQðxÞjdxp
Z
jx0�ðyQÞ0j

pe

Z
jx00�SðyQ;x0Þj

pCdQ

Z
jTx0;y0

m f
y0

Q ðx0Þj dy0 dx00 dx0

t dc=2Q

Z Z Z
jTx0;y0

m f y0 ðx00Þj dy0
���� ����2 dx00

 !1=2

dx0

t dc=2Q

Z Z Z
jTx0;y0

m f
y0

Q ðx00Þj2dx00

 �1=2

dx0 dy0

t dc=2Q

Z Z
2mðd�c�sÞ

ð1þ 2mjx0 � y0jÞN

Z
y00
j f

y0

Q ðy00Þj2 dy00

 �1=2

dx0 dy0

t 2�msdc=2Q

Z
x0

Z
y00
j f x0

Q ðy00Þj2 dy00

 �1=2

dx0

t 2�msdd=2
Q jj fQjj2t2�ms: ð6:6Þ

On the complement of WQ we use the kernel estimates of Lemma 4.3.

We split am ¼
P

kXm�1 ak;m where the kernel Kk;m of T½ak;m satisfies estimate

(4.7) with r ¼ 0: Consequently, since jx00 � Sðy; x0ÞjEjy00 � Sðx; y0Þj we haveZ
Wc

Q

jTk
m fQðxÞj dxt4�kd�1

Q 2�msjj fQjj1 if 4kdQX1: ð6:7Þ

From the gradient estimates in (4.8) and by using the cancellation property of the
atom fQ we get Z

jTk
m fQðxÞj dxt4kdQ2

�msjj fQjj1 if 4kdQp1; ð6:8Þ

and the asserted H1-L1 bound follows from (6.6) to (6.8). &

Corollary 6.5. Suppose that 0oroðd � cÞ=2 and s42r: Then TAIr;�s is bounded

on L
d�c

d�c�r and bounded on L
d�c
r :

Proof. We shall prove the L
d�c

d�c�r boundedness; by Section 2.3 this also implies the

L
d�c
r boundedness.
Let aASr;�s and let am be as in (6.5). Define

am;zðx; y; t; xÞ ¼ amðx; y; t; xÞð1þ jtj2 þ jxj2Þðr0ð1�zÞþr1z�rÞ=2ð1þ jxj2Þðs�s0ð1�zÞ�s1zÞ=2;

where s0 ¼ d�c
d�c�2rðs� 2rÞ; s1 ¼ d � c; r0 ¼ 0 and r1 ¼ ðd � cÞ=2: Then am;y ¼ am

for y ¼ 2r=ðd � cÞ: For ReðzÞ ¼ 0 the symbol am;z belongs to Sr0;s0 and for
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ReðzÞ ¼ 1 it belongs to Sr1;s1 : By Lemmas 6.3 and 6.4 the operator T½am;z
is bounded from H1 to L1; with norm ð1þ mÞ2�ms0 if ReðzÞ ¼ 0: By Lemmas 6.1

and 6.2 it is bounded on L2 with norm Oð1Þ if ReðzÞ ¼ 1: By interpolation we

find that T½am is bounded on L
d�c

d�c�r with norm Oðð1þ mÞ2�ms0ð1�yÞÞ ¼
Oðð1þ mÞ2�mðs�2rÞÞ: The assertion follows by summing in m: &

7. Lp-Lq estimates for Fourier integral operators

We begin by giving a different formulation of parts 1.2.1 and 1.2.2 of Theorem 1.2.
Suppose that 0oroðd � cÞ=2 and 2rosod � c: Then statement 1.2.1 of Theorem
1.2 says that TAIr;�s maps Lp-Lq if ð1=p; 1=qÞ belongs to the closed trapezoid

with corners r
d�c;

r
d�c

� �
; d�c�r

d�c ; d�c�r
d�c

� �
; ð1=pr;s; 1=qr;sÞ; ð1=q0

r;s; 1=p0
r;sÞ where

1

pr;s
¼ d � c� r

d � c
� ðs� 2rÞc
ðd þ cÞðd � cÞ;

1

qr;s
¼ d � c� r

d � c
� ðs� 2rÞd
ðd þ cÞðd � cÞ: ð7:1Þ

Observe that

1

pr0;s0
¼ 1

qr0;s0
¼ 1

2
if r0 ¼

d � c

2
; s0 ¼ d � c; ð7:2Þ

and if

r1 ¼ 0; s1 ¼ ðs� 2rÞ d � c

d � c� 2r
; y ¼ d � c� 2r

d � c
ð7:3Þ

then 2rosod � c implies 0os1od � c and we compute that

ð1� yÞ 1

pr0;s0
;

1

qr0;s0


 �
þ y

1

pr1;s1
;

1

qr1;s1


 �
¼ 1

pr;s
;
1

qr;s


 �
: ð7:4Þ

Therefore, one would like to prove Theorem 1.2 by interpolation from an Lp1-Lq1

result for operators in I0;�s1 (already proved only for the case of weakly singular

Radon transforms) and an L2 result for operators in I
d�c
2

;c�d : Unfortunately,

operators in the latter class may fail to be bounded on L2; this somewhat complicates
the interpolation argument.

Performing a finite conic partition of unity in the t variables we may assume that

supp aC ðx; y; t; xÞ : jxj þ jyjpe10; jtj þ jxjX2Mþ10; j tjtj � Wjpeþ jtj�1
n o

;

for some given unit vector W in Rc; and M is chosen as in Section 5.
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We shall now set up the various interpolation arguments. We fix r and s and use
the abbreviation

ðp; qÞ ¼ ðpr;s; qr;sÞ; ðpi; qiÞ ¼ ðpri ;si
; qri ;si

Þ; i ¼ 1; 2:

We may split T ¼ TFIO þ TPsDO where TFIO corresponds to a symbol which is

supported where jtj1=2Xjxj=2þ 2Mþ5 and TPsDO corresponds to a symbol supported

in the complementary region. Thus TPsDO ¼ T½b where b vanishes if jtj1=2X2jxj þ
10: Let

Wzðx; tÞ ¼ ð1þ jtj2 þ jxj2Þðr0ð1�zÞþr1z�rÞ=2ð1þ jxj2Þðs�s0ð1�zÞ�s1zÞ=2

and bzðx; y; t; xÞ ¼ bðx; y; t; xÞWzðx; tÞ; so that Wy ¼ 1: By Lemma 6.1 the operator

T½bz is bounded on L2 if ReðzÞ ¼ 0 and by Proposition 4.4 it is bounded from Lp1 to
Lq1 if ReðzÞ ¼ 1; all bounds are of admissible growth in z: Thus TPsDO maps Lp to Lq

by analytic interpolation.

Now we consider TFIO ¼ T½a where a vanishes if jtj1=2pmaxf2M ; jxj=2g: We
first split off another operator which behaves like TPsDO: Let az ¼ aWz and
ak;m;z ¼ bk;maz where bk;m is as in (4.5). Also let

ak;m;j;zðx; y; t; xÞ ¼ ak;m;zðx; y; t; xÞzð2jjx0 � y0jÞ;

ãk;m;zðx; y; t; xÞ ¼ ak;m;zðx; y; t; xÞz0ð2kjx0 � y0jÞ:

Let

Vs;z :¼
X
kXs

T½ãk;k�s;z:

By Lemma 6.2(i), with the choice mðkÞ ¼ k � s; the operator Vs;z is bounded on

L2; uniformly in s; if ReðzÞ ¼ 0: By Lemma 4.5 it is bounded from Lp1-Lq1 if

Re z ¼ 1; the bound is Oð2�sðd�c�s1ÞÞ; all bounds are admissible in z: Interpolating

we see that Vs;y maps Lp-Lq with norm Oð2�sðd�c�s1ÞyÞ ¼ Oð2�sðd�c�sÞÞ; henceP
k;m T½ãk;m maps Lp to Lq:

It remains to estimate the operator
P

k40

P
mok

P
jok T½ak;m;j;z: We wish to

use an angular Littlewood–Paley decomposition as in the proof of Proposition 5.3.

Given a unit vector v in Rd�c we make an angular localization in x0 � y0:
By employing a finite partition of unity it then suffices to boundP

k40

P
mok

P
jok T½ak;m;j;z where

ak;m;j;zðx; y; t; xÞ ¼ ak;m;j;zðx; y; t; xÞz0 e�5 x0 � y0

jx0 � y0j � v

���� ����
 �
:

We choose u as in (5.6) and perform the change of variable w/ðw0;w00 þ Fðw; uÞÞ �
QðwÞ in Section 2.2, and define QhðzÞ ¼ hðQðzÞÞ:
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As a result we have to show the Lp-Lq bound for the operatorX
k40

X
mok

X
jok

QT½ak;m;j;zQ�1 ¼
X
k40

X
mok

X
jok

Tz
k;m;j; ð7:5Þ

which has kernelX
k40

X
mok

X
jok

Z Z
ei½/t;y00�S̃ðx;y0ÞSþ/x0�y0;xS *ak;m;j;zðx; y; t; xÞ dt dx;

where /u; S̃x0 ðx; x0ÞS ¼ /u; S̃y0 ðx; x0ÞS ¼ 0 and *ak;m;j;zðx; y; t; xÞ ¼ ak;m;j;zðQðxÞ;
QðyÞ; t; xÞ gðxÞ=gðwÞ; and g is smooth and positive.

We now use a Littlewood–Paley operators Lk defined by Lk ¼P4
i¼�4 oð4�kþijD00jÞ and also the angular Littlewood–Paley operator Pk;j defined

in (5.8). Let

Tk;m;j ¼ T½*ak;m;j;y:

We splitX
k;m;j

Tk;m;j ¼
X
k;m;j

LkTk;m;jLk þ
X
k;m;j

ðI � LkÞTk;m;jLk þ
X
k;m;j

Tk;m;jðI � LkÞ

and then X
k;m;j

LkTk;m;jLk ¼ ðIþ IIÞ þ ðIIIþ IVÞ þ ðVþ VIÞ;

where

Iþ II ¼
X
k;m;j
mpj

þ
X
k;m;j
m4j

2664
3775LkPk;jTk;m;jPk;jLk;

IIIþ IV ¼
X
k;m;j
mpj

þ
X
k;m;j
m4j

2664
3775LkðI � Pk;jÞTk;m;jPk;jLk;

Vþ VI ¼
X
k;m;j
mpj

þ
X
k;m;j
m4j

2664
3775LkTk;m;jðI � Pk;jÞLk:
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We then split I ¼
P

sX0 Is by linking m ¼ j � s for sX0 and prove bounds

for the expressions Is which decay in s: Similarly we split II setting j ¼ m � s:
Expressions III–VI are split into a double series depending on nonnegative
parameters r; s; we prove then decay in r; s: We set j ¼ k � r;m ¼ k � r � s when
estimating III and V and j ¼ k � r � s; m ¼ k � r when estimating IV and VI. In the
following proposition we state the relevant estimates for the pieces.

Proposition 7.1. Let 0proðd � cÞ=2 and 2rosod � c and let p ¼ pr;s; q ¼ qr;s:

There is d ¼ dðr; sÞ40 so that the following estimates hold.
ðiÞ For sX0

X
k4s

X
spjok

LkPk;jTk;j�s;jPk;jLk

�����
�����

�����
�����
Lp-Lq

t2�sd: ð7:6Þ

ðiiÞ For sX0

X
k4s

X
spmok

LkPk;m�sTk;m;m�sPk;m�sLk

�����
�����

�����
�����
Lp-Lq

t2�sd: ð7:7Þ

ðiiiÞ For sX0; rX0;

X
k4sþr

LkðI � Pk;k�rÞTk;k�r�s;k�rPk;k�rLk

�����
�����

�����
�����
Lp-Lq

t2�ðrþsÞd; ð7:8Þ

X
k4s

LkTk;k�r�s;k�rðI � Pk;k�rÞLk

�����
�����

�����
�����
Lp-Lq

t2�ðrþsÞd: ð7:9Þ

ðivÞ For sX0; rX0;

X
k4sþr

LkðI � Pk;k�r�sÞTk;k�r;k�r�sPk;k�r�sLk

�����
�����

�����
�����
Lp-Lq

t2�r�s; ð7:10Þ

X
k40

LkTk;k�r;k�r�sðI � Pk;k�r�sÞLk

�����
�����

�����
�����
Lp-Lq

t2�r�s: ð7:11Þ

ðvÞ For jok; mok

jjðI � LkÞTk;m;jLkjjLp-Lqt2�k; ð7:12Þ

jjTk;m;jðI � LkÞjjLp-Lqt2�k: ð7:13Þ

Taking Proposition 7.1 for granted we can complete the proof of Theorem 1.2.
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Proof of Theorem 1.2. Let pr;s and qr;s be as in (7.1). A combination of the estimates

in Proposition 7.1 shows that the operator in (7.5) is bounded from Lpr;s to Lqr;s :
Together with the discussion preceding (7.5) this yields the Lpr;s-Lqr;s bound of the
operator T½a where aASr;�s: If we apply this to the adjoint operator we obtain the

Lq0r;s-Lp0r;s bound. If r40 we interpolate with the Lp-Lp estimate in Section 6, and

if r ¼ 0 we interpolate instead with the H1-L1 bound in Section 6. This yields the
proof of statements 1.2.1 and 1.2.2. Statements 1.2.4 and 1.2.3 have already been
proved in Sections 4 and 5, respectively. &

Proof of Proposition 7.1 (Sketch). We begin by estimating the main terms (7.6) and
(7.7) and use

Lemma 7.2. Let Rs1 be as in (1.12) and let ReðzÞ ¼ 1: Then

jTz
k;m;j f ðxÞjtmin 2�ðj�mÞðd�c�s1Þ; 2�ðm�jÞ

n o
MðQRs1Q�1½ f Þ

where M denotes the strong maximal function.

Proof. This follows from the kernel estimates (4.7) in a straightforward way. &

Proof of (7.6) and (7.7). By Theorem 5.1 we know that Rs1 maps Lp1 to Lq1 and so

does *Rs1QRs1Q�1: Arguing as in the proof of Lemma 5.5, by the Fefferman–Stein
and Marcinkiewicz–Zygmund theorems we therefore have the vector-valued
inequality

X
j;k

jM *Rs1 fj;kj2
 !1=2
������

������
������

������
q1

t
X
j;k

j fj;kj2
 !1=2
������

������
������

������
p1

:

We apply the Lq1-Lq1 and Lp1-Lp1 Littlewood–Paley inequalities for the
Littlewood–Paley decompositions fLkPk;jgj;k and Lemma 7.2 and obtain

X
k4s

X
spjok

LkPk;jT
z
k;j�s;jPk;jLk

�����
�����

�����
�����
Lp1-Lq1

t2�sðd�cÞs1 if ReðzÞ ¼ 1: ð7:14Þ

By Lemma 6.2 and the almost orthogonality of the Littlewood–Paley operators

X
k4s

X
spjok

LkPk;jT
z
k;j�s;jPk;jLk

�����
�����

�����
�����
L2-L2

t1 if ReðzÞ ¼ 0: ð7:15Þ

A. Seeger, S. Wainger / Journal of Functional Analysis 199 (2003) 48–9188



Eqs. (7.14) and (7.15) prove (7.6) by interpolation and (7.7) is proved in the
same way.

Proof of (7.8)–(7.11). We analyze the kernel of LkðI � Pk;jÞTz
k;m;j which is given byZ Z Z Z Z Z

eicðx;t;h
00;y;l;Z00;t;xÞgk;m;j;zðx; t; h00; y; l; Z; t; xÞ dZ00 dl dt dx dt dh00;

where

cðx; t; h00; y; l; Z00; t; xÞ ¼ � tl�/h00;w00Sþ/t; y00 � S̃ðx0 þ tu; x00 þ h00; y0ÞS

þ /x0 þ tu � y0; xS

and

gk;m;j;zðx; t; h00; y; l; Z00; t; xÞ

¼
X4

i1¼�4

zð4�kþijZ00jÞ
X

1�
XM

i2¼�M

zð2�2kþjþi2 jljÞ
 !

*ak;m;j;zðx0 þ tu; x00 þ h00; y; t; xÞ:

Arguing as in Section 5 we first integrate by parts with respect to t: This yields the
pointwise estimate

2ð2j�2kÞN2

Z
w

22k�j

ð1þ 22k�j jtjÞN

22kc

ð1þ 22kjh00jÞN
wjðx0 þ tu � y0Þ 2mðd�c�sÞ

ð1þ 2mjx0 þ tu � y0jÞN

� 22kc

ð1þ 22kjy00 � S̃ðx0 þ tu; x00 þ h00; y0ÞjÞN1
dt dh00

here N2bN1;N and wj is the characteristic function of ,7 7½2�j�1; 2�jþ1: A

somewhat lengthy but straightforward calculation similar to the one for the term *E1;i

in Section 5 shows that for spjpk

jLkðI � Pk;jÞTz
k;j�s;j f ðxÞjt

Z
4j�k2�sðd�c�s1Þðjx0 � y0j

þ jy00 � S̃ðx; y0Þj1=2Þs1�d�cj f ðyÞj dy; ReðzÞ ¼ 1;

if jxjpe and better (trivial) decay estimates for jxjXe:
By using the Lp1-Lq1 mapping property of the standard fractional integral

operator and its vector-valued extension, together with the Lp inequalities for the

Littlewood–Paley operator defined by Lk (or L̃k with L̃kLk ¼ Lk) we obtain the
estimate

X
k4sþr

LkðI � Pk;k�rÞTz
k;k�r�s;k�rPk;k�rLk

�����
�����

�����
�����
Lp1-Lq1

t2�r2�sðd�c�sÞ; ReðzÞ ¼ 1:
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By Lemma 6.2, Tz
k;k�r�s;k�r is bounded on L2 if ReðzÞ ¼ 0; uniformly in s; r and k;

and by the almost orthogonality of the Lk (or L̃k) we get

X
k4sþr

LkðI � Pk;k�rÞTz
k;k�r�s;k�rPk;k�rLk

�����
�����

�����
�����
L2-L2

t1; ReðzÞ ¼ 0:

Analytic interpolation yields (7.8). Estimates (7.9)–(7.11) are proved in the
same way.

Proof of (7.12) and (7.13). One writes out the integrals defining the kernels of the

decompositions of LlT
z
k;m;j and, if jl � kj42 one gains factors minf2�kN ; 2�lNg by

integrating in the 00-variables. &
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