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a b s t r a c t

The main resource allocation research challenge in network virtualization is the Virtual Network Em-
bedding (VNE) Problem. It consists of two stages, usually performed separately: node mapping and link
mapping. A new mathematical multi-constraint routing framework for linear and non-linear metrics
called “paths algebra” has already been proposed to solve the second stage, providing good results thanks
to its flexibility. Unlike existing approaches, paths algebra is able to include any kind of network para-
meters (linear and non-linear) to solve VNE in reasonable runtime. While paths algebra had only been
used to solve one stage (link mapping) of the VNE, this paper suggests an improvement to solve VNE
using the paths algebra-based strategy by coordinating, in a single stage, the mapping of nodes and links
based on a ranking made of the bi-directional pair of nodes of the substrate network, ordered by their
available resources. Simulation results show that the New Paths Algebra-based strategy shows significant
performance improvements when compared against the uncoordinated paths Algebra-based link map-
ping approach.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Network virtualization (NV) was proposed as an enabling
technology for the future Internet architecture as the deployment
of new Internet services is increasingly difficult due to the lack of
cooperation among stakeholders. NV allows multiple hetero-
geneous, logical networks to cohabit on a shared substrate net-
work (SN). On top of the SN, several virtual networks run and offer
end-to-end customized quality of service (QoS) to the end users
(EUs).

NV needs a sustainable economic model to be implemented.
Infrastructure as a service (IaaS) (Bhardwaj et al., 2010) is a busi-
ness model where the hardware and associated software operat-
ing systems are delivered as a service. The introduction of the IaaS
paradigm is changing the current infrastructure service providers
(ISPs)-based Internet business model (Feamster et al., 2007). This
new business model is well suited for the future dynamics in
networking service requests as NV will be a fundamental enabler
to provide end-to-end QoS guarantees in an IaaS based network
r Ltd. This is an open access article

lbach),
architecture. It will be not just a technology to implement IaaS, but
a component of the architecture itself (Botero Vega, 2013).

Fig. 1 shows a typical network virtualization environment. One
of the main challenges of NV is the efficient allocation of virtual
network elements on top of SN elements, commonly known as the
virtual network embedding/mapping (VNE) problem (Fischer
et al., 2013; Botero and Hesselbach, 2009; Haider et al., 2009). This
can be divided into two stages: virtual node mapping (VNoM) and
virtual link mapping (VLiM). In the VNoM stage virtual nodes have
to be allocated in physical nodes; in the VLiM stage, virtual links
connecting virtual nodes have to be mapped to paths connecting
the corresponding nodes in the substrate network. The two stages
of the VNE problem can be solved either in an uncoordinated or in
a coordinated way.

This problem has been recently addressed in the works from
Zhu and Wang (2014) using a different view. It was focused on
processing multiple VN requests simultaneously, proposing a
modified ant colony optimization (ACO) algorithm, where a set of
candidate physical networks are first found for each VN request,
and the VNE problem is converted to a multiple-choice knapsack
problem. In this work, the optimization goal is to maximize rev-
enue and to achieve optimal load-balancing characteristics, ex-
pecting to support more virtual network requests in the same
substrate network. However, in our work, cost/revenue is con-
sidered as a primary target, and a different virtual network request
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Network virtualization environment.
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(VNR) generation model is used. Therefore, only qualitative com-
parisons are possible between both works.

To solve the virtual link mapping stage of the VNE problem a
novel paths algebra-based strategy was proposed in Botero et al.
(2013a). This strategy introduces an unlimited number of linear
and non-linear constraints and metrics to the VNE providing the
necessary flexibility for better embeddings.

This new strategy can be improved by solving the mappings of
nodes and links in a new coordinated way. It is proved in this
paper that coordinated mapping provides excellent results by
ranking the nodes in the node mapping stage. This new paths
algebra-based strategy is called New Paths Algebra (NPA).

This work will present the improvements and better results
provided by this NPA for scenarios of several sizes and loads.

The main contributions of this paper are:

1. Analyze the advantages of the coordinated link and node
mapping strategy.

2. Define a paths algebra based strategy for the coordinated link
and node mapping for linear and non-linear parameters.

3. Analyze and compare the performance of the New Paths Alge-
bra algorithm simulating small and big scenarios.

Section 2 details the previous work in VNE and paths algebra,
and highlights the shortcomings that motivate the introduction of
the NPA VNE approach. Section 3 details the NPA VNE approach.
Section 4 evaluates by simulation the proposed approach high-
lighting its improvements in acceptance ratio and revenue when
compared with existing solutions. Section 5 presents the conclu-
sions and future work.
2. Related work

This section presents the main approaches to solve the VNE
problem and shows their inability to provide solutions when non-
linear constraints are involved. It also describes the previous work
in the “paths algebra” mathematical framework and how it can be
used to solve the VNE problem.
2.1. Network virtualization and virtual network embedding

According to Botero et al. (2013a), Chowdhury (2009),
Chowdhury and Boutaba (2010), and Fischer et al. (2013) one of
the main challenges of network virtualization is the virtual net-
work embedding problem (VNE), consisting on mapping virtual
network demands in physical network resources.

Virtual networks (VNs) must be optimally allocated over the
physical/substrate network (SN). A scenario will contain an SN and
a group of VNs, called virtual network requests (VNRs), each one
containing a set of resources required by the demanded service.
The main problem of the VNE consists of the optimal allocation of
this VNRs on top of the SN according to some predefined objective.
In the virtual node mapping stage each virtual node of a VNR is
mapped to one substrate node with enough capacity to meet the
virtual node resource demand; in the virtual link mapping stage
each virtual link is mapped to a directed path in the SN with en-
ough resource capacity to meet the virtual link demand.

VNRs consume physical resources: CPU processing power on
nodes and BW capacity on links of the substrate network. Physical
resources are finite and represent the limit of VN assignments.
Hidden hops must also be considered in the link mapping stage.
Hidden hops, first introduced in Botero et al. (2013b), are the in-
termediate nodes of a directed path in the SN that is mapping a
specific virtual link of a VNR. Hidden hops entail a resource de-
mand for forwarding the traffic that will pass through it and will
consume CPU resources of the SN. Fig. 2 illustrates the embedding
of two VNRs on an SN. Both virtual nodes and virtual links share
resources of the SN.

The VNE problem is -hard. Exact approaches are not scal-
able and are only applicable in small network scenarios (Houidi
et al., 2011, 2015; Botero et al., 2012; Botero and Hesselbach, 2013;
Shanbhag et al., 2015; Mechtri et al., 2015; Dietrich et al., 2015).
Current solutions are based on heuristics (Yu et al., 2008; Cheng
et al., 2011; Till Beck et al., 2013; Xiao et al., 2014; Zhang et al.,
2014; Guan et al., 2015; Jian et al., 2015; Beck et al., 2015) or
metaheuristics (Fajjari et al., 2011; Zhang et al., 2012, 2015; Cheng
et al., 2012; Su et al., 2014). Many VNE algorithms try to maximize
the number of embedded VNRs by reducing embedding costs
(Cheng et al., 2012; Fajjari et al., 2011; Chowdhury et al., 2012;
Lischka and Karl, 2009). None of these algorithms consider non-
linear constraints.
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Fig. 2. Embedding of two Virtual Network Requests.

1 BW and CPU, in the context of the VNE problem, are specified in terms of
capacity units. For example, 100 CPU units¼2.66 GHz and 100 BW units¼1 Gbps.
Using these scaled units, CPU and BW resources/demands can be added in spite of
being variables of different nature.
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To deal with non-linear constraints, our previous work (Botero
et al., 2013a) has proposed to solve the VLiM stage using the
mathematical multi-constraint routing framework called “paths
algebra”. This strategy provides the flexibility to introduce an un-
limited number of linear and non-linear constraints and metrics to
the VNE, resulting in better and more flexible embeddings. How-
ever, this approach solves the VLiM separately and does not ac-
count for the VNoM stage.

To solve this problem, we propose a new coordinated approach
that solves VLiM in a coordinated way with VNoM using the paths
algebra framework.

2.2. Paths algebra

Paths algebra is a powerful and elegant mathematical frame-
work for solving the multi-constraint routing problem using linear
metrics as bandwidth, number of hops and delay, or non-linear
metrics as availability and package loss rate; or even a combina-
tion of both. However, the main important metrics for the opti-
mization of the VNE problem may be cost and revenue, as network
virtualization is mainly a business strategy. These metrics can also
be taken into account by the paths algebra framework.

Depending on the optimization goal of the link mapping stage,
the metrics can be divided in terms of Quality of Service (QoS)
(usage, throughput, delay, jitter, etc.), Quality of Network Eco-
nomics (QoNE) (cost, revenue), Quality of Resilience (QoR) (num-
ber of backups, path redundancy, etc.) or others (runtime, number
of messages, etc.). We will evaluate the performance of the re-
sources assignment strategy based on the cost and revenue, and
two other metrics derived from these two: Cost/Revenue and ac-
ceptance ratio.

Cost/Revenue describes the relationship between spent sub-
strate resources and demanded virtual resources, while the ac-
ceptance ratio measures the number of virtual network requests
that could be completely embedded by the embedding algorithm,
divided by the total number of virtual network requests.

The paths algebra multi-constraint routing algorithm is im-
plemented by the Loop Avoidance by the Destination Node – LADN
software (de Paula Herman and de Almeida Amazonas, 2007) that
finds all possible paths between each pair of nodes in the SN and
orders them based on an unlimited number of constraints. The
LADN consists of four stages:

� SEARCHPATH: discovers all paths between each pair of SN
nodes;

� SORTPATH: selects only cycle-free paths;
� EVALUATEPATH: characterizes each path based on the defined
link parameters;

� ORDERPATH: orders the paths according to the defined metrics
and priorities.

The first stage (SEARCHPATH) can be an expensive procedure
for highly connected networks, but it can be performed offline and
the computing time can be neglected. The processing time can also
be reduced using a filter that finds the minimum set of paths that
ensure full network's connectivity (Botero et al., 2013a).

The VLiM stage can be performed in different ways to allocate
as many VN requests to the SN as possible: FIFO, that is the pro-
cedure that emulates the online VNE; non-decreasing, or non-in-
creasing, BW order; non-decreasing, or non-increasing, CPU order;
non-decreasing, or non-increasing, (BWþCPU)1 order, etc. De-
pending on the optimization criterion, the policy that provides the
best results may change, so it is not possible to say what is the best
policy in advance. In this paper, the policy used in the simulations
was non-increasing (BWþCPU) order.

Once the VLiM stage is performed, a virtual link is assigned to
the best path of the SN and its resources are updated according to
the actual values consumed by the VNR. This procedure is re-
peated until all virtual links have been assigned to the SN.

If there are no available resources to map a virtual link to the
SN, different strategies can be adopted: (i) the VN request can be
dropped out; (ii) it can be tried to accommodate it with less re-
sources than originally demanded; (iii) it may be possible to per-
form backtrack (re-assign a previous virtual link in order to ac-
commodate another one). In the simulations done in this paper,
VN requests were dropped out if they could not be mapped and
the other possibilities will be analyzed in future work.

2.2.1. Paths characterization
A network is represented by a directed graph = ( )G V A, , where

V is the set of vertices and A the set of arcs. Consider the simple
path represented in Fig. 3.a. The set of vertices is given by

= { }V 1, 2, 3, 4 and the set of arcs is given by = { }A a b c, , . The
source and destination nodes are ( ) = ( )s d, 1, 4 . This path can be
represented either as a succession of vertices p1,4 or as a succes-
sion of arcs pa c, .

Each arc in this example is characterized by a triple
( ( ) ( ) [ ( ) ( )])m x m x f m x m x, , ,1 2 1 2 , where: ( )m x1 and ( )m x2 are the va-
lues of metrics m1 and m2 on the arc ∈x A; [ ( ) ( )]f m x m x,1 2 is a
function of combination of metrics applied to ( )m x1 and ( )m x2 .

In general, the paths algebra uses M as the set of m adopted
routing metrics and F as the set of k metrics combination
functions.

The set of combined-metrics of all edges is given by:
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A synthesis [·]S is a set of binary operations applied on the
values of the links combined-metrics along a path to obtain a re-
sulting value that characterizes this path as far as the constraint
imposed by the combined-metric is concerned. So far, the synth-
eses are restricted to the following set: {add(), mult(), max(),min
()}).

If the routing algorithm is mono-constraint, only one value is
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m1(a), m2(a),
f(m1(a),m2(a))

m1(b), m2(b),
f(m1(b),m2(b))

m1(c), m2(c),
f(m1(c),m2(c))

(a)

1 2 3 4a b c

5
d e

(4, 4, 16) (3, 4, 12) (2, 5, 10)

(5, 3, 15) (2, 5, 10)

(b)
Fig. 3. (a) Example of a simple path (b) Example of two paths to be ordered.

Table 2
Paths ordering of the network given in Fig. 3b.

Abbreviation ( )[·]b Sj Result

[ ] [ ] [ ]b S b S b S1 1 1 2 1 3 α β⇒ ≡S1

α β⇒ ≡S2

α β⇒ ≺S3

[ ] [ ] [ ]∞ ∞ ∞b S b S b S1 2 3 ⇒S1 1st letters are equal

α β⇒ ≡
⇒S1 2nd letters ⇒

β α< ⇒ ≺3 5

[ ] [ ] [ ]∞b S b S b S1 1 2 1 3 α β⇒ ≡S1

⇒S2 1st letters are equal
α β⇒ ≡
⇒S2 2nd letters ⇒

β α> ⇒ ≺4 3
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obtained as the synthesis result and it is called weight-word. If the
routing algorithm is multi-constraint, with k constraints, then k
values are obtained. In this example, [·] = [ ]S S S S t

1 2 3 . The weight-
word has as many letters as the path's number of arcs. The first
letter corresponds to resulting value of the synthesis applied to the
whole path; the second letter corresponds to resulting value of the
synthesis applied to the subpath obtained by dropping out the last
arc; the last letter corresponds to the resulting value of the
synthesis applied to the subpath made of only the first arc. Any
number of letters can be retained as the synthesis result and this is
called an abbreviation: ( )[·]b Sj represents a j-letters abbreviation;

( )[·]∞b S represents no abbreviation, i. e., all letters are taken into
account.

2.2.2. Paths ordering
Consider the network represented in Fig. 3b where two paths

connect the source node 1 to the destination node 4. These paths
are α = ( ) = ( )a b c1, 2, 3, 4 , , and β = ( ) = ( )d e1, 5, 4 , . Each paths'
arc is characterized by a triple ( ( ) ( ) [ ( ) ( )])m x m x f m x m x, , ,1 2 1 2 ,
where [ ( ) ( )] = ( ) × ( )f m x m x m x m x,1 2 1 2 . The syntheses to be used in
this example are given by [·] = [ () () ()]S min max add t .

The result of the synthesis is shown in Table 1. A path α is
worse or less optimized than a path β, if α β[ ]⪯ [ ]S SML , where ⪯ML

stands for multidimensional lexical ordering. In the example
⪯ = { ≥ ≤ ≥ }, ,ML , that is translated by the following ordering
relations:

� α β α β[ ]⪯ [ ] ⇒ [ ] ≥ [ ]S S S S1 1 1 1 ;
� α β α β[ ]⪯ [ ] ⇒ [ ] ≤ [ ]S S S S2 2 2 2 ;
� α β α β[ ]⪯ [ ] ⇒ [ ] ≥ [ ]S S S S3 3 3 3 .

Different syntheses also have different priorities. In the ex-
ample, S1, S2 and S3 priorities go from the highest to the lowest.

Table 2 summarizes the results obtained for three different
ordering criteria. It is important to realize that the syntheses let-
ters are examined from the highest priority to the lowest priority
Table 1
Synthesis result of the network given in Fig. 3b.

Path S1 min S2 max S3 add

α 2; 3; 4 5; 4; 4 38; 28; 16
β 2; 5 5; 3 25; 15
synthesis. When the paths are considered equivalent, then we will
examine either the next letter of the same synthesis or will move
to the next synthesis. This is determined by the adopted
abbreviation.
3. New paths algebra proposal

The paths algebra has been introduced in Botero et al. (2013a)
to solve the link mapping stage of the VNE. In that work the VNoM
stage is performed first using the algorithms available in the
ALEVIN framework. The obtained results show that the paths al-
gebra approach was never worse than the results reported in the
literature and were almost always significantly better. However,
performing node and link mapping in two separate stages may not
make the best use of CPU and BW available resources and leaves
room for further improvement.

In the past, node and link mapping have been done in 2 stages:
First node mapping, next link mapping. This paper proposes a
coordinated mapping of nodes and links at the same time. Since
decisions are taken altogether for nodes and links, it is expected a
better acceptance ratio and a reduction in the cost/revenue. The
algorithm to carry out the node mapping stage together with the
already mentioned paths algebra strategy for the link mapping
stage is called New Paths Algebra (NPA). The New Paths Algebra
study is based on a rank metrics based on the total resources of a
paths scenario: the highest ranked nodes will be the destination of
the mapped nodes from the VNRs. Resources from both the SN and
the VNRs include nodes CPU and links bandwidth (BW). In this
section, the proposal will be presented, and an example will nu-
merically illustrate the mechanism in Section 3.1.

This development started with a basic idea that was im-
plemented but, against our expectations, did not produce the ex-
pected results. To achieve the final results, we improved the ori-
ginal idea introducing modifications, evaluating the results and
identifying the weaknesses. This cycle had to be repeated several
times. This section will show the proposal and then introduce the
improvements that were necessary to achieve good results. In this
way, the interested reader that may want to provide further
modifications to the algorithm may avoid the pitfalls that have
already been faced. It has been a learning process worth to be
described.

The algorithm is based on a rank metrics related to the total
resources of a paths scenario. Using this metrics, the highest
ranked nodes would be the destination of the mapping of nodes
from the VNRs. Resources from both the SN and the VNRs include
nodes CPU and links BW.

The algorithm also borrows the concept of availability of a
communication channel. Availability is defined as the amount of



2 Normalization is made dividing the actual CPU VNR by tCPU.
3 Normalization is made dividing the actual BW VNR by tBW.

X. Hesselbach et al. / Journal of Network and Computer Applications 69 (2016) 14–2618
time a channel is available for transmission or, alternatively, as the
probability that a channel is available in a certain instant of time.

In this work, the availability for a path k between a pair of
nodes (s,d) is a measure of the path's available resources, i.e., a
measure of the probability that the path has enough resources to
be used by the VNR. This measure is defined in:

( ) = ( ) ×
( )

× ( ) × ( )
( )( )

( )
( )a k

CPU s
t

k
t

CPU d
t

x k
min

,
1s d

CPU

BW s d

BW CPU
s d,

,
,

where:

� tCPU is the total network's available CPU resource;
� tBW is the total network's available BW resource;
� CPU(n) is the CPU associated to node n;
� ( )( ) kminBW s d, is the minimum available BW for a path k between

the pair of nodes ( )s d, ;
� ( )( )x ks d, is the weighting factor to be applied to path k between

the pair of nodes ( )s d, to penalize the longer paths as they
increase the cost of the embedding solution.

Eq. (1) has a multiplicative form because the probability of
having enough resources to accommodate a VNR depends on the
probability of having CPU and BW enough resources. As these
resources are independent, the total probability is given by the
multiplication of their respective probabilities.

The weighting factor is defined by Eq. (2):

( ) = ( )( ) ( ( )− ( ))( ) ( )
x k

b
1

,
2s d l k l sh,

s d s d, ,

where:

� ( )( )l ks d, is the length of path k, measured in the number of links,
between the pair of nodes ( )s d, ;

� ( )( )l shs d, is the length of the shortest path sh, measured in
number of links, between the pair of nodes ( )s d, ;

� ≥b 1 represents the intensity of the penalty. For b¼1, longer
paths are not penalized. In this paper, we set b¼2.

For the shortest path sh between any pair of nodes ( )s d, ,
( ) =( )x sh 1s d, , independently of its length. Then, the availability

between a pair of nodes (s,d) is obtained summing all availabilities
for all existing paths K between the pair of nodes (s,d):

∑= ( )
( )

( )
∈

( )A a k .
3

s d
k K

s d, ,

The last step is to sum both availabilities of the pair of nodes (s,
d) and (d,s) to get the equivalent of the one-way availability of a
transmission channel. It is designated as bi-directional avail-
ability.:

= + ( )( ) ( ) ( ) ( )A A A . 4s d d s s d d s, , , , ,

Therefore, the first proposed algorithm is:

1. Given an SN, using the paths algebra, enumerate all paths be-
tween all pairs of nodes. In this step filtering can be used to
guarantee connectivity and limit the size of the problem (Botero
et al., 2013a).

2. Evaluate the availability of each pair of nodes using the avail-
ability equations (1), (3) and (4).

3. Rank all pairs of nodes according to their decreasing order of
availability.

4. Given a VNR, order the virtual demands according to the de-
creasing minimum required availability evaluated by Eq. (5):

( ) ( ) = ( ) × ( ) × ( ) ( )VNR req v v CPU v BW v v CPU v, , , 5av s d s s d d
where:
� ( )CPU vs and ( )CPU vd are the required normalized CPU2 by the

source and destination virtual nodes;
� ( )BW v v,s d is the required normalized BW3 between the

virtual nodes.
5. Select the first pair of virtual nodes and check the minimum and

maximum demanded CPU resource.
6. Create a new list of ranked pair of nodes by:
� deleting the pair of nodes that have nodes with available CPU

less than the minimum required by the VNR;
� deleting the pair of nodes in which neither of them has

available CPU at least equal to the maximum required by the
VNR.

7. Map the first pair of virtual nodes to the highest ranked pair of
nodes in the SN;

8. Map the virtual link to a SN path selected by the paths algebra
ordering using a chosen set of combined metrics.

In the case of a tie at point 3, they should be ranked according
to their associated BWs. Given a node n, it can be associated to

( )BW nin , ( )BW nout and ( ) = ( ) + ( )BW n BW n BW ntotal in out . A decision
will be made based on a voting criterion, for instance, a node n1
will be considered to have more BW than a node n2 if, at least, two
of its associated BWs are greater than those associated to the other
node. If the three BW values are the same, then the nodes are
equivalent.
3.1. Example scenario

The scenario shown in Fig. 4 is used to illustrate how the NPA
algorithm works. In the figure we see the SN and the VNRs.

After step 3, the initial bi-directional rank for the initial state of
the SN can be seen in Table 3. Table 4 shows the bi-directional rank
for the VNR #1 at the conclusion of step 4.

Steps 5 and 6 check the minimum and maximum demanded
CPU of the first pair of virtual nodes and create a new list of ranked
pair of substrate nodes deleting those pairs that do not fulfill the
required demands. As the minimum CPU of the pair of nodes (cd,
dc) is 20 (from node c) and the maximum CPU is 70 (from node d),
and all CPU resources of the SN nodes are 100, the list of ranked
pair of SN nodes remains exactly the same.

As the VNR #1 (cd, dc) demand requires more resources than
the (ac, ca) demand, it will be mapped to the first ranked pair of SN
nodes (BD, DB).

The indication that node (c) is less demanding than node (d) is
expressed by ⪯c d. In the same way, ⪯B D indicates that B offers less
resources than D. In fact, both nodes offer the same amount of
CPU, but, as it will be seen, ( )⪯ ( )BW B BW D according to the voting
criterion.

Table 5 shows the BW resources of all substrate nodes while
Table 6 shows the nodes ordering according to the offered BW
resources and for the three criteria: inbound, outbound and total.

Then:

� according to the BWin(n): ( )⪯ ( )BW B BW D ;
� according to the BWout(n): ( )⪯ ( )BW D BW B ;
� according to the BWtotal(n): ( )⪯ ( )BW B BW D .
� Voting decision: ⪯B D.

Therefore, the result of the node mapping for the nodes (c,d) of
the VNR #1 (step 7) is:
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Table 3
Bi-directional rank for the
initial state of the SN.

Rank Pair(s) of nodes

1 BD, DB
2 BC, CB
3 AD, DA
4 BE, EB
5 AC, CA
6 CD, DC
7 AE, EA
8 AB, BA; DE, ED
9 CE, EC

Table 4
Bi-directional rank for the
VNR #1.

Rank Pair(s) of nodes

1 cd, dc
2 ac, ca

Table 5
BW resources before the VNR #1 assignment.

Node Inbound BW BWin(n) Outbound BW BWout(n) Total BW BWtotal(n)

A 250 500 750
B 300 300 600
C 650 550 1200
D 400 250 650
E 150 150 300

Table 6
Nodes ordering according to the offered BW resources before the VNR #1
assignment.

Order Inbound BW BWin(n) Outbound BW BWout(n) Total BW BWtotal(n)

1 C C C
2 D A A
3 B B D
4 A D B
5 E E E

Table 7
Resources consumed after the VNR #1 mapping.

Pair(s) of
nodes

Node CPU
consumed

From
node

BW consumed From link

(cd, dc) (c) 20 B 70 B-C
(d) 70 D 70 C-D
Hidden hop 15 C 70 D-C

70 C-B

(ac, ca) (a) 50 C 30 C-B
30 B-C
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� Node mapping: c -B; d -D.

In step 8, the link mapping stage chooses the best path ac-
cording to the metrics M¼{Hops, BW, CPU,} the corresponding
syntheses [·] = [ () () ()]S add min min t , and ordering relation
⪯ = { ≥ ≤ ≤ }, ,ML . From B to D, both B-A-D and B-C-D have 2 hops
and offer =BW 100min and =CPU 100max . Both paths are equivalent
and for this example the chosen path is B-C-D. From D to B, both
D-A-B and D-C-B have 2 hops, but BWmin(D-A-B)= < BW50 min(D-C-
B)=200, and, consequently, D-A-B ⪯D-C-B. So the chosen path is
D-C-B.

� ( ) → ( − − ) ( ) → ( − − )c d B C D d c D C BLink mapping: , ; , .

Then, the virtual nodes (a) and (c) have to be mapped to
highest ranked pair of substrate nodes where one of the nodes is B
(c was already mapped to B). The second pair shown in Table 3,
(BC, CB) satisfies the condition and the result of the node and link
mapping is:

� Node mapping: a -C;
� Link mapping: (a, c)-(C-B); (c, a)-(B-C).

The resources consumed for the mapping of VNR #1 can be
seen in Table 7.

After the mapping of the VNR #1, nodes C and D had their



Table 8
Bi-directional rank of the
SN after the VNR #1
mapping.

Rank Pair(s) of nodes

1 AE, EA
2 AB, BA; BE, EB
3 AC, CA
4 AD, DA
5 CE, EC
6 BD, DB
7 BC, CB
8 DE, ED
9 CD, DC

Table 9
Bi-directional rank for the
VNR #2.

Rank Pair(s) of nodes

1 ae, ea
2 be, eb

Table 10
BW resources before the VNR #2 assignment.

Node Inbound BW BWin(n) Outbound BW BWout(n) Total BW BWtotal(n)

A 250 500 750
B 200 200 400
C 480 380 860
D 330 180 510
E 150 150 300

Table 11
Nodes ordering according to the offered BW resources before the VNR #2
assignment.

Order Inbound BW BWin(n) Outbound BW BWout(n) Total BW BWtotal(n)

1 C A C
2 D C A
3 A B D
4 B D B
5 E E E

Table 12
Resources consumed after the VNR #2 mapping.

Pair(s) of
nodes

Node CPU
consumed

From
node

BW consumed From link

(ae, ea) (a) 50 E 90 E-C
(e) 80 A 90 C-A
Hidden hop 20 C 90 A-C

90 C-E

(eb, be) (b) 60 B 20 A-B
20 B-A
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resources drastically reduced (and, to a lesser extent, node B). In
the new rank, shown on Table 8, all pairs of nodes with one of
these nodes are ranked after the pairs of nodes in which they do
not appear. This fact suggests that the proposed metrics is re-
flecting well the available resources.

Table 9 shows the bi-directional rank for the VNR #2.
Following the same procedure as before, VNR #2 (ae, ea) de-

mand requires more resources than the (be, eb) demand. Node
(a) is less demanding than node (e) and, consequently, ⪯a e. ⪯E A as
E offers less resources than A. In fact, both nodes offer the same
amount of CPU, but, as it will be seen, ( )⪯ ( )BW E BW A according to
the voting criterion, which can be observed in Tables 10 and 11.
Then:

� according to the BWin(n): ( )⪯ ( )BW E BW A ;
� according to the BWout(n): ( )⪯ ( )BW E BW A ;
� according to the BWtotal(n): ( )⪯ ( )BW E BW A .
� Voting decision: ⪯E A.

Proceeding in the same way as before:
� Node mapping: a -E; e -A;
� Link mapping: (a, e)-(E-C-A); (e, a)-(A-C-E).

Virtual nodes (b) and (e) have to be mapped to the highest
ranked pair of substrate nodes where one of the nodes is A (e was
already mapped to A). The second pair shown in Table 8, (AB, BA)
satisfies the condition and the result of the node and link mapping
is:

� Node mapping: b -B;
� Link mapping: (e, b)-(A-B); (b, e)-(B-A).

The resources consumed for the mapping of VNR #2 can be
seen in Table 12.

It is important to check if the mappings have been successful by
observing the available resources of the SN after the last VNR has
been assigned. In this example, neither any of the nodes have
finished with negative CPU resources nor any of the links with
negative BW resources. The mapping has been completely
successful.

3.2. Improvements introduced to the new paths algebra algorithm

Despite the good result obtained in the example scenario de-
scribed in Section 3.1, the New Paths Algebra algorithm has not
always produced the expected results. Many times, even for small
examples, the algorithm was able to map a first VNR and to be
without resources to map a second VNR. In these cases, it was easy
to verify that a different mapping of the first VNR would leave
enough resources for the second one. For this reason, a series of
improvements were developed and they are described in this
section.

3.2.1. Degree penalty
Let din and dout represent the in-degree and out-degree, re-

spectively, of an SN node. The idea is to introduce a penalty for
those nodes with ≠d din out because they can easily produce bot-
tlenecks. The penalty should be larger as the difference increases.
Given a substrate network with n nodes, let ≤ ≤i i n, 1 represent a
SN node. The degree penalty Pi is given by:

⎡
⎣⎢

⎤
⎦⎥= − ( − ) ×

( )
P P

d
d

1 1 ,
6

i min
i

max

where

� = | ( ) − ( )| ≤ ≤d d i d i i n, 1i in out ,
� = ( )d dmax imax ,
� Pmin ( < <P0 1min ) is the penalty to be applied to the nodes with

=d di max.

The penalty to be applied to a pair of nodes ( )s d, is finally given
by:
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Fig. 5. BW checking illustration.
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( ) = × ( )P s d P P, . 7d s d

The hardest part of this modification is the choice of a suitable
Pmin value. It has to be a value that penalizes the difficult nodes
just enough to achieve good values for both Cost/Revenue and
acceptance ratio. Although each scenario may require an optimal
value of Pmin it was observed that in most of the cases =P 0.5min

and/or =P 0.4min produce good results.

3.2.2. Last ranked pair
The new idea consists of selecting the last ranked pair of nodes

with enough available resources to assign a pair of nodes of a
virtual network to a pair of nodes of the substrate network, instead
of selecting the pair of nodes with the most available resources.
The rationale behind this idea is to use the minimum required
resources in order to save resources for the next mappings.

To know if a pair of SN nodes has enough available resources to
host the virtual nodes, the concept of availability is used: the value
of required availability of the pair of nodes of the VNR
( ) ( )VNR req v v,av i j and the availability of the pair of SN nodes ( )A s d,
are compared. A mapping is possible if ( ) ( ) ≤ ( )VNR req v v A s d, ,av i j .

3.2.3. Two-way availability
Eq. (4) is the equivalent of the one-way availability of a trans-

mission channel. However, in general, a VNR demand consists of
asking for resources in both directions of an SN link. To have a
measure of resources in both directions it is necessary to use the
concept of two-way availability, to indicate the probability of
having enough resources from source to destination and from
destination to source. Considering that a resource in one direction
is independent from the resource in the other direction, the two-
way availability is given by Equation (8):

= × ( )( ) ( ) ( ) ( )A A A . 8s d d s s d d s, , , , ,

3.2.4. BW penalty
The idea is to introduce a penalty for the nodes having lower

outbound than inbound BW because they may not be able to
forward all the traffic they receive. This penalty is given by:

⎧
⎨
⎪⎪

⎩
⎪⎪

=

( )
( )

( )
( )

≤

( )
( )

>
( )

P

BW
BW

max
max

if
max BW
max BW

1,

1 if
max BW
max BW

1.
9

BW

out

in

out

in

out

in

3.2.5. Single path availability
So far the availability of a pair of nodes has been evaluated by

Eq. (3). This equation is a good measure of availability in the case
of multi-path routing for which the total BW demand can be split
among several paths. For the single path routing case the pair of
nodes should be ranked based on their minimum availability as
given by Eq. (10):

( ) = { ( ) ∈ } ( )( ) ( )A a k k Kmin , 10min s d s d, ,

3.2.6. Ranking evaluation
Taking into account all the proposed improvements the final

ranking is obtained applying Eq. (11):

( ) ( )= × × ( ) × ( ) × ( ) ( )( )( ) ( ) ( )R A A P s d P s P d, . 11s d d s min s d min d s d BW BW, , , ,

In Eq. (11) the factors ( )( )Amin s d, , ( )( )Amin d s, , ( )P sBW and PBW(d) are
dynamic in the sense that they take into account the available re-
sources in the SN which change after each successful mapping of a
VNR. The factor ( )P s d,d is static as it depends only on the SN topology.
3.2.7. BW checking
The availability concept proposed in Section 3.2.2 along with

Eq. (11) are useful to rank the SN nodes according to their available
resources but it does not guarantee that the SN node has in fact
enough resources to receive the mapping of a VNR demand. This
happens because the proposed availability concept is based on the
combination of CPU and BW resources, and a penalty imposed to
the longer paths by the weight x(k).

It may happen to have high ranked pairs of SN nodes with low
BW resources but high CPU resources. This distortion is enhanced
after the first VNR mapping when low connected nodes have their
BW resources used and continue to be in a high ranked position.

To avoid the selection of high ranked pair of nodes without
enough available resources it has been introduced a specific check
of BW: the total required BWof the VNR demand must be less than
both the maximum outbound and inbound BW of the selected SN
node.

Fig. 5 shows a virtual node v with VNR BW input and output
demands designated respectively as _ ( ) ≤ ≤BW v , 1 i min i and

_ ( ) ≤ ≤BW v , 1 j nout j . This virtual node is mapped to the SN node s
and all input/output virtual links are mapped to a single input /
output physical link with available BW resources _ ( )BW sin i and

_ ( )BW sout j . This mapping is possible if and only if:

∑ _ ( ) ≤ _ ( )
( )=

BW v BW s ,
12i

m

1
in i in i

and

∑ _ ( ) ≤ _ ( )
( )=

BW v BW s .
13j

n

1
out j out j

Being v the node from the VNR, s the node from the SN, vin/vout
the input/output links to/from node v, sin/sout the input/output
links to/from node s, and Vin/Vout the total set of input/output links
of node v and Sin/Sout the total set of input/output links of node s,
the BW checking consists in verifying both Eqs. (14) and (15):

∑ _ ( ) < { _ ( ) ∈ }
( )∈

BW v max BW s , s S ,
14v V

in inin v in s

in in

in in

∑ _ ( ) < { _ ( ) ∈ }
( )∈

BW v max BW s , s S .
15v V

out outout v out s

out out

out out
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4. Evaluation scenarios and experimental results

This section describes the network topology generation, simu-
lations scenarios and presents the experimental results.

4.1. Network topology generation

The following network generators were studied and the char-
acteristics of the produced topologies were compared:

� Barabási–Albert: this model generates a random scale-free
network, whose degree distribution follows a power law. It in-
corporates two important general concepts: growth (the num-
ber of nodes in the network increases over time) and pre-
ferential attachment (the more connected a node is, the more
likely it is to receive new links).

� Erdős–Rényi: in this model every possible edge is created with
the same constant probability p.

� Random regular: this network topology generator creates a
random graph where each vertex has the same degree k.

� Scale-free: this model generates a scale-free, non-growing
random graph with an expected power-law degree distribution.

� Watts–Strogatz: is a random graph generation model that pro-
duces graphs with small-world properties, including short
average path lengths and high clustering.

� Waxman: this random network topology generator is a geo-
graphic model where the nodes are uniformly distributed in the
plane and edges are added according to probabilities that de-
pend on the distances between the nodes.

Table 13 summarizes the characteristics of the studied
topologies.

The Waxman generator is one of the most used topology gen-
erators in the VNE literature (Yu et al., 2008; Lischka and Karl,
2009; Chowdhury et al., 2009, 2012; Cheng et al., 2011; Till Beck
et al., 2013; Botero et al., 2013a; Beck et al., 2015). Therefore, to
implement a comparable VNE approach and taking advantage of
its availability in the ALEVIN framework (Fischer et al., 2011) and
our previous experience with it Botero et al. (2013a), Waxman
topology generator was chosen to be used in this work.

The algorithm presented in this paper will be tested with the
remaining studied topologies in future work.

4.2. Simulation environment and scenarios

To deal with the computational complexity of the paths alge-
bra-based multi-constraint routing algorithm, we use the filtering
pre-processing strategy SEARCHPATH and SORTPATH that comes
from our previous work (Botero et al., 2013a).

For the comparison of former VNE algorithms (Botero et al.,
2013a) with the paths algebra algorithm, the following metho-
dology is used (this methodology has been previously used and
described by the authors in Botero et al., 2012, 2013a; Botero and
Table 13
Comparison between the studied topologies.

Topology Degree dis-
tribution

Growth/
pref. at-
tachment

Average
path
length

Clustering
coefficient

Small-
world
network

Barabási–Albert Power law Yes Short Low No
Erdős–Rényi Binomial No Short Medium No
Random regular Regular No Large High No
Scale-Free Power Law No Medium Low No
Watts–Strogatz Dirac Delta No Short High Yes
Waxman Geometric No Medium Medium No
Hesselbach, 2013). The scenarios are parameterized by:

� topology creation;
� resource and demand deployment;
� simulation conditions.

4.2.1. Topology creation
For creating both the substrate networks and the virtual net-

works as well, we use the Waxman algorithm. To that end, we
uniformly distribute the coordinates of the nodes in an area. The
Waxman generator takes two parameters, α and β that determine
the probability of an edge connecting two nodes, as given by Eq.
(16):

α( ) = ( )β
−

( )
×P u v e, , 16

d u v
L
,

in which α β< ≤0 , 1, d is the Euclidean distance between nodes u
and v, and L is the maximum Euclidean distance between any two
nodes. An increase in the parameter α increases the probability of
edges between any nodes in the graph. An increase in the para-
meter β yields a larger ratio of long edges to short edges.

This topology generation procedure is used for the substrate
network as well as for all kmax virtual networks.

4.2.2. Resource and demand deployment
A load targeted resource and demand deployment is available

in ALEVIN and consists of two steps:

1. The substrate network will be equipped with resources by
uniformly distributing each node resource X in a given interval
( )0, NRX

max for every substrate node (the interval for CPU re-
sources is (0,100]) as well as each link resource Y in a given
interval ( )0, NRY

max for every substrate link (the interval for BW
resources is (0,100]), as usually done in literature (Yu et al.,
2008; Lischka and Karl, 2009; Chowdhury et al., 2009, 2012).

2. Consider the generation of demands in all virtual networks and
the goal is to achieve a certain average load of every resource.
The creation of node demands and link demands that fulfill
these load requirements comprises different challenges. As the
number of nodes is fixed in the Waxman topology generation,
we can easily calculate the mean resource on a substrate node
as

[ ] = + = ( )E NR
0 NR

2
NR

2 17X
X X
max max

as well as the mean demand on a virtual node for a given overall
load ρ as

ρ[ ] = · [ ]· | |
| |· ( )E ND E NR

V
V k

,
18X X k max

in which
� | |V ¼number of substrate nodes;
� k¼number of virtual networks; and
� | |Vk ¼number of virtual nodes per virtual network.

Eq. (17) results in a maximum resources demand

= · [ ] ( )ND 2 E ND 19X X
max

due to the uniform distribution of demands within ( ]0, NDX
max .

As the Waxman topology generation is probabilistic regarding
link creation, the number of links in a Waxman-network is not
fixed but can only be given by probabilities. To achieve the tar-
geted load ρ of link resource as well, we consider the average
number of edges in a Waxman-network by estimating the mean
probability [ ]E p of creating an edge between any two nodes. Thus,
the average number of edges [| |]E A in a directed graph is given by



Table 15
Results obtained with the OPA algorithm.

OPA

X. Hesselbach et al. / Journal of Network and Computer Applications 69 (2016) 14–26 23
[| |] = [ ]·| |·(| | − ) ( )E A E p V V 1 . 20

Therefore, the average link resource in a network is calculated
by

[ ] = + = ( )E LR
0 LR

2
LR

2 21Y
Y Y
max max

and the average link demand is given by

ρ[ ] = · [ ]· [| |]
[| |]· ( )

E LD E LR
E A

E A k 22Y Y k max

which results in

= · [ ] ( )LD 2 E LD . 23Y Y
max

However, it is necessary to ensure that ≤LD LRY Y
max max holds. In

particular, it is necessary to ensure that [| |] < [| |]·E A E A kk max in Eq.
(22) holds for ρ≤ ≤0 1. To that end, we have to enforce the
constraint

| | < ·| | ( )V k V . 24k2 max 2

If the constraint in Eq. (24) is violated, the approximation
provided above will achieve a higher load value than the targeted
load ρ for the link resources and even result in >LD LYY Y

max max

which can never be fulfilled.

4.2.3. Scenarios
As described in Section 4.2.1, we use the Waxman topology

generation. For evaluation, we used α β= = 0.5 and distributed the
coordinates of the nodes uniformly in an 1�1 square area. Em-
pirical studies for these parameters have provided an average
distance of any two nodes [ ] ≈E d 0.5 and a maximum distance of

=L 2 . Thus, according to Eq. ((16) the average probability for
creating a link between any two nodes is [ ] ≈E p 1/4.

In this work, we consider CPU cycles as a node resource, de-
noted by NRCPU, and bandwidth as a link resource, denoted by
LRBW in the substrate network. For the uniform distribution of
these values we have chosen the maxima =NR 100max and

=NR 100max .
The scenarios were generated using the ALEVIN environment.

All of them consist of a substrate network (SN) with 20 nodes and
10 virtual networks (VN) with 10 nodes each. The substrate me-
trics BW and CPU are different in each scenario and the resources
demands in the VNRs change according to the desired load ρ.
Table 14 summarizes the simulation scenarios parameters.

The results are the average values obtained for 5 simulations
runs for each load ρ.

The cost (C) is calculated adding the resources consumed for
the mapping of the VNRs, while the revenue (R) is the sum of the
required resources of the mapped VNRs. Consider a VNR with vn
nodes and vl links that is mapped to the SN using sn nodes and sl
links. In the optimal case, i.e, all mapped virtual nodes are con-
nected by direct links, vn¼sn and vl¼sl. In the general case, in
which the virtual links are mapped onto substrate paths that
traverse hidden nodes, ≤v sn n and ≤v sl l. Eqs. (25) and (26) are
used to evaluate respectively the cost and revenue of a successful
mapping.
Table 14
Parameters chosen for the simulation scenarios.

Parameter description Chosen values

Number of substrate nodes (V) 20
Number of VNRs (k) 10
Number of virtual nodes per virtual network (Vk) 10
Set of loads (ρ) {0.2, 0.3, 0.4, 0.5, 0.6, 0.7}
∑ ∑= ( ) + ( )
( )= =

C BW i CPU i
25i

s

i

s

1 1

l n

∑ ∑= ( ) + ( )
( )= =

R BW j CPU j
26j

v

j

v

1 1

l n

The VNRs were processed according to the most consuming
first (MCF) ordering, while the metrics used by the paths algebra
to order the paths was M¼{Hops, BW, CPU}. The chosen metrics
optimizes the cost of the mapping.

4.3. Experimental results

To evaluate the performance of the proposed algorithms,
compared to previous published works, for each scenario the fol-
lowing simulations were done:

� Original paths algebra (OPA): refers to the original paths alge-
bra-based VNE algorithm (Botero et al., 2013a) that performs
the mapping in two uncoordinated stages—node mapping
followed by link mapping.

� New paths algebra (NPA): refers to the proposed algorithm in
this paper that performs the mapping in two coordinated stages
in which the rank is evaluated by Eq. (4).

� Improved new paths algebra (I-NPA): refers to the proposed
algorithm in this paper that performs the mapping in two co-
ordinated stages in which the rank is evaluated by Eq. (11)
followed by the BW checking.

In the OPA case, the ALEVIN environment is used to generate
topology and VNRs, and node mapping. The paths algebra-based
link mapping stage was implemented in MATLAB.

In the NPA and I-NPA cases, the ALEVIN environment is used to
generate topology and VNRs, while the coordinated nodes and
links mappings were implemented in MATLAB.

The algorithms are evaluated by means of the following
metrics:

� Cost/revenue.
� Accepted VNR percentage, considering a VNR as a whole unit.
� Mapped revenue ratio, that is the ratio between the actual

revenue provided by the successful mappings and the total
possible revenue associated to the VNRs.

Table 15 shows the results obtained by the OPA algorithm.
These results are taken as the reference to compare with the NPA
and I-NPA algorithms.

Table 16 shows the results obtained with the NPA, while
Figs. 6 and 7 compare the accepted VNR percentage and the Cost/
Revenue obtained with the OPA and NPA algorithms. Figs. 8 and 9
compare the Cost and Revenue results for the same algorithms.

Figs. 6–9 show that the OPA and NPA algorithms have similar
Load (ρ) Cost Revenue Cost/
Revenue

Accepted VNR
(%)

Mapped revenue
ratio (%)

0.2 3135.0 2143.8 1.46 100 100.0
0.3 4047.4 2627.7 1.54 78 80.6
0.4 3941.4 2582.3 1.55 56 59.1
0.5 4198.3 2602.5 1.60 44 47.4
0.6 3839.3 2338.6 1.62 34 37.2
0.7 3516.7 2156.9 1.63 28 30.0



Table 16
Results obtained with the NPA algorithm.

NPA

Load (ρ) Cost Revenue Cost/Revenue Accepted VNR (%)

0.2 2975.8 1958.7 1.51 90.0
0.3 3881.5 2437.3 1.60 72.0
0.4 4092.3 2528.0 1.62 54.0
0.5 3787.9 2282.5 1.67 38.0
0.6 4324.2 2591.6 1.68 38.0

Fig. 6. Accepted VNR percentage: OPA vs. NPA.

Fig. 7. Cost/Revenue comparison: OPA vs. NPA.

Fig. 8. Cost comparison: OPA vs. NPA.

Fig. 9. Revenue comparison: OPA vs. NPA.

Table 17
Results obtained with the I-NPA algorithm.

I-NPA

Load (ρ) Cost Revenue Cost/
revenue

Accepted VNR
Perc. (%)

Mapped revenue
ratio (%)

0.2 3189.8 2143.8 1.49 100.0 100.0
0.3 5027.9 3256.6 1.54 100.0 100.0
0.4 5605.3 3652.3 1.53 82.0 83.4
0.5 5386.0 3422.3 1.60 60.0 62.3
0.6 4825.5 3016.4 1.61 44.0 47.1
0.7 4058.6 2431.7 1.67 30.0 33.8
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behavior. This is an indication that the NPA algorithm was cor-
rectly implemented. However, its performance is worse than the
OPA's. This is an unexpected result as the coordinated node and
link mapping should provide better results. The reason for this is
Eq. (4) that does not model adequately the SN available resources.
In spite of not being good results they were important to guide the
introduction of the improvements described in Section 3.2 that led
to the development of the I-NPA algorithm.
Table 17 shows the results obtained with the I-NPA algorithm

while Fig. 10 compares the accepted VNR percentage between the
OPA and the I-NPA algorithms for all simulation runs. The results
shown in Fig. 10 are quite impressive: the I-NPA performance is
never worse than the OPA's and produced up to 60% enhancement
of the accepted VNR percentage.

Fig. 11 compares the mapped revenue ratio obtained by the
OPA and I-NPA algorithms. The I-NPA performance is much better
than the OPA's for all workloads. Fig. 12 shows that the Cost/
Revenue relationship is quite similar for both algorithms. As net-
work virtualization is essentially a technique to implement a
business model, the results provided by the I-NPA algorithm can
be directly translated into an increase of the service provider's
profit as a better mapped revenue ratio is obtained at a similar
Cost/Revenue value.

Fig. 13 shows the mapping cost for the OPA and I-NPA algo-
rithms. When the load is low both algorithms give the same result;
when the load is in the mid-range the I-NPA cost is much higher
than the OPA's; and when the load is high the costs are closer
again. Fig. 14 shows the mapping revenue for the OPA and I-NPA
algorithms and the observed behaviors are similar to the cost
behavior. When the load is low the SN has enough resources to
accommodate the mapping and both algorithms behave in a si-
milar way looking for the shortest paths. When the load increases
the OPA tends to revisit the same nodes and map the links to the
possible shortest paths. The I-NPA penalizes the nodes that have
already been used and distribute the traffic more evenly across the
whole SN. This implies that longer paths are selected making the
cost to increase but the VNR acceptance percentage also increases
producing a higher revenue. When the load is high there are not
enough resources to accommodate many VNRs and the revenue
drops. Those that can be mapped can use shorter paths decreasing
the cost for both algorithms.



Fig. 10. Accepted VNR percentage: OPA vs. I-NPA for all simulation runs.

Fig. 11. Mapped revenue ratio: OPA vs. I-NPA.

Fig. 12. Cost/Revenue: OPA vs. I-NPA.

Fig. 13. Cost: OPA vs. I-NPA.

Fig. 14. Revenue: OPA vs. I-NPA.
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4.4. System impact

The numerical results presented in Section 4.3 show that when
the I-NPA is compared to the OPA the results are impressive. The
average VNR acceptance percentage increased for all loads except
for ρ = 0.2 for which both algorithms map all VNRs. The maximum
improvement is of 26% for ρ = 0.4. For high loads, ρ = 0.7, the
I-NPA is still slightly better showing an improvement of 2%. The
mapped revenue ratio was also increased by the I-NPA showing an
average improvement of 14.42% for a maximum of 24.27%. Last but
not least, the OPA and the I-NPA provide similar Cost/Revenue
values. This means that the increased VNR acceptance percentage
of the I-NPA can translate directly into system performance and
higher profits for the service provider.
The I-NPA can be used to implement differentiated services.
The services provider's clients could be offered, for example, three
different subscriptions: gold, silver and bronze. The better the
subscription is, the SP could offer more resources charging a
higher price. The target price can be easily incorporated as a me-
trics into the paths algebra framework and used along the other
metrics to solve the VNE problem.
5. Conclusions and future work

The advantages of the coordinated link and node mapping
were analyzed, defining an optimization strategy based in the
paths algebra mathematical framework including linear and non-
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linear parameters. Two new algorithms were proposed to solve the
VNE problem in a coordinated way of the node and link mapping
stages, as an enhancement from previous already published works.
Both algorithms are also based on the paths algebra, originally
developed to implement multi-constraint routing algorithms and
that were successfully applied by the authors to solve the VNE
problem in an uncoordinated way. This algorithm is designated as
Original Paths Algebra—OPA. A metric to evaluate the resources
available in the SN and rank its nodes was proposed Such a metric
borrows the concept of availability of a transmission channel.

The first algorithm, designated as new paths algebra (NPA), was
explained in detail and applied to a small scenario example pro-
viding good results. However, when applied to larger scenarios the
results were initially quite disappointing but indicated the im-
provements to be introduced.

This second algorithm was designated improved new paths
algebra (I-NPA). The I-NPA was compared to the OPA and the re-
sults are quite impressive.

As future works we intend to change the ranking equation. The
current equation has factors that depend on the available re-
sources and change after each successful mapping. It has only one
static factor that depends on the topology and takes into account
the input/output nodes' degrees. We conjecture that the results
can be further improved if a more thorough characterization of the
topology is considered. The closeness metrics measures the
proximity of the nodes to each other, while the betweenness
evaluates which nodes are more traversed by paths connecting
pair of nodes. These metrics can be used to identify nodes more
appropriate to be hubs or intermediate and which ones are more
adequate to be terminals and host virtual nodes.
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