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Conditions on a topological space X under which the space C(X,R) of continuous real-
valued maps with the Isbell topology κ is a topological group (topological vector space)
are investigated. It is proved that the addition is jointly continuous at the zero function
in Cκ (X,R) if and only if X is infraconsonant. This property is (formally) weaker than
consonance, which implies that the Isbell and the compact-open topologies coincide. It
is shown the translations are continuous in Cκ (X,R) if and only if the Isbell topology
coincides with the fine Isbell topology. It is proved that these topologies coincide if X is
prime (that is, with at most one non-isolated point), but do not even for some sums of
two consonant prime spaces.
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1. Introduction

In [14] and [15] Isbell introduced and studied a topology on the space C(X, Z) of continuous functions from a topological
space X to a topological space Z , defined in terms of (what is now called) compact families of open subsets of X and open
subsets of Z . The Isbell topology is finer than the compact-open topology and coarser than the natural topology (that is, the
topological reflection of the natural convergence, most often called continuous convergence). Recently Jordan introduced in [17]
several intermediate topologies, finer than the Isbell and coarser than the natural topology, that turn out to be instrumental
in understanding function spaces. One of them is the so-called fine Isbell topology.

The Isbell topology and the natural topology coincide on C(X,$) (that can be identified with the set of closed subsets
of X ) and on the homeomorphic space C(X,$∗) (of open subsets of X ) where it is homeomorphic to the Scott topology.1 The
open sets for the Scott topology on C(X,$) are precisely the compact families of open subsets of X . A topological space X
is called consonant [5] if these topologies on C(X,$∗) coincide with the compact-open topology.2

It is known that if X is consonant, then the Isbell topology on C(X,R) coincides with the compact-open topol-
ogy. We prove that the converse is true for completely regular spaces, partially answering [21, Problem 62]. Answering
[21, Problem 61] positively, we also show that the Isbell topology on C(X, Z) is completely regular whenever Z is.

✩ We are grateful to Professor Ahmed Bouziad (University of Rouen) for comments that helped us to improve this paper.
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There are consonant examples (e.g., [10, Example 5.12], [11]) of spaces, for which the Isbell topology is strictly coarser
than the natural topology, but to our knowledge there is so far no characterization of X for which the Isbell topology and
the natural topology coincide on C(X,R).

The natural convergence is always a group convergence, in particular, it is invariant under translations,3 hence the natural
topology is also invariant under translations as the topological reflection of the natural convergence (see [7]), but need not
be a group topology, e.g. [16]. In [20], B. Papadopoulos proposes a sufficient condition on a topological space X for the Isbell
topological space Cκ (X,R) to be a vector space topology. However, it seems that no example has been known so far of a
space X , for which Cκ (X,R) is not a vector space topology.

In this note, we investigate under what conditions the Isbell topology is a group topology, equivalently a vector space
topology, because we prove that multiplication by scalars is jointly continuous for the Isbell topology.

In general, a topology on an abelian group is a group topology if and only if the translations and the inversion are contin-
uous, and if the group operation is (jointly) continuous at the neutral group element. As the inversion is a homeomorphism
for the Isbell topology on C(X,R), we are confronted with two quests about the Isbell topology on C(X,R):

(1) invariance by translations, and
(2) continuity of the addition at the zero function 0, that is, the property

Nκ (0) + Nκ (0) � Nκ (0). (1.1)

More specifically, we show that the space Cκ (X,R) of real-valued continuous functions on X endowed with the Isbell
topology is invariant under translations if and only if the Isbell and fine Isbell topologies coincide. In [17], Jordan provides
an example of a topological space X , for which the Isbell and fine Isbell topologies on C(X,R) do not coincide. This shows
that there exists X for which Cκ (X,R) is not invariant by translations.

We call a space infraconsonant if every compact family A contains another compact family B such that every pairwise
intersection of elements of B belongs to A, and we show that (1.1) holds if and only if X is infraconsonant. Of course,
every consonant space is infraconsonant. There are infraconsonant and non-consonant spaces, but we do not know yet of a
completely regular one.

Problem 1.1. Does there exist a completely regular infraconsonant space that is not consonant?

We call a topological space prime if it has at most one non-isolated point. We show that Cκ (X,R) is invariant under
translations if X is a prime space and that there are prime spaces that are not infraconsonant. In other words, Cκ (X,R)

may be translation-invariant without satisfying (1.1). We also show that Cκ (X,R) may fail to have either of these properties.
However, we do not know if it can satisfy (1.1) without being invariant under translations. In other words:

Problem 1.2. Does there exist a completely regular infraconsonant space X such that Cκ (X,R) has discontinuous transla-
tions?

A positive solution to this problem would also provide a positive answer to Problem 1.1, because Cκ (X,R) is a topological
group if X is consonant.4 We do not know if the converse is true:

Problem 1.3. Does there exist a non-consonant completely regular space X such that Cκ (X,R) is a topological group?

In view of our result, a prime positive solution to Problem 1.1 would also provide a positive answer to Problem 1.3.

2. Generalities

If A is a family of subsets of a topological space X then O X (A) denotes the family of open subsets of X containing
an element of A. In particular, if A ⊂ X then O X (A) denotes the family of open subsets of X containing A. A family
A = O X (A) is compact if whenever P ⊂ O X and

⋃
P ∈ A then there is a finite subfamily P0 of P such that

⋃
P0 ∈ A.

Of course, for each compact subset K of X , the family O X (K ) is compact. The following proposition extends the fact that
continuous functions are bounded on compact sets.

Proposition 2.1. If A is a compact family on X and f ∈ C(X,R), then there is A ∈ A such that f (A) is bounded.

Proof. As
⋃

n<ω f −({r: |r| < n}) = X ∈ A and f is continuous, there exists n < ω such that f −({r: |r| < n}) ∈ A by the
compactness of A. �

3 Actually, the natural convergence is a convergence vector space.
4 Problem 1.2 has been recently solved in the negative in [6].
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We denote by κ(X) the collection of compact families on X . Seen as a family of subsets of O X (the set of open subsets
of X ), κ(X) is the family of open subsets of the Scott topology; hence every union of compact families is compact, in
particular

⋃
K∈K O X (K ) is compact if K is a family of compact subsets of X . A topological space is called consonant if every

compact family A is compactly generated, that is, there is a family K of compact sets such that A = ⋃
K∈K O X (K ). Similarly,

k(X) := {O(K ): K ⊆ X compact} is a basis for a topology on O X , and a space X is consonant if and only if this topology
coincides with the Scott topology. Bouziad calls weakly consonant [1] a space X in which for every compact family A there
is a compact subset K of X such that O X (K ) ⊆ A.

Lemma 2.2. ([17, Lemma 36]) Consonance and weak consonance are equivalent among regular topological spaces.

The Isbell topology on C(X, Z) can be defined by the following subbase of open sets

[A, U ] := {
f ∈ C(X, Z): ∃A ∈ A, f (A) ⊆ U

}
,

where A ranges over κ(X) and U ranges over open subsets of Z . We write Cκ (X, Z) for the set C(X, Z) endowed with
the Isbell topology, and Ck(X, Z) if it is endowed with the compact-open topology. A space X is called Z -consonant if
Cκ (X, Z) = Ck(X, Z). Note that if $ denotes the Sierpiński space, then $-consonant means consonant. Moreover, the following
is immediate.

Proposition 2.3. X is consonant if and only if it is Z -consonant for every Z . In particular, if X is consonant, then Cκ (X,R) is a
topological vector space.

[21, Problem 62] asks for what spaces Z (other than $) does Z -consonance imply consonance. We have the following
partial answer, which refines [4, Theorem 4.4] which was announced without proof and proved in [19, Theorem 4.17].5

The grill of a family A of subsets of X is the family A# := {B ⊆ X: ∀A ∈ A, A ∩ B 
= ∅}. Note that if A = O(A), then

A ∈ A ⇐⇒ Ac /∈ A#.

Proposition 2.4. If X is completely regular and R-consonant, then it is consonant.

Proof. If X is R-consonant then in particular Nk(0) � Nκ (0) where 0 denotes the zero function. Hence for every A ∈ κ(X)

there exist a compact subset K of X and r > 0 such that [K , Br] ⊆ [A, B 1
2
] where Br := (−r, r). In view of Lemma 2.2, it

is sufficient to show that O(K ) ⊆ A. Assume on the contrary that there is an open set U such that K ⊆ U and U /∈ A.
Then the closed set F := X \ U is disjoint from K and F ∈ A#. As X is completely regular, there is h ∈ C(X,R) such that
h(K ) = {0} and h(F ) = {1}. Then h ∈ [K , Br] but h /∈ [A, B 1

2
] because 1 ∈ h(A) for every A ∈ A; a contradiction. �

In the proof above, we used the well-known fact that if A is a compact subset of a completely regular space X and F is a
closed subset of X such that A ∩ F = ∅, then there exists h ∈ C(X, [0,1]) such that h(A) = {0} and h(F ) = {1}. We extend this
fact to a closed set and a compact family.

Lemma 2.5. If A = O(A) is a compact family of subsets of a completely regular topological space X, and F is a closed subset of X
with F c ∈ A, then there are A ∈ A and h ∈ C(X, [0,1]) such that h(A) = {0} and h(F ) = {1}.

Proof. By complete regularity, for every x /∈ F , there are an open neighborhood O x of x and hx ∈ C(X, [0,1]) such that
hx(O x) = {0} and hx(F ) = {1}. Therefore F c = ⋃

x/∈F O x ∈ A, so that by the compactness of A there are n < ω and
x1, . . . , xn /∈ F such that A = ⋃

1�i�n O xi ∈ A. The continuous function min1�i�n hxi is 0 on A and 1 on F . �
Consequently, for each O ∈ A there exists a continuous function h valued in [0,1] such that O ⊃ {x: h(x) < 1

2 } ⊃
{x: h(x) = 0} ⊃ int{x: h(x) = 0} ∈ A, that is,

Corollary 2.6. An (openly isotone) compact family of subsets of a completely regular topological space has a base of co-zero sets and a
base of the interiors of zero sets.

Papadopoulos says that a space X has property (A∗) if whenever A ∈ κ(X) and A1 and A2 are open subsets of X such
that A1 ∪ A2 ∈ A, there exist filters Fi such that Ai ∈ Fi , i = 1,2 such that O X (Fi) ∈ κ(X) and O(F1) ∩ O(F2) ⊆ A. The
main result of [20] is that property (A∗) is sufficient for the Isbell topology on C(X,R) to be a vector space topology. If X
is regular, this result follows immediately from Proposition 2.3 because of the following:

5 Note that the notion of R-consonance introduced in [19] (coincidence of the natural and compact-open topologies on C(X,R)) is stronger than our
notion and should not be confused.
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Proposition 2.7. Let X be a regular topological space. Then X is consonant if and only if X has property (A∗).

Proof. Assume that X is consonant and that A1 ∪ A2 ∈ A where A ∈ κ(X). Because X is consonant, there is a compact
set K ⊆ A1 ∪ A2 such that O(K ) ⊆ A. By regularity and compactness, there are finitely many closed sets Ci such that
each Ci is a subset of either A1 or A2 and K ⊆ ⋃i=n

i=1 Ci . Therefore, there exist compact subsets K1 of A1 and K2 of A2
such that K = K1 ∪ K2, so that O(K1) and O(K2) are the sought compact filters. Conversely, if X satisfies (A∗) then for
every A ∈ A there is a compact filter F such that A ∈ F and O(F ) ⊆ A. Because F is a compact filter in a regular
space, O(F ) = O(adh F ) and adh F is compact (e.g. [5, Proposition 2.2]). Therefore, A is compactly generated and X is
consonant. �
Lemma 2.8. ([3]) If A ∈ κ(X) and C is a closed subset of X such that C ∈ A# then

A ∨ C := O
({A ∩ C : A ∈ A})

is a compact family on X.

Lemma 2.9. If A ∈ κ(X) and A0 ∈ A then

A ↓ A0 := O
({A ∈ A: A ⊆ A0}

)
is a compact family on X.

Proof. If
⋃

i∈I O i ∈ A ↓ A0 then there is A ∈ A such that A ⊆ A0 and A ⊆ ⋃
i∈I O i so that A ⊆ ⋃

i∈I (O i ∩ A0). By
compactness of A there is a finite subset F of I such that

⋃
i∈F (O i ∩ A0) ∈ A. But

⋃
i∈F (O i ∩ A0) ⊆ A0 so that⋃

i∈F (O i ∩ A0) ∈ A ↓ A0 and
⋃

i∈F O i ∈ A ↓ A0. �
The following theorem answers [21, Problem 61].

Theorem 2.10. If Z is completely regular, then Cκ (X, Z) is completely regular.

Proof. Let f ∈ [A, O ] where A ∈ κ(X) and O is Z -open. As A is compact and f continuous, O Z ( f (A)) is compact, and
since Z is completely regular, by Lemma 2.5, there are A ∈ A and h ∈ C(Z , [0,1]) such that h( f (A)) = {0} and h(Z\O ) = {1}.
Define

F (g) := inf
A∈A

sup
x∈A

h
(

g(x)
) = sup

H∈A#
inf
x∈H

h
(

g(x)
)

for each g ∈ C(X, Z). Then F ( f ) = 0 and F (g) = 1 for each g /∈ [A, O ]. Moreover, F : Cκ (X, Z) → [0,1] is continuous. To see
that F −([0, r)) is open for each r ∈ [0,1], notice that F (g) < r if and only if there is Ar ∈ A such that g(Ar) ⊂ [0, r), that
is, if and only if g ∈ [A,h−([0, r))]. On the other hand, if 0 � s < 1 and s < F (g), then, by the second equality, there exist
s < t < F (g) and a closed set H ∈ A# such that t � h(g(x)) for each x ∈ H , thus g(H) ⊂ h−(s,1]. By Lemma 2.8, A ∨ H is
compact, and if an open set includes H then it belongs to A ∨ H , in particular g−h−(s,1] ∈ A ∨ H , that is, g belongs to the
open set [A ∨ H,h−(s,1]]. If now b ∈ [A ∨ H,h−(s,1]], then there is A ∈ A such that h(b(A ∩ K )) ⊂ (s,1], hence

s < sup
A∈A

inf
x∈A∩H

h
(
b(x)

)
� inf

A∈A
sup

x∈A∩H
h
(
b(x)

)
� inf

A∈A
sup
x∈A

h
(
b(x)

) = F (b). �
As [A,−U ] = −[A, U ] for every U ⊂ R and each compact family A, the inversion is a homeomorphism in Cκ (X,R).

More generally,

Proposition 2.11. Multiplication by scalars is jointly continuous for the Isbell topology.

Proof. Let f ∈ C(X,R) and r ∈ R be such that r f ∈ [A, O ], where A is a compact family on X and O is an open subset
of R. If r = 0 then it is enough to consider O = B(0, ε) with ε > 0. By Proposition 2.1 there exist A0 ∈ A and R > 0 such
that f (A0) ⊂ B(0, R) and thus f (A) ⊂ B(0, R) for each basic element A of A0 := A ↓ A0. Therefore f ∈ [A0, B(0, R)] and
B(0, ε

R )[A0, B(0, R)] ⊂ [A, O ]. Let |r| > 0. Since O((r f )(A)) is a compact family of the consonant space R, there exists a
compact subset K of O such that OR(K ) ⊂ O((r f )(A)), hence there exist A0 ∈ A and ε > 0 such that (r f )(A0) ⊂ B(K , ε) ⊂
B(K ,2ε) ⊂ O . If A0 := A ↓ A0, then f (A) ⊂ 1

r B(K , ε) for a base of elements A of A0, hence f ∈ [A0,
1
r B(K , ε)]. On the

other hand, there is δ > 0 such that B(1, δ
|r| )B(K , ε) ⊂ B(K ,2ε) and thus B(r, δ)[A0,

1
r B(K , ε)] ⊂ O . �

Corollary 2.12. If Cκ (X,R) is a topological group then it is a topological vector space.
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3. Structure of Cκ (X,RRR) at the zero function

As usual, if A and B are subsets of a group, A + B := {a + b: a ∈ A,b ∈ B} and if A and B are two families of subsets,
A + B := {A + B: A ∈ A, B ∈ B}.

As we have mentioned, a topology on an abelian group is a group topology if and only if translations are continuous and
N (0) + N (0) � N (0). In this subsection, we investigate the latter property, that is,

Nκ (0) + Nκ (0) � Nκ (0), (3.1)

for the space Cκ (X,R). If (pn) is a decreasing sequence of positive numbers that tends to zero, then[
n⋂

i=1

Ai,
(
− n

max
i=1

pi,
n

max
i=1

pi

)]
⊆

n⋂
i=1

[
Ai, (−pi, pi)

]
,

and thus Nκ (0) has a filter base of the form{[
A, (−pn, pn)

]
: A ∈ κ(X), n ∈ N

}
, (3.2)

because a finite intersection of compact families is compact.
We call a topological space X infraconsonant if for every compact family A on X there is a compact family B such that

B ∨ B := {B ∩ C : B ∈ B, C ∈ B} is a (not necessarily compact) subfamily of A. Note that if X is consonant then every
compact family includes a compact filter of the form O(K ) for a compact set K . Taking B = O(K ) gives infraconsonance, so
that every consonant space is infraconsonant.

Theorem 3.1. Let (G,+) be an abelian topological group. If X is infraconsonant, then the addition is continuous at 0 in Cκ (X, G).
Moreover if X is completely regular, then the addition is continuous at 0 in Cκ (X,R) if and only if X is infraconsonant.

Proof. Assume that X is infraconsonant. Let A ∈ κ(X) and V ∈ NG(0). By infraconsonance, there exists a compact subfam-
ily B of A such that B ∨ B ⊆ A. If W ∈ NG(0) such that W + W ⊆ V , then [B, W ] + [B, W ] ⊆ [A, V ], which proves (3.1).

Conversely, assume that X is not infraconsonant. Let A be a compact family witnessing the definition of non-
infraconsonance. Note that B ∨ C � A for every pair of compact families B and C for otherwise D = B ∩ C would be a
compact subfamily of A such that D ∨ D ⊆ A. Let V = (− 1

2 , 1
2 ). We claim that for any pair (B, C) of compact families and

any pair (U , W ) of R-neighborhood of 0, [B, U ]+ [C, W ] � [A, V ]. Indeed, there exist B ∈ B and C ∈ C such that B ∩ C /∈ A.
Then Bc ∪ Cc ∈ A#. Moreover, Bc /∈ B# so that by Lemma 2.5, there exist B1 ∈ B and f ∈ C(X,R) such that f (B1) = {0}
and f (Bc) = {1}. Similarly, Cc /∈ C so that there exist C1 ∈ C and g ∈ C(X,R) such that g(C1) = {0} and g(Cc) = {1}. Then
f + g ∈ [B, U ] + [C, W ] but 1 ∈ ( f + g)(A) for all A ∈ A so that f + g /∈ [A, V ]. �

Complete regularity cannot be relaxed (to regularity) in Theorem 3.1.

Example 3.2. There exist regular non-infraconsonant spaces X , for which the addition is jointly continuous at 0 in Cκ (X,R).
In [12] Herrlich builds a regular space, on which each continuous function is constant. To this purpose, for each regular
space Y he constructs a regular space H(Y ) such that Y is closed in H(Y ), and each f ∈ C(H(Y ),R) is constant on Y .
Define H0(Y ) := Y , Hn+1(Y ) := H(Hn(Y )) and X := ⋃

n<ω Hn(Y ) with the finest topology for which all the injections are
continuous. Then each continuous (real-valued) function on X is constant. Moreover it can be shown that X is regular.
This fact is stated in [12] in case where Y is a singleton, but is true for an arbitrary regular space Y . Let Y be a regular
non-infraconsonant space, for instance the space from Example 3.7. As all continuous functions on X are constant, the
continuity of the (joint) addition on Cκ (X,R) follows from the continuity of the addition on R. If X were infraconsonant,
then its closed subset Y would be infraconsonant, in contradiction with the assumption.

As we have mentioned, Cκ (X,$∗) is the lattice of open subsets of X endowed with the Scott topology, in which open
sets are exactly the compact families of open subsets of X . Dually, Cκ (X,$) is the set of closed subsets of X endowed with
the upper Kuratowski topology, in which F is open if the family Fc = {X \ F : F ∈ F } is compact. The following was prompted
by a conversation with Ahmed Bouziad (University of Rouen) in June 2008 (in Erice), who asked us if infraconsonance was
related to the joint continuity of the union operation on Cκ (X,$).

Lemma 3.3. If X is regular and infraconsonant, then for every A ∈ κ(X) and every A ∈ A, there is C ∈ κ(X) such that A ∈ C and
C ∨ C ⊆ A.

Proof. Assume that X is infraconsonant and regular. If A is a compact family on X , then for each element A of A there is
A0 ∈ A such that cl A0 ⊂ A. The family A1 = A ↓ A0 is compact by Lemma 2.9 so that there is a compact family B such that

B ∨ B ⊆ A1. For each B1 and B2 in B, there is B ∈ A, B ⊆ A0 such that B ⊆ B1 ∩ B2. Therefore the family B1 = B ∨ cl A0
contains A, satisfies B1 ∨ B1 ⊆ A1 ⊆ A, and is compact by Lemma 2.8. �
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We shall consider binary maps: the intersection ∩ and the union ∪, defined by
⋂

(A, B) := A ∩ B and
⋃

(A, B) := A ∪ B .

Proposition 3.4. Let X be a regular topological space. The following are equivalent:

(1) X is infraconsonant;
(2) The intersection ∩ : Cκ (X,$∗) × Cκ (X,$∗) → Cκ (X,$∗) is ( jointly) continuous for the Scott topology;
(3) The union ∪ : Cκ (X,$) × Cκ (X,$) → Cκ (X,$) is ( jointly) continuous for the upper Kuratowski topology.

Proof. The equivalence between (2) and (3) is immediate, because these topologies are isomorphic by complementation.
Assume X is infraconsonant and let U and V be two open subsets of X . Let A be a Scott open neighborhood of

⋂
(U , V ),

i.e., a compact family containing U ∩ V . By Lemma 3.3, there is a compact family C containing U ∩ V such that⋂
(C, C) = C ∨ C ⊆ A.

Note that C is a common Scott neighborhood of U and V so that ∩ is continuous.
Conversely, assume that ∩ is continuous and consider a compact family A. Since

⋂−1
(A) has non-empty interior there

are compact families B and C such that B × C ⊆ ⋂−1
(A). The compact family D = B ∩ C then satisfies D ∨ D ⊆ A so that

X is infraconsonant. �
Note that the implication (2) �⇒ (1) does not use regularity. It is well known (e.g. [22]) that the natural convergence

on C(X,$) is topological if and only if X is core-compact. A topological space X is core-compact if for every x ∈ X and every
U ∈ O(x) there is V ∈ O(x) that is relatively compact in U .

Therefore, if X is core-compact then the Isbell topology and the natural convergence coincide on C(X,$), which is easily
seen to make the map ∩ jointly continuous. In view of Proposition 3.4, X is then infraconsonant. Moreover X is locally com-
pact if and only if the natural convergence coincides with the compact-open topology on C(X,$) (e.g. [22, Proposition 2.19]),
that is, every compact family is compactly generated. Therefore, if X is core-compact but not locally compact, then X is in-
fraconsonant but not consonant. Such a space is constructed in [13, Section 7].

Corollary 3.5. There exists a (non-Hausdorff) infraconsonant space that is not consonant.

We will now exhibit a class of prime (hence completely regular) non-infraconsonant spaces. Recall that if (Fn)n<ω

is a sequence of filters, then the contour F is defined by F := ⋃
p<ω

⋂
n�p Fn [8]. A prime space X (with only non-

isolated point ∞) is a contour space if there exists a family {Xn: n ∈ ω} of disjoint infinite subsets of X \ {∞} such that
X = ⋃

n<ω Xn ∪ {∞} and

N (∞) = {∞} ∧
⋃
p<ω

⋂
n�p

Fn,

where each Fn is a free filter on Xn . Notice that the sets {∞} ∪ ⋃
n�p Fn , where Fn ∈ Fn and p < ω form a filter base

of N (∞). Therefore

∀n<ω Xn /∈ N (∞)#, (3.3)

∀V ∈N (∞)

∣∣{n ∈ ω: Xn ∩ V = ∅}∣∣ < ω. (3.4)

Compact sets in a contour space are finite. In fact, if K is compact, then Kn := K ∩ Xn is finite, because Fn is finer than
the cofinite filter of Xn for each n < ω; as N (∞) �

⋂
n∈ω Fn the set

⋃
n<ω Kn is closed and does not contain ∞, so that it

consists of isolated points, and thus is finite.
In particular, ∞ is a compact-repellent point, that is, ∞ /∈ cl(K \ {∞}) for each compact set. On the other hand, Xn is

closed for each n and the upper and the lower limit of (Xn)n<ω coincide and are equal to {∞}6; Thus, by [5, Theorem 6.1],
contour spaces are not consonant. Actually,

Theorem 3.6. Contour prime spaces are not infraconsonant.

Proof. The family

D := {
D ∈ O(∞): ∀n∈ω, D ∩ Xn 
= ∅}

is non-empty and compact. Indeed, if {Oα: α ∈ I} is an open cover of D ∈ D, there is α0 ∈ I such that ∞ ∈ Oα0 and by (3.4),
the set J := {n ∈ ω: Xn ∩ Oα0 = ∅} is finite. For each n ∈ J , there is xn ∈ D ∩ Xn , and there is αn ∈ I such that xn ∈ Oαn .
Then

⋃
n∈ J∪{0} Oαn ∈ D.

6 That is, {∞} = ⋂
p<ω cl(

⋃
n�p Xn) = ⋂

N∈[ω]ω cl(
⋃

n∈N Xn).
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On the other hand, if C ⊆ O(∞) is a compact family, there is n0 such that C is free on Xn0 , that is, the restriction of C
to Xn0 is finer than the cofinite filter of Xn0 . Otherwise, for each n ∈ ω there would be a finite subset F (n) of Xn such that
F (n) # C .

On the other hand, V := X \ ⋃
n∈ω F (n) ∈ O(∞), hence, by the compactness of C , there exists a finite set T such that

V ∪ T ∈ C and (V ∪ T ) ∩ ⋃
n∈ω F (n) ⊂ T . This is a contradiction with F (n) # C for all n.

By the compactness of C there exists C0 ∈ C such that C0 ∩ Xn0 is finite. As C is free on Xn0 , there is C ∈ C disjoint from
C0 ∩ Xn0 , so that C ∨ C � D. Hence X is not infraconsonant. �
Example 3.7 (The Arens space is not infraconsonant). Recall that the Arens space has underlying set {∞} ∪ {xn,k: n ∈ ω, k ∈ ω}
and carries the topology in which every point but ∞ is isolated and a base of neighborhoods of ∞ is given by sets of the
form

{∞} ∪
⋃
n�p

{
xn,k: k � f (n)

}
,

where p ranges over ω and f ranges over ωω .

In [9] a notion of sequential contour of arbitrary order was introduced. A sequential contour of rank 1 is a free sequential
filter (that is, the cofinite filter of a countable set); a sequential contour of rank α > 1 is a contour of the sequence (Fn)n<ω ,
where Fn is a sequential contour of rank αn on a countable set Xn , {Xn: n < ω} are disjoint, and α = supn<ω(αn + 1). It
follows that:

Corollary 3.8. For every countable ordinal α the prime topology determined by a sequential contour of rank α is not infraconsonant.

We do not know however if there are completely regular infraconsonant spaces that are not consonant.
A. Bouziad pointed out to us that, in view of Proposition 3.4, Theorem 3.6 also shows that the assumption of separation

is essential in the result of J. Lawson stating that a compact Hausdorff semitopological lattice is topological [18]. Indeed,
if X is regular but not infraconsonant (for instance the Arens space), then C(X,$∗) is a T0 compact semitopological lattice
(i.e., ∩ is separately continuous) which is not a topological lattice, because ∩ is not jointly continuous.

4. Continuity of translations

As we mentioned, Francis Jordan introduced in [17] the fine Isbell topology on the set C(X, Y ). We shall now prove that
translations are always continuous for the fine Isbell topology, and that the neighborhood filters at the zero function 0 for
the Isbell and for the fine Isbell topologies coincide. Therefore translations are continuous for the Isbell topology if and only
if it coincides with the fine Isbell topology.

If N and M are two subsets of X ×Y , the set N is buried in M , in symbols N � M , if for every x ∈ X there exist V ∈ O X (x)
and W ∈ OY (N(x)) such that V × W ⊆ M . If f ∈ C(X, Y ) and A ⊆ X , we denote by f |A the graph of the restriction of f
to A. A subbase for the fine Isbell topologies is given by sets of the form:

〈A, M〉 := {
f ∈ C(X, Y ): ∃A ∈ A, f |A � M

}
,

where A ranges over compact families of X and M ranges over open subsets of X × Y . We denote by Cκ (X, Y ) the
set C(X, Y ) endowed with the fine Isbell topology. If (G,+) is a topological group, we denote by 0 its neutral element
and by 0 the constant function zero of C(X, G).

Theorem 4.1. Let (G,+) be a topological group. The fine Isbell topological space Cκ (X, G) is invariant by translations.
The neighborhood filters at 0 for the fine Isbell and the Isbell topologies coincide.

Proof. (1) Nκ (0) � Nκ (0): Is clear. Consider now 〈A, M〉 such that 0 ∈ 〈A, M〉, A ∈ κ(X) and M is open in X × G . There
is A ∈ A such that for every x ∈ A, there are V x ∈ O(x) and W x ∈ OG(0) such that V x × W x ⊆ M . Since A is compact and
A = ⋃

x∈A V x there is a finite subset F of A such that B = ⋃
x∈F V x ∈ A. But then W = ⋂

x∈F W x ∈ OG(0) and B × W ⊆ M
so that

0 ∈ [A ↓ B, W ] ⊆ 〈A, M〉.
(2) Nκ ( f ) � f + Nκ (0): Let A ∈ κ(X), B ∈ OG(0). Consider M := ⋃

x∈X {x} × ( f (x) + B). Then f ∈ 〈A, M〉 and 〈A, M〉 ⊆
f + [A, B]. Indeed, if h ∈ 〈A, M〉 then there is A ∈ A such that for all x ∈ A, there are an open neighborhood V x of x
and an open neighborhood W x of h(x) such that V x × W x ⊆ M . In particular, {x} × W x ⊆ M so that W x ⊆ f (x) + B and
(h − f )(x) ∈ B . Therefore (h − f )(A) ⊆ B .

(3) Nκ ( f ) � f + Nκ (0): Let A ∈ κ(X) and let M be an open subset of X × G such that f ∈ 〈A, M〉, that is, there is
A ∈ A such that for all x ∈ A, there are an open neighborhood V x of x and an open neighborhood W x = f (x) + Bx of f (x),
where Bx ∈ OG(0) such that V x × W x ⊆ M . By continuity of f we may assume that f (V x) ⊆ f (x) + B ′

x ⊆ W x for each x,
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where B ′
x ∈ OG(0) and B ′

x + B ′
x ⊆ Bx . Since A is compact and A = ⋃

x∈A V x there is a finite subset F of A such that
A1 = ⋃

x∈F V x ∈ A. Let W ∈ OG(0) be such that W = −W and W ⊆ ⋂
x∈F B ′

x ∈ OG(0). Then f + [A ↓ A1, W ] ⊆ 〈A, M〉.
Indeed, if h ∈ [A ↓ A1, W ] then there is A2 ∈ A, A2 ⊆ A1 such that h(A2) ⊆ W . For each x ∈ A2, there is tx ∈ F such that
x ∈ Vtx . Note that Vtx × Wtx ⊆ M and that f (x) ∈ f (Vtx ) and

f (Vtx) + W ⊆ f (x) + B ′
x + B ′

x ⊆ Wtx

so that Vtx × ( f (x) + W ) ⊆ M which completes the proof because f (x) + W ∈ O(( f + h)(x)) and Vtx ∈ O(x). �
Corollary 4.2. Cκ (X, G) is invariant by translation if and only if Cκ (X, G) = Cκ (X, G).

The result above also provides a more handy description of the fine Isbell topology on C(X, G) when G is a topological
group (for instance for Cκ (X,R)):

Nκ ( f ) = f + {[A, B]: A ∈ κ(X), B ∈ OG(0)
}
.

Theorem 4.3. The following are equivalent:

(1) Cκ (X,R) is a topological vector space;
(2) Cκ (X,R) is a topological group;
(3) X is infraconsonant.

Proof. If Cκ (X,R) is a topological group then Nκ (0) + Nκ (0) = Nκ (0). But Nκ (0) = Nκ (0) so that by Theorem 3.1, X is
infraconsonant. Conversely, if X is infraconsonant, then Nκ (0)+ Nκ (0) = Nκ (0) and translations are continuous in Cκ (X,R)

so that Cκ (X,R) is a topological group. Remains to see that if Cκ (X,R) is a topological group, it is also a topological vector
space.

First, note that for each fixed f ∈ C(X,R) the map S f : R → Cκ (X,R) defined by S f (r) = r f is continuous. Indeed, for
each A ∈ κ(X), there are A ∈ A and R ∈ R such that f (A) ⊆ B(0, R) by Proposition 2.1. Therefore for each O ∈ NR(0) there
is δ > 0 such that B(0, δ) · f (A) ⊆ O . Thus, if r f + [A, O ] ∈ Nκ ( f ) then B(r, δ) · f = r f + B(0, δ) · f ⊆ r f + [A, O ].

Note also that S : R×Cκ (X,R) → Cκ (X,R) defined S(r, f ) = r f is continuous at (r,0) for each r by Proposition 2.11. Let
now r ∈ R and f ∈ C(X,R) and consider r f + W ∈ Nκ ( f ), where W ∈ Nκ (0). Since Cκ (X,R) is a topological group, there is
V ∈ Nκ (0) such that V + V ⊆ W . By continuity of S f , there is T ∈ NR(r) such that T · f ⊆ r f + V . Moreover, by continuity
of S at (r,0) there are T ′ ∈ NR(r), T ′ ⊆ T and U ∈ Nκ (0) such that T ′ · U ⊆ V . Then

T ′ · ( f + U ) = T ′ · f + T ′ · U ⊆ r f + V + V ⊆ r f + W ,

which proves continuity of S at (r, f ) because f + U ∈ Nκ ( f ). �
In particular, in view of Example 3.7, the fine Isbell topology does not need to be a group topology. In [17, Example 1]

Jordan shows that if X and Y are two zero-dimensional consonant spaces such that the topological sum Z := X ⊕ Y is not
consonant then Cκ (Z ,R) < Cκ (Z ,R). In view of Corollary 4.2 we obtain:

Example 4.4. There exists a space Z such that translations of Cκ (Z ,R) fail to be continuous.

Following [17], we say that a space X is sequentially inaccessible provided that for any sequence (Fn)n∈ω of countably
based z-filters (filters based in zero sets) on X

(∀n adh Fn = ∅) �⇒ adh

( ⋂
n∈ω

Fn

)
= ∅.

Jordan proved [17] that if X is completely regular, Lindelöf and sequentially inaccessible, then the fine Isbell topology and
the natural topology coincide on C(X,R). This result can be combined with Theorem 4.3 to obtain the following Banach–
Dieudonné like result.7

Theorem 4.5. If X is a completely regular, Lindelöf and sequentially inaccessible space, then the natural topology on C(X,R) is a group
(and vector) topology if and only if X is infraconsonant.

As we have seen, translations in C(X,R) are, in general, not continuous for the Isbell topology. They are however con-
tinuous if X is prime (that is, has at most one non-isolated point). More generally,

7 The classical theorem of Banach–Dieudonné (and its many variants) can be seen as providing sufficient conditions on a topological vector space for the
natural topology on its dual space to be a group topology. See [16,2] for details.
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Proposition 4.6. If X is prime and G is an abelian consonant topological group, then the Isbell topology on C(X, G) is translation
invariant.

Proof. If a family A is compact on X , then for each x ∈ X the family Ax := O X (x) ∩ A is compact included in A. Therefore
it is enough to consider basic neighborhoods for the Isbell topology of the form [Ax, U ] where U is an open subset of G .

Consider f �→ g + f for g ∈ C(X, G). Let x ∈ X and A be a compact family included in O X (x) and U is an open subset
of G . Let f0 + g ∈ [A, U ].

The family D := OG(( f0 + g)(A)) is compact in a consonant space G , hence there is a compact set K ⊂ U such that
OG(K ) ⊂ D. Let W = −W be a closed neighborhood of 0 in G such that K + 3W ⊂ U . Then there is A ∈ A such that
( f0 + g)(A) ⊂ K + W . Furthermore there exists A0 ∈ A such that A0 ⊂ A and f0(A0) is bounded and ( f0 + g)(A0) ⊂ K + W .

Let V 0 be an element of O X (x) included in A0 such that f0(V 0) ⊂ f0(x∞) + W and g(V 0) ⊂ g(x∞) + W .
Then there is a finite subset F of A0 (disjoint from V 0) such that A1 := V 0 ∪ F ∈ A. Then let A1 := A ↓ A1. Of course,

f0 + g ∈ [A1, K + W ] and A1 ∈ κ(X).
Then there are n < ω and finite sets F1, . . . , Fn such that f0(Fk)− f0(Fk) ⊂ W and g(Fk)− g(Fk) ⊂ W for each 1 � k � n,

and moreover F1 ∪ · · · ∪ Fn = F . Finally, let D0 := A1 ∨ V 0 and Dk := A1 ∨ Fk for 1 � k � n. Note that A1 = ⋂n
k=0 Dk . On

the other hand, there exist xk ∈ Fk for 1 � k � n, such that

f0 ∈
n⋂

k=0

[
Dk, f0(xk) + W

]
,

where x0 := x∞ . If now f ∈ ⋂n
k=0[Dk, f0(xk) + 2W ] then

f + g ∈
n⋂

k=0

[
Dk, f0(xk) + g(xk) + 3W

] ⊂ [A1, U ] ⊂ [A, U ]. �

Corollary 4.7. If X is a prime topological space, then Cκ (X,R) is translation invariant.

Since, by Corollary 4.2, Cκ (X,R) is translation invariant if and only if it coincides with Cκ (X,R), Corollary 4.7 implies
a result [17, Theorem 18] of Jordan that the Isbell and the fine Isbell topologies coincide provided that the underlying
topology is prime.

Corollary 4.7 combined with Theorem 3.1 and Corollary 4.2 leads to the following results.

Theorem 4.8. If X is prime, then Cκ (X,R) is a topological group (or topological vector space) if and only if X is infraconsonant.

Note that if X is as in Example 3.7, then Cκ (X,R) is invariant by translation but not a topological group.

References

[1] A. Bouziad, Borel measures in consonant spaces, Topology Appl. 70 (1996) 125–132.
[2] M. Bruguera, E. Martin-Peindor, Banach–Dieudonné theorem revisited, J. Aust. Math. Soc. 75 (2003) 69–83.
[3] S. Dolecki, Properties transfer between topologies on function spaces, hyperspaces and underlying spaces, Math. Pannon. 19 (2) (2008) 243–262.
[4] S. Dolecki, G.H. Greco, A. Lechicki, Sur la topologie de la convergence supérieure de Kuratowski, C. R. Math. Acad. Sci. Paris Ser. I 312 (12) (1991)

923–926.
[5] S. Dolecki, G.H. Greco, A. Lechicki, When do the upper Kuratowski topology (homeomorphically, Scott topology) and the cocompact topology coincide?,

Trans. Amer. Math. Soc. 347 (1995) 2869–2884.
[6] S. Dolecki, F. Jordan, F. Mynard, Group topologies coarser than the Isbell topology, submitted for publication.
[7] S. Dolecki, F. Mynard, Preimage-wise characterizations of functional convergences, in preparation.
[8] S. Dolecki, F. Mynard, Cascades and multifilters, Topology Appl. 104 (2000) 53–65.
[9] S. Dolecki, A. Starosolski, S. Watson, Extension of multisequences and countably uniradial classes of topologies, Comment. Math. Univ. Carolin. 44

(2003) 165–181.
[10] M. Escardó, J. Lawson, A. Simpson, Comparing cartesian closed categories of (core) compactly generated spaces, Topology Appl. 143 (2004) 105–145.
[11] D.N. Georgiou, S.D. Iliadis, On the compact open and finest splitting topologies, Topology Appl. 154 (10) (2007) 2110–2116.
[12] H. Herrlich, Wann sind alle stetigen Abbildungen in Y konstant, Math. Z. 90 (1965) 152–154.
[13] K.H. Hofamnn, J. Lawson, The spectral theory of distributive continuous lattices, Trans. Amer. Math. Soc. 246 (1978) 285–310.
[14] J.R. Isbell, Function spaces and adjoints, Math. Scand. 36 (1975) 317–339.
[15] J.R. Isbell, Meet-continuous lattices, Sympos. Mathematica 16 (1975) 41–54.
[16] H. Jarchow, Locally Convex Spaces, Teubner, 1981.
[17] F. Jordan, Coincidence of function space topologies, submitted for publication.
[18] J. Lawson, Joint continuity in semitopological semigroups, Illinois J. Math. 18 (1974) 275–285.
[19] F. Mynard, First-countability, sequentiality and tightness of the upper Kuratowski convergence, Rocky Mountain J. Math. 33 (3) (2003) 1011–1038.
[20] B. Papadopoulos, On the Isbell topology, Math. Jpn. 35 (6) (1990) 1043–1046.
[21] E. Pearl (Ed.), Open Problems in Topology II, Elsevier, 2007.
[22] F. Schwarz, S. Weck, Scott topology, isbell topology, and continuous convergence, in: R.E. Hoffmann, K.H. Hofmann (Eds.), Continuous Lattices and

Applications, in: Lect. Notes Pure Appl. Math., Marcel Dekker, 1984.


	When is the Isbell topology a group topology?
	Introduction
	Generalities
	Structure of Ckappa(X,R) at the zero function
	Continuity of translations
	References


