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Abstract

We investigate learning of classes of distributions over a discrete domain in a PAC context. We
introduce two paradigms of PAC learning, namely absolute PAC learning, which is independent
of the representation of the class of hypotheses, and PAC learning wrt the indexes, which heavily
depends on such representations. We characterize non-computable learnability in both contexts.
Then we investigate e3cient learning strategies which are simulated by a polynomial-time Turing
machine. One strategy is the frequentist one. According to this strategy, the learner conjectures
a hypothesis which is as close as possible to the distribution given by the frequency relative to
the examples. We characterize the classes of distributions which are absolutely PAC learnable
by means of this strategy, and we relate frequentist learning wrt the indexes to the NP = RP
problem. Finally, we present another strategy for learning wrt the indexes, namely learning
by tests. c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Learning Theory deals with the problem of detecting the general principles governing
a phenomenon by means of examples of it. The source of the general theory is Gold’s
seminal paper [5]. The book [13] contains a general treatment of identi@cation of formal
languages (r.e. sets) both on positive and negative examples. Identi@cation of recursive
functions is treated e.g. in [12]. Other settings of Learning Theory, like probabilistic
learning, are treated e.g. in [2, 14, 15, 9]. The main paradigm is the identi@cation in the
limit of the target concept on all (or, in probabilistic learning, on su3ciently many)
in@nite lists of examples, without any reference to either the computational complexity
of the learning algorithm or to the number of examples needed to learn.
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An alternative line of research in Learning Theory, the so called (probabilistic ap-
proximately correct (PAC) learning (cf. [16], or [8]) arises from three considerations:
(1) in many circumstances, it is not important to learn the concept exactly, a good
approximation is su3cient; (2) like in probabilistic learning, one does not require an
algorithm that succeeds on all lists of examples, but only one that succeeds with high
probability; and (3) in general, it is important to learn after a short number of examples.
Normally, there are requirements on the learning algorithm; the most common is that
such an algorithm has to work in polynomial time.
The present paper deals with learning probability distributions over a countable set in

a PAC context. This subject is not completely new: [2] treats probabilistic identi@cation
in the limit of classes of distributions. The paper [7] deals with PAC learning of
probabilistic functions instead of sets. The paper [3] deals with PAC identi@cation of
probability distributions over the reals by means of their density levels (in other words,
the learner has to identify the density levels instead of the distribution directly). Finally,
[6] deals with PAC learning of distributions over {0; 1}n, wrt a measure of the error
which is motivated by information-theoretic considerations.
In the present paper, we introduce two paradigms of PAC learning. In both

paradigms, the learner is supplied with a class D of distributions over a countable
set S = {En : n∈N} of events such that at each stage exactly one event of S occurs
(for simplicity we can assume that S is the set N of natural numbers, in other words
we think of n∈N as a code of the event En ∈ S) and with a class R of (representations
of) hypotheses; a distribution d∈D is chosen, and a sequence of examples (coded by
natural numbers) is drawn at random according to the distribution d. The learner is
also supplied with two positive real numbers, 	 and 
 called accuracy and con+dence,
respectively. The learner has to guess a representation r ∈R for a distribution d′ ∈D

which is su,ciently close to d. In our context, the sentence d is su,ciently close to
d′ means that the distance D(d; d′)=

∑
n∈N |d(n) − d′(n)| has to be less than 	. In

this paper we assume for simplicity 	= 
=1=n, where n is a positive natural number.
This restriction will not aGect the PAC learnability or non-learnability of any class of
distributions.
In our opinion, D(d; d′) constitutes a natural measure of the error occurring when we

guess d′ instead of d. The intutitive meaning of D(d; d′) is explained by means of the
following game: a natural number will be drawn at random according to the distribution
d. For every n∈N, let En denote the event n will be drawn, and Fn denote the event
n will not be drawn. For every n∈N, Palayer II has to bet either on En or on Fn. For
every n, if Player II chooses En, he gets 1− d′(n) dollars from Player I if En occurs,
and gives d′(n) dollars to Player I otherwise; if Player II chooses Fn, he gets d′(n) dol-
lars from Player I if Fn occurs, and pays 1− d′(n) dollars to Player I otherwise. Then
the distance D(d; d′) represents the expectation of the random variable total income
of Player II when he plays according to his best strategy. The distance D′ de@ned by
D′(d; d′)= supn∈N |d(n)−d′(n)| seems less natural: for example, for every n∈N, there
are distributions d; d′ such that D′(d; d′)¡1=(n+1), and the probabilities of choosing
an even number according to the distributions d and d′ are respectively, 0 and 1.
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The @rst paradigm taken into consideration, named absolute PAC learning, is in-
dependent of the representation of the class to be learned. We @x once and for all
a countable class D0 such that for every distribution d there are distributions in D0

which are arbitrarily close to d. A natural candidate for the role of D0 is the class
D@n of +nite distributions, i.e. the class of rational-valued distributions which are null
almost everywhere. We @x once and for all a class R@n of standard representations of
distributions of D@n. The criterion of success is the following: the learner � is success-
ful if there is a polynomial p(x) such that for every positive natural number n, for all
d∈D, upon seeing m¿p(n) examples drawn at random according to the distribution
d;� conjectures, with probability �¿1− 1=n, a representation r ∈R@n of a hypothesis
d′ such that D(d; d′)¡1=n.
It is worth noticing that in the absolute PAC learning:

(a) The space of hypotheses need not include the class of distributions D to be learned,
it is only required that for every distribution d∈D there are hypotheses arbitrarily
close to d.

(b) The class of hypotheses need not be included in the class D to be learned, in
other words, the learner can conjecture distributions which are not in D.

(c) The number of examples needed by the learner must be independent of the target
distribution.

We will prove that if a learner PAC learns a class D0 of distributions, he also PAC
learns its closure (wrt to the metric D). So, it is su3cient to assume that the space of
hypotheses contains a dense subset of the class of distributions to be learned.
Our second paradigm, called PAC learning wrt the indexes, strongly depends on the

class of representations of the distributions of the class D to be learned. First of all, we
require that D is countable, that the space of hypotheses R is a set of representations
of exactly those distributions which are in D, and that the learner has always to guess
an hypothesis from R.
The criterion of success is almost as in the case of absolute learning, with the

only exception that the number of examples needed to learn depends not only on the
accuracy and con@dence parameters, but also on the shortest representation of the target
distribution. More precisely, the learner � is successful if there is a polynomial p(x; y)
such that the following holds:
Let d be any distribution of D, let r be the shortest representation of d in R, let

n∈N, n¿0, and let m¿p(n; l(r)), where l(r) denotes the binary length of r. Then,
with probability �¿1 − 1=n, on a sample of m examples drawn at random according
to the distribution d; � conjectures a hypothesis r ∈R for a distribution d′ ∈D such
that D(d; d′)¡1=n.
We also consider a weaker form of PAC learning wrt the indexes, called weak PAC

learning, in which the length l(r) of the shortest representation of the target distribution
is replaced by the GIodel number of r.
In the learning wrt the indexes, the learner can take advantage of the fact that if the

target distribution has only long indexes, then he can use more examples to learn. To
the contrary, he has the disadvantage that he must always conjecture hypotheses which
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are (representations of) distributions in the class to be learned, whereas in the absolute
PAC learning the learner may have a larger class of hypotheses at his disposal.
In Learning Theory, the learner can meet two kinds of obstacles: structural obstacles,

due to the structure of the class to be learned: oracles cannot help to overcome these
obstacles; and computational obstacles, due to the fact that learning is potentially
possible, but it is impossible to @nd an e3cient learning algorithm, or, in some cases,
learning is not algorithmic at all. When learning languages from positive data, we
meet a structural obstacle with the class of all @nite languages plus the language
consisting of all words. This class cannot be learned from positive data, not even by a
non-computable learner. To the contrary, the class of languages which are the graphs
of single-valued total recursive functions cannot be learned because of computational
obstacles: there is a potential learner who learns the class, but such a learner cannot
be simulated by a Turing machine.
Now, when learning classes of distributions wrt the indexes, we do not meet struc-

tural obstacles: indeed, in Section 3, we show that any countable class of distributions
can be PAC learned wrt the indexes by a (possibly non-computable) learner. Moreover,
in Section 5, we show that the class of @nite distributions is PAC learnable wrt the
indexes by means of a P-time learning algorithm. To the contrary, there are computa-
tional obstacles (in Section 5): e.g, if NP �=RP, then there is a class of distributions
that is absolutely PAC learnable using a P-time algorithm, but cannot be learned wrt
to the indexes (according to a suitable representation) by any P-time algorithm, not
even using coins.
The situation is diGerent when dealing with absolute PAC learning: in Section 3 we

@nd a characterization of classes of distributions which are absolutely PAC learnable
(possibly by a non-computable learner), and we show that the class of uniform distri-
butions over @nite sets of natural numbers is not absolutely PAC learnable, not even
by a non-computable learner. Thus, there are also structural obstacles to absolute PAC
learning.
In Section 4 of the paper we examine some particular learning strategies. The @rst

one works in the case of absolute PAC learning, and is suggested by the law of
large numbers. The strategy is the following: on a sample � of random examples,
the learner conjectures the @nite distribution f� such that for every n∈N, f�(n) is
the frequency of the number n relative to �. Such a learner is called the frequentist
learner. We characterize the classes of distributions that are learned by the frequentist
learner. These are those classes D for which there is a polynomial p(x) such that, for
all d∈D and for every positive n∈N there is a set Ad;n ⊆N of cardinality at most
p(n) such that

∑
i∈Ad; n

d(i)¿1− 1=n.
Another approach, which concerns learning wrt the indexes, is named learning by

tests (in Section 6). Roughly, the idea about this strategy is the following: assume that,
for each distribution d in the class D to be learned, we can approximately compute
the probabilities (wrt d) of a @nite number of sets C1 · · ·Cn. Let @nite sequence � of
examples be given. Say that � passes the test for d iG for i=1 · · · n the frequency
of Ci relative to � is su3ciently close to the probability Ci wrt d (we will make the
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words su,ciently close precise in the sequel). The learner conjectures the @rst index r
less than the length of � for a distribution d∈D such that � passes the test for d. This
strategy is successful in the case of weak PAC learning wrt to the indexes, provided
that it is possible to distinguish the distributions of D by means of these tests, i.e.,
whenever the same test can @t only with distributions which are very close each other.
A similar approach for computable PAC learning wrt the indexes in the stronger sense
works if and only if RP=NP.

2. Preliminaries

Throughout the whole paper, N, R; R+; Q and Q+ denote, respectively the set of
natural numbers, the set of real numbers, the set of non-negative real numbers, the set
of rational numbers, and the set of non-negative rational numbers. Seq denotes the set
of @nite sequences of natural numbers, Bseq denotes the set of @nite binary sequences,
and P¡!(N) denotes the family of @nite subsets of N. The symbol ∅ denotes the
empty set (hence, the empty sequence).
The length of a (@nite) sequence " is denoted by lth("). If �∈ Seq, and i¡lth(�),

�i denotes the ith element of �. The sequence whose elements are a1; : : : ; an each in
the order given, is denoted by 〈a1; : : : ; an〉. The symbol ∗ denotes concatenation of
sequences. Note that for every k ∈N, the set {�∈ Seq : lth(�)= k} coincides with Nk .
For all n∈N; l(n) denotes the length of the binary expansion of n. We @x once and

for all a polynomial time bijection ] from Seq onto N whose inverse is still polynomial
time, and such that for �∈ Seq, l(�]) is linear in the sum

∑
i¡lth(�)l(�i).

A distribution on N (for short: a distribution) is a map d from N into R+ such that∑
n∈N d(n)= 1. A distribution is said to be +nite iG range(d)⊆Q+, and d(n)= 0 for

almost all n. The set of all distributions is denoted D∗, whereas the set of all @nite
distributions is denoted D@n.
If d is a distribution and �∈ Seq, we set d(�)=

∏
i¡lth(�) d(�i). If S is a set of

sequences of same length k, we put d(S)=
∑

�∈S d(�). It is clear that d(�) denotes
the probability of drawing � with lth(�) draws according to the distribution d, while
d(S) denotes the probability of choosing a �∈ S with k random draws according to the
distribution d. For all non-empty �∈ Seq; f� denotes the @nite distribution de@ned by

f�(n) =
Card{i ¡ lth(�) : �i = n}

lth(�)
:

The distribution f� is called the frequency distribution relative to �.
Throughout the whole paper, ln(x) and log(x) denote the base e logarithm of x, and

the base 2 logarithm of x, respectively.
For typographic reasons we write exp(x) for ex. We often use the following.

Proposition 2.1. The following inequalities hold:
(a) 1 + x6 exp(x).
(b) If − 1

26x60; then 1 + x¿ exp(2x).
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The probability of the event E is denoted by Pr(E). Throughout the paper; we make
often use of the following well-known result.

Proposition 2.2 (ChernoG’s bounds). Let X1; : : : ; Xm denote m independent random
variables such that for i=1 · · ·m; Pr(Xi=1)=p; and Pr(Xi=0)=1− p. Let Sm=
X1 + · · ·+ Xm. Then for 06+61; the following conditions hold:
• Pr(Sm¿mp+ m+)6 exp(−+2m);
• Pr(Sm¡mp− m+)6 exp(−+2m);
• Pr(|Sm −mp|¿m+)62 exp(−+2m).

As a consequence we obtain that if d is any distribution and E ⊆ N, then Pr(|f�(E)−
d(E)|)¿+)62 exp(−+2lth(�)).

De�nition 2.3. Let D be a countable class of distributions. A representation of D is
a pair R= 〈R; h〉 where R is a set of @nite binary strings, and h is a function from R
onto D.

If 〈R; h〉 is a representation of a countable class D of distributions, and r ∈R, we
say that r is a representation of h(r).

De�nition 2.4. A P-representation of D is a representation R= 〈R; h〉 of D such that
1: R is in P.
2: There is a P-time function g(r; n; x) :R×N×N

g→ Q+ such that for all r ∈R and
for all n; x∈N, n¿0, one has: |h(r)(x)− g(r; n; x)|¡1=n.

De�nition 2.5. Two representations R1 = 〈R1; h1〉, R2 = 〈R2; h2〉 of D are said to be
P-equivalent iG there are P-time computable functions f and g from Bseq into Bseq
which map R1 into R2 and R2 into R1, respectively, such that h2 ◦f|R1 = h1, and
h1 ◦ g|R2 = h2.

The next lemma shows that, modulo P-equivalence, we can replace any representa-
tion R= 〈R; h〉, where R is in P, by one of the form R′= 〈N; h′〉, where N is the set
of (binary representations of ) natural numbers.

Lemma 2.6. Let R= 〈R; h〉 be a representation of a countable class D of distributions
such that R is in P. Then there is a representation of the form R′= 〈N; h′〉 such that
R and R′ are P-equivalent (thus in particular; if R is a P-representation; then R′

also is).

Proof. Let ◦ be a P-time bijection from Bseq onto N such that its inverse ◦−1
is in

turn P-time. Fix Jr ∈R. De@ne, for n∈N,

h′(n) =




h(n◦
−1
) if n◦

−1 ∈ R;

h( Jr) otherwise:
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Now let, for "∈Bseq, f(")= "◦.
Also let, for n∈N,

g(n) =




n◦
−1

if n◦
−1 ∈ R;

Jr otherwise:

Finally, de@ne g(")= Jr for those binary sequences " that are not the binary expansion
of any number.

Clearly, f and g are P-time, and h′◦f|R= h, h ◦ g|N= h′.

De�nition 2.7. We de@ne, for d1; d2 ∈D∗, D(d1; d2)=
∑

x∈N |d1(x)− d2(x)|.

It is readily seen that D is a metric over the space D∗ of all distributions.

Notation 1. For all D0⊆D∗, JD0 denotes the closure of D0 wrt the topology induced
by the metric D.

Note that JD@n =D∗.
We are going to de@ne some paradigms of PAC learning for classes of distributions.

In the tradition of PAC learning, people distinguish between the accuracy parameter
	 and the con@dence parameter 
. This distinction is relevant if one is looking for
optimal bounds to the number of examples needed for learning. However, if one is
only interested in learnability-non-learnability in a polynomial number of examples, one
can safely assume that the con+dence and the accuracy parameters coincide. This
we will do in the sequel.
In order to de@ne the @rst paradigm, namely absolute PAC learning, we need a

preliminary de@nition.

De�nition 2.8. Fix a P-time bijection − from Q+ onto N, whose inverse is in turn
P-time. The canonical representation R@n of the class D@n of @nite distributions is
the unique representation 〈R@n ; h@n〉 of D@n such that if d∈D@n, if d(x)= 0 for all
x =∈{a0 · · · an}, where a0¡ · · ·¡an, and for i=0 · · · n, d(ai)= qi ∈Q+−{0}, then the
unique representation of d in R@n is given by the binary string of r=(〈(〈a0; Jq0〉)] · · ·
(〈an; Jqn〉)]〉)].

De�nition 2.9. Let D be a class of distributions. We say that D is absolutely PAC

learnable if there are a function �(�; n) : Seq×N �→R@n and a polynomial p(x) such
that for all d∈D, for all n¿0, and for all k ¿ p(n), one has

d
({

� ∈ Nk :D(h@n(�(�; n)); d)¿
1
n

})
¡
1
n
:
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In words: if one chooses a sequence � of k¿p(n) natural numbers at random
according to the distribution d, the probability that � on �, n conjectures a d′ such
that D(d; d′)¿1=n is ¡1=n.

De�nition 2.10. D is computably absolutely PAC learnable if the conditions of
De@ntion 2.9 are satis@ed, and, in addition, � is P-time computable.

This paradigm is called absolute PAC learning because it only depends on the class
of distributions and not on the indexing. Note that, since JD@n =D∗, for any distribution
d in the class D to be learned we can @nd d′ ∈D@n arbitrarily close to d. The next
theorem shows that this is exactly what is needed for PAC learning. In other words,
in order to PAC learn a class D of distributions (according to either De@nition 2.9 or
2.10) it is su3cient to PAC learn a dense subset of D.

Theorem 2.11. If � be an algorithm of absolute PAC learning for a class D of
distributions; then � is an algorithm of PAC learning for JD.

Proof. We start from the following Lemma.

Lemma 2.12. If D(d; d0)¡	; then
∑

�∈Nk |d(�)− d0(�)|¡	k.

Proof. Induction on k. If k =1 the claim is easy:
∑

�∈N1 |d(�)−d0(�)|=
∑

x∈N |d(x)−
d0(x)|¡	.
Now suppose

∑
�∈Nk |d(�)− d0(�)|¡	k, and let us prove

∑
�∈Nk+1 |d(�)−d0(�)|¡

	(k + 1). We have

∑
�∈Nk+1

|d(�)− d0(�)|

=
∑
n∈N

∑
"∈Nk

|d(" ∗ n)− d0(" ∗ n)| =
∑
n∈N

∑
"∈Nk

|d(")d(n)− d0(")d0(n)|

=
∑
n∈N

∑
"∈Nk

|d(")d(n)− d(")d0(n) + d(")d0(n)− d0(")d0(n)|

6
∑
n∈N

∑
"∈Nk

d(")|d(n)− d0(n)|+
∑
n∈N

∑
"∈Nk

d0(n)|d(")− d0(")|

=
∑
n∈N

|d(n)− d0(n)|
∑
"∈Nk

d(") +
∑
n∈N

d0(n)
∑
"∈Nk

|d(")− d0(")|

=
∑
n∈N

|d(n)− d0(n)|+
∑
"∈Nk

|d(")− d0(")| ¡ 	+ 	k = 	(k + 1):

This concludes the proof of Lemma 2.12.
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We return to the proof of the Theorem 2.11. By our assumption there are a poly-
nomial q(x) and a learner � such that the following holds: for all d0 ∈D and for all
m¿0, �, on a random sequence � of length q(m) drawn according the distribution
d0, conjectures, with probability �¿1− 1=m, (the code of ) a distribution d1 such that
D(d0; d1)¡1=m.
We want to prove that for all m¿0 and for all d∈ JD, the learner �, given a sequence

of length q(2m) drawn according to the distribution d, conjectures, with probability
�¿1−1=m, a distribution d1 such that D(d; d1)¡1=m. (Note that the bound q(x) turns
into q(2x), but the learning algorithm does not change.)
Let d0 ∈ D such that D(d; d0)¡1=2mq(2m). De@ne

A =
{
� ∈ Seq : lth(�) = q(2m) and D(h@n(�(�; 2m)); d0) ¡

1
2m

}
:

From the hypotheses on D, � and q(x) we get

d0(A) =
∑
�∈A

d0(�) ¿ 1− 1
2m

:

By Lemma 2.12 we have

|d(A)− d0(A)|6
∑
�∈A

|d(�)− d0(�)| ¡ q(2m)
2mq(2m)

=
1
2m

;

therefore,

d(A) ¿ d0(A)− 1
2m

¿ 1− 1
2m

− 1
2m

= 1− 1
m

:

Moreover, if �∈A and h@n(�(�; 2m))=d1, then

D(d; d1) =
∑
x∈N

|d(x)− d1(x)| =
∑
x∈N

|d(x)− d0(x) + d0(x)− d1(x)|

6
∑
x∈N

|d(x)− d0(x)|+
∑
x∈N

|d0(x)− d1(x)| ¡ 1
2mq(2m)

+
1
2m

6
1
2m

+
1
2m

=
1
m

:

So the learner � conjectures, with probability d(A)¿1 − 1=m, a distribution d1 such
that D(d; d1)¡1=m.

We introduce another paradigm of PAC learning which heavily depends on repre-
sentations.

De�nition 2.13. Let D be a countable class of distributions, and let R= 〈R; h〉 be a
representation of D. We say that D is PAC learnable wrt the indexes according to the
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representation R of D iG there are a function �(�; n) : Seq×N �→ R and a polynomial
p(x; y) such that for all d∈D, if Jr is the shortest representation of d, then, for all
n¿0, and for all k ¿ p(l( Jr); n), one has

d
({

� ∈ Nk :D(h(�(�; n)); d)¿
1
n

})
¡
1
n
:

De�nition 2.14. D is computably PAC learnable wrt the indexes according to R iG
the conditions of De@nition 2.13 hold, and in addition the learner � occurring in
De@nition 2.13 is P-time computable.

De�nition 2.15. D is (computably) weakly PAC learnable wrt the indexes according
to R iG the conditions of the De@nition 2.13 hold with (� P-time and) k¿p( Jr◦; n)
(where ◦ is as in Lemma 2.6) instead of k¿p(l( Jr); n).

Lemma 2.16. Let R= 〈R; h〉; R′= 〈R′; h′〉 be P-equivalent representations of a class
D. Then D is (computably) PAC learnable wrt the indexes according to R i6 it is
such wrt R′.

Proof. Let f, g be P-time functions such that h′ ◦f|R= h and h ◦ g|R′ = h′. Let for
every learner �, �+ =f ◦�, and �−= g ◦�. Then, if � (computably) PAC learns
D wrt the indexes according to R, �+ (computably) PAC learns D wrt the indexes
according to R′, and if � (computably) PAC learns D wrt to the indexes relative to
R′, then �− (computably) PAC learns D wrt to the indexes relative to R.

Since many natural countable classes of distributions have a natural representation
R= 〈R; h〉 with R in P, in view of Lemmas 2.6 and 2.16, there is not much loss of
generality if we use representations of the form 〈N; h〉. Whenever we do so, we write
dn for h(n). We also write D= 〈dn : n∈N〉 to mean that we consider a representation
of D of the form 〈N; h〉, and that dn is short for h(n).

3. Non-computable PAC learning

The next result provides for a characterization of non-computable PAC learning.

Theorem 3.1. Let D be a class of distributions. The following are equivalent:
(i) D is (non-computably) absolutely PAC learnable.
(ii) There are a polynomial q(k) and a family {S k

d :d∈D; k ∈N − {0}} of subsets
of Seq such that
(a) For all d∈D; and for all k¿0; S k

d ⊆Nq(k);
(b) For all d∈D; and for all k¿0; d(S k

d )¿1− 1=k;
(c) If d; d′ ∈D and D(d; d′)¿ 1=k; then S k

d ∩ Sk
d′ = ∅.
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Proof. (i)⇒ (ii). Let �(�; k) and p(k) be a learner and a polynomial, respectively,
such that for all d∈D, and for all k¿0, if n¿p(k), then

(3:1:1) d
({

� ∈ Nn :D(d; h@n(�(�; k)))¿
1
k

})
¡
1
k
:

Let q(k)=p(2k), and let

Sk
d =

{
� ∈ Nq(k) :D(d; h@n(�(�; 2k))) ¡

1
2k

}
:

Clearly (a) is satis@ed.
We verify (b). By (3:1:1), d(S k

d )¿1− 1=2k¿1− 1=k.
We verify (c). Argue contrapositively: if �∈ S k

d ∩ Sk
d′ then

D(d; d′)6 D(d; h@n(�(�; 2k))) + D(d′; h@n(�(�; 2k))) ¡
1
2k
+
1
2k
=
1
k
:

(ii)⇒ (i). Let {S k
d :d∈D; k ∈N−{0}} and q(k) satisfy (a), (b) and (c) in (ii). We

de@ne a learner �(�; k) as follows. Fix Jr ∈R@n. If lth(�)¡q(2k), then �(�; k)= Jr.
Otherwise, let " be the sequence constituted of the @rst q(2k) elements of �. If
" =∈ ⋃d∈D S2kd , then �(�; k)= Jr. Otherwise, let �(�; k) be the minimal r ∈R@n for which
there is d′ ∈D such that "∈ S2kd′ , and D(h@n(r); d′)¡1=2k.
Let p(k)= q(2k). Let � be a sequence of length ¿p(k) drawn at random according

to the distribution d∈D. Let " be the sequence consisting of the @rst p(k) elements
of �. By condition (b), "∈ S2kd with probability �¿1−1=2k. So, again with probability
¿1− 1=2k, �(�; k) outputs an r ∈R@n for which there is d′ ∈D such that "∈ S2kd′ , and
D(h@n(r); d′)¡1=2k; therefore, "∈ S2kd ∩ S2kd′ and, by condition (c), D(d; d′)¡1=2k. So

D(h@n(�(�; k)); d)6 D(h@n(�(�; k)); d′) + D(d′; d) ¡
1
2k
+
1
2k
=
1
k
:

Example 3.2. Let, for Y ∈P¡!(N), Y �= ∅,

dY (x) =




1
Card(Y )

if x ∈ Y

0 otherwise:

The class {dY :Y ∈P¡!(N); Y �= ∅} is not absolutely PAC learnable.

Proof. By contradiction we suppose there are a polynomial q(n) and a family {Sn
dY
:Y ∈

P¡!(N); Y �= ∅; n∈N − {0}} of subsets of Seq as in Theorem 3.1. To simplify
notation we write Sn

Y for Sn
dY
. We reach a contradiction using the following claims. Let

Y ÷Z denote the symmetric diGerence of Y and Z (Y\Z)∪ (Z\Y ).

Claim 1. Let M¿1 be given, and let Y; Z ⊆ [1; M ]. If Card(Y ÷Z) ¿ M=n, then
D(dY ; dZ)¿ 1=n.
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Proof.

D(dY ; dZ)¿
∑

i∈Y−Z

1
Card(Y )

+
∑

i∈Z−Y

1
Card(Z)

¿
Card(Y ÷ Z)

M
¿
1
n
:

Claim 2. For all n¿0, and for all Y ⊆ [1; M ], there are at most 2M=2 sets Z ⊆ [1; M ]
such that D(dY ; dZ)¡1=n.

Proof. Any such Z is uniquely determined by Y and Y ÷ Z . Now Y is @xed, and by
Claim 1, the number of possible Y ÷Z is bounded by the number of subsets of [1; M ]
of cardinality 6M=n. For each i there are (Mi ) subsets of [1; M ] of cardinality i. So
there are

∑
i6M

n
(Mi ) subsets of [1; M ] of cardinality 6M=n. Note that

(
1
n

)M=n ∑
i6M

n

(
M

i

)
6
∑
i6M

n

(
1
n

)i
(

M

i

)
6
∑
i6M

(
M

i

)(
1
n

)i

=
(
1 +

1
n

)M

6 exp
(

M
n

)
:

Hence,
∑

i6M
n
(Mi )6nM=n exp(Mn )= 2

M=n(log(e)+log(n)).

Then, for n su3ciently large, we have

∑
i6M

n

(
M

i

)
6 2M=2:

Claim 3. There are at least H =2M=2 subsets Y1 · · ·YH of [1; M ] such that for i �= j,
D(dYi ; dYj)¿1=n.

Proof. There are 2M subsets of [1; M ], and for each such subset Y there are at most
2M=2 sets Z ⊆ [1; M ] such that D(dY ; dZ)¡1=n. Hence, there are at least H =2M=2M=2

= 2M=2 subsets Y1 · · ·YH such that for i �= j, D(dYi ; dYj)¿1=n. This concludes the proof
of Claim 3.
We conclude the proof of Example 3.2.
We can @nd M such that H =2M=2¿Mq(n) (let e.g. M¿(2 q(n))2). Let Y1 · · ·YH be

as in Claim 3. For i; j6H one has
dYi(S

n
Yi
)¿1− 1

n , and, if i �= j, then Sn
Yi
∩ Sn

Yj = ∅.
Now if z =∈ [1; M ], then for i6H one has dYi(z)= 0. Thus, for i=1 · · ·H ,

Sn
Yi
∩ [1; M ]q(n) �= ∅.
Since, for i �= j S n

Yi
∩ Sn

Yj
= ∅, we get Mq(n) =Card[1; M ]q(n)¿H , a contradiction.

Theorem 3.3. Let D= 〈di : i∈N〉 be any countable class of distributions. Then D is
(non-computably) PAC learnable wrt the indexes.
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Proof. Let n¿0 be given. For each i; j such that D(di; dj)¿1=n, let
Cij = {x :di(x)¿dj(x)}. (Thus, Cji= {x :dj(x)¿di(x)}.)
Note that di(Cij)− dj(Cij)=dj(Cji)− di(Cji)¿1=2n.
Let �∈ Seq and n¿0 be given. Let

A�;n =
{
i 6 2lth(�)=32n

2
:∀j ¡ i

(
D(di; dj)¿

1
n

)

⇒
(
di(Cij)− f�(Cij)6

1
4n

)}
:

De@ne

�(�; n) =

{
max(A�;n) if A�;n �= ∅;
0 otherwise:

(Note that we do not claim that � is computable.)
We claim that � PAC learns D wrt the indexes. Let � be drawn at random ac-

cording to the distribution di, and let m= lth(�). It is su3cient to prove that if
m¿32n2(l(i) + ln(n)), then, with probability ¿1 − 1=n, � conjectures an index j
such that D(di; dj)¡1=n. By de@nition, �(�; n) can only output an index j such that
06j62m=32n2 . So, if m¿(32n2)l(i), then i is a possible output of �. Now let E0, E1
be the events de@ned as follows:
E0 : There is j¡i such that D(di; dj)¿1=n and di(Cij)− f�(Cij)¿1=4n.
E1 : There is j such that i¡j¡2m=32n2 , D(di; dj)¿1=n, and for all

h ¡ j; if D(dh; dj)¿
1
n
; then dj(Cjh)− f�(Cjh)6

1
4n

:

If none of E0, E1 occurs, then �(�; n) outputs a j such that D(di; dj)¡1=n. Thus,
we have to upper bound the probability of E0 ∪E1 in order to evaluate the probability
that �’s error is ¿1=n.
By ChernoG’s bound, for each single j¡i one has

Pr
(
di(Cij)− f�(Cij) ¿

1
4n

)
¡ exp

(
− m
16n2

)
:

Thus Pr(E0)6i exp(−m=16n2).
Now for each j such that i¡j¡2m=32n2 and D(di; dj)¿1=n consider the event

E′
j: For all h¡j, if D(dh; dj)¿1=n, then dj(Cjh)− f�(Cjh)61=4n.
Clearly, E′

j implies dj(Cji)−f�(Cji)61=4n. Since dj(Cji)−di(Cji)¿1=2n, E′
j implies

f�(Cji) − di(Cji)¿1=4n. By ChernoG’s bound, this occurs with probability 6exp(−m
=16n2). Since E1 is the union of all possible E′

j, E1 occurs with probability 6(2
m=32n2−

i) exp(−m=16n2). Thus

Pr(E0 ∪ E1)6 (2m=32n2 − i + i) exp
(
− m
16n2

)
= 2m=32n2 exp

(
− m
16n2

)
:
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Thus

Pr(E0 ∪ E1)6 exp
( m
32n2

− m
16n2

)
= exp

(
− m
32n2

)
:

It follows that if m¿32n2 ln(n), and m¿32n2l(i), then with probability ¿1 − 1=n �
conjectures a j such that D(di; dj)¡1=n. So, for all n; i, 32n2(l(i) + ln(n)) examples
su3ce to identify di with probability ¿1− 1=n and with error ¡1=n.

4. Absolute computable PAC learning: a frequentist approach

In the most natural examples of absolutely PAC learnable classes of distributions
we met, the best strategy seems to be the frequentist one, which consists in guessing,
on every sequence � of examples, the @nite distribution f�. (There are examples of
absolutely computably PAC learnable classes of distributions which cannot be learned
by means of this strategy, but these classes are very ad hoc ones.)

De�nition 4.1. The frequentist learner is the learner �f de@ned, for every �∈ Seq and
for every k ∈N − {0}, by �f(�; k)= (h@n)−1(f�) (cf. De@nition 2.8 for the de@nition
of h@n).

Clearly, the frequentist learner works in P-time.

De�nition 4.2. A class D of distributions is said to be polynomially localized iG there
exists a polynomial p(x) such that, for all d∈D and for all n∈N − {0}, there exists
Ad;n ⊆N with Card(Ad;n)6p(n), and

∑
x∈Ad; n

d(x)¿1− 1=n.

Theorem 4.3. Let D be a class of distributions. The following are equivalent:
(i) D is computably absolute PAC learnable by the frequentist learner.
(ii) D is polynomially localized.

Proof. (ii)⇒ (i). Let d∈D, n∈N−{0}, and Ad;n ⊆N such that Card(Ad;n)6p(8n),
and

∑
x∈Ad; n

d(x)¿1− 1=8n.
Applying the ChernoG’s bound to the event “x∈Ad;n”, we get

Pr



∣∣∣∣∣∣
∑

x∈Ad;n

f�(x)−
∑

x∈Ad;n

d(x)

∣∣∣∣∣∣¿
1
8n


6 2 exp

(
− 1
64n2

lth(�)
)

:

Hence

Pr


∑

x∈Ad;n

f�(x)6 1− 1
4n


6 2 exp

(
− 1
64n2

lth(�)
)
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which implies

Pr


∑

x =∈Ad;n

f�(x)¿
1
4n


6 2 exp

(
− 1
64n2

lth(�)
)

:

Applying ChernoG’s bound, for all x∈Ad;n, we get

Pr
(
|f�(x)− d(x)|¿ 1

4np(8n)

)
6 2 exp

(
− lth(�)
16n2(p(8n))2

)
:

Let q(n)= 64n2 + 16n2(p(8n))2 and let E be the event

either
∑

x =∈Ad;n

f�(x)¿
1
4n

or ∃x ∈ Ad;n : |f�(x)− d(x)|¿ 1
4np(8n)

:

We get

Pr(E)6 2 exp
(
− lth(�)
64n2

)
+ p(8n)2 exp

(
− lth(�)
16n2(p(8n))2

)

6 (2 + 2p(8n)) exp
(
− lth(�)

q(n)

)
:

If lth(�)¿q(n)(ln(n) + ln(2 + 2p(8n))), then Pr(E)¡1=n.
On the other hand, if E does not occur, we have∑

x∈N

|f�(x)− d(x)| =
∑

x∈Ad;n

|f�(x)− d(x)|+
∑

x =∈Ad;n

|f�(x)− d(x)|

¡ p(8n)
1

4np(8n)
+
∑

x =∈Ad;n

f�(x) +
∑

x =∈Ad;n

d(x) ¡
1
4n
+
1
4n
+
1
8n

¡
1
n
:

So D(d; f�)¡1=n. Thus, if lth(�)¿q(n)(ln(n) + ln(2 + 2p(8n))), then

Pr
(
D(d; f�)¿

1
n

)
¡
1
n
:

(i)⇒ (ii). Suppose that D is not polynomially localized. Let, by contradiction, g(n)
be a polynomial such that for all d∈D, the probability of drawing at random wrt the
distribution d a sequence � of length at least g(n) such that D(d; f�)¿1=n is less than
1=n.
Since D is not polynomially localized, there exist d∈D and Jn∈N such that, for all

A⊆N of cardinality at most g( Jn), one has

∑
x∈A

d(x)6 1− 1
Jn
:

Let �∈ Seq such that lth(�)= g( Jn), and let A= {x :f�(x) �=0}.
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Clearly, Card(A)6g( Jn), therefore,
∑

x =∈A d(x)¿1= Jn:
Since

∑
x =∈A f�(x)= 0, we get D(f�; d)¿1= Jn.

As this result does not depend on the choice of �∈Ng( Jn), the frequentist learner
does not PAC learn D, a contradiction.

Example 4.4. Let, for every non-empty subset X of N, CX =
∑

n∈X
1
2n+1 , and let, for

all k ∈N:

dX (k) =




1
CX 2k+1

if k ∈ X;

0 otherwise:

Then, the class D= {dX :X ⊆N; X �= ∅} is an absolutely computably PAC learnable
class of distributions.

Proof. Let X ⊆N, X �= ∅ be given. Let Ji be the minimal element of X . Then CX¿
1=2Ji+1. Hence, for all i∈N, dX (i)62

Ji=2i.
Now let m= Ji + n. One has

∑
i¿m

dX (i)6
2Ji

2m
=
1
2n

¡
1
n
:

Thus,
∑

Ji6i6Ji+n dX (i)¿1 − 1=n. It follows that, for all X ⊆N, X �= ∅, and for all
n∈N − {0}, there is a set AX;n of 6n elements such that

∑
i∈AX; n

dX (i)¿1− 1=n.
Hence, D is polynomially localized, therefore, by Theorem 4.3, it is absolutely com-

putably PAC learnable.

Remark. Note that D= {dX :X �= ∅; X ⊆N} has the following properties:
(i) D is uncountable;
(ii) for all X �= ∅, X ⊆N, there is dX ∈D such that X = {n :dX (n) �=0}.

5. Computable PAC learning wrt the indexes

In this section, we prove that also in the computable case PAC learning wrt the
indexes is quite diGerent from absolute PAC learning. We start with a result which is
in sharp contrast with Example 3.2.

Theorem 5.1. The class D@n of +nite distributions is computably PAC learnable wrt
the indexes according to the canonical representation (de+ned in De+nition 2:8).

Proof. We claim that the frequentist learner �f PAC learns D@n wrt the indexes.
Let n¿0 be given, let � be drawn at random according to any distribution d∈D@n,

let m= lth(�), and let r be the code of d. Let Sd= {x :d(x)¿0}. By ChernoG’s bounds,
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for each x∈ Sd we have

Pr
(
|d(x)− f�(x)|¿ 1

nl(r)

)
6 2 exp

(
− m

n2(l(r))2

)
:

Now it follows from the de@nition of R@n that Card(Sd)6l(r). Thus the probability
that there is an x∈ Sd such that |d(x) − f�(x)|¿1=nl(r) is at most 2l(r) exp(−m=
n2(l(r))2).
If m¿n2l(r)2(ln(l(r)) + ln(n) + ln(3)), then with probability ¿1 − 2l(r) exp(−(ln

(l(r)) + ln(n) + ln(3)))= 1 − 2=3n¿1 − 1=n we have that for all x∈ Sd, |d(x) −
f�(x)|¡1=nl(r).
Now if d(x)= 0, then with probability 1 one has f�(x)= 0.
It follows that with probability ¿1− 1=n one has

D(d; f�) =
∑
x∈Sd

|d(x)− f�(x)| ¡ Card(Sd)
nl(r)

¡
1
n
:

This completes the proof.

In general, the frequentist learner cannot learn wrt the indexes, because it is possible
that he is not allowed to guess any @nite distribution. A frequentist approach to learning
wrt the indexes would be the following: given a sequence � of examples, the learner
tries to make a guess from the space of hypotheses which is as close as possible to
f�. However, in general @nding such a guess is not feasible in P-time.
In this section, we investigate such strategy of learning, and we connect it with the

NP=RP problem. We start from a positive result concerning weak PAC learning.

Theorem 5.2. Any polynomially localized class D of distributions having a
P-representation is computably weakly PAC learnable wrt the indexes.

Proof. Let D= 〈di : i∈N〉 be as in the statement of the present theorem, and let
h(i; x; n) be a P-time computable function such that for all i; x; n∈N; n¿0; |h(i; x; n)−
di(x)|¡1=n. Let p(n) be a polynomial such that for all i; n∈N, n¿0, there is Ai; n ⊆ N
such that

Card(Ai;n)6 p(n); and
∑
x∈Ai;n

di(x) ¿ 1− 1
n
:

We can suppose wlog that p(n)¿2n. Let di ∈D be given. We know (Theorem 4.3)
that there is a polynomial q(x) such that for all k¿q(n),

di

({
� ∈ Seq : lth(�) = k and D(di; f�)¿

1
n

})
¡
1
n
:

Now let r(n)= (p(6n))2; s(n)= q(r(n)). If k¿s(n), then with probability ¿1−1=r(n),
whenever a � of length k is chosen according to the distribution di, one has
D(di; f�)¡1=r(n).



54 L. Magnoni et al. / Theoretical Computer Science 299 (2003) 37–63

We show that this implies that whenever dj is such that for all x∈ range(�); |f�(x)−
dj(x)|¡1=r(n); D(di; dj)¡1=n. First of all, with probability ¿1− 1=r(n), one has

f�(Ai;6n) ¿ di(Ai;6n)− 1
r(n)

¿ 1− 1
6n

− 1
r(n)

¿ 1− 1
4n

:

Let range(�)= {x∈N :f�(x) �=0}. Let Ai; n(�)=Ai;6n ∩ range(�). Clearly, f�(Ai; n(�))
=f�(Ai;6n)¿1− 1=4n. Again with probability ¿1− 1=r(n), we obtain that, if djf∈D

is such that for all x∈ range(�), |f�(x)− dj(x)|¡1=r(n), then

(5:2:1)
∑

x∈Ai;n(�)

|f�(x)− dj(x)| ¡ 1
p(6n)

:

(5:2:2) dj(Ai;n(�)) ¿ f�(Ai;n(�))− 1
p(6n)

¿ 1− 1
4n

− 1
p(6n)

¿1− 1
3n

; and

dj(N − Ai;n(�)) ¡
1
3n

:

(5:2:3) D(dj; f�)6
∑

x∈Ai;n(�)

|f�(x)− dj(x)|+ dj(N − Ai;n(�))

+f�(N − Ai;n(�)) ¡
1

p(6n)
+
1
3n
+
1
4n
6

2
3n

:

(5:2:4) D(di; dj)6 D(di; f�) + D(f�; dj) ¡
1
n
:

Summing up, we have shown the following:
Fact (5.2.5). If we choose a sequence � of length ¿s(n) according to the distribution

di, then, with probability ¿1−1=r(n), D(f�; di)¡1=r(n), and, whenever dj is such that
for all x∈ range(�), |f�(x)− dj(x)|¡1=r(n), one has D(di; dj)¡1=n.
Now let

B�;n =
{
j ¡ lth(�) :∀x ∈ range(�)|f�(x)− h( j; x; 8r(n))| ¡ 1

2r(n)

}
:

De@ne the following learner

�(�; n) =

{
min(B�;n) if B�;n �= ∅
0 otherwise:

Clearly, � is P-time. Moreover, once B�;n �= ∅, �(�; n) outputs a j∈B�;n. Therefore
for all x∈ range(�) we have

(5:2:6) |f�(x)− dj(x)|6 |f�(x)− h(j; x; 8r(n))|+ |dj(x)− h(j; x; 8r(n))|

¡
1

2r(n)
+

1
8r(n)

¡
1

r(n)
:
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By Fact (5.2.5), if � is chosen at random according to the distribution di, and if
lth(�)¿s(n), then, with probability ¿1 − 1=r(n) we have D(f�; di)¡1=r(n), and so
we have

(5:2:7) D(d�(�;n); di) ¡
1
n
:

Now we show that D(f�; di)¡1=4r(n) implies that B�;n �= ∅, with probability ¿1−
1=4r(n). Let t(i; n)= i + q(4r(n)). Clearly, t(i; n)¿s(n). If we choose a sequence �
of length ¿t(i; n) at random according to the distribution di, then with probability
¿1− 1=4r(n) we obtain D(f�; di)¡1=4r(n). Hence, for all x∈ range(�),

|f�(x)− h(i; x; 8r(n))|6 |f�(x)− di(x)|+ |di(x)− h(i; x; 8r(n))|

¡
1

4r(n)
+

1
8r(n)

¡
1

2r(n)
:

Since i¡lth(�), with probability ¿1 − 1=4r(n); i∈B�;n, and B�;n �= ∅. So with prob-
ability ¿1 − 1=4r(n); �(�; n) outputs a j∈B�;n, and by (5.2.7) with probability
¿1− 1=4r(n)− 1=r(n)¿1− 1=n, such a j also satis@es D(di; dj)¡1=n. So D is com-
putably weakly PAC learnable wrt the indexes.

We would like to extend Theorem 5.2 to computable learning wrt the indexes. However,
we will prove that this claim is nearly equivalent to NP=RP. This is contrast with the
case of absolute PAC learning: being polynomially localized is a su3cient condition
for absolute computable PAC learnability in Theorem 4.3.

De�nition 5.3. Let D; h(i; x; n); r(n), etc. be as in the proof of Theorem 5.2. We
de@ne, for �∈ Seq and for n∈N − {0},

C�;n =
{
i 6 2lth(�) :∀x ∈ range(�)|f�(x)− h(i; x; 8r(n))| ¡ 1

2r(n)

}

2(�; n) =

{
min(C�;n) if C�;n �= ∅
0 otherwise:

Notice that, due to the presence of a not logarithmically bounded 3 operator in its
de@nition, 2 might fail to be in P. (2lth(�) might have more or less the same size
as �.)

Lemma 5.4. Let 2 as in De+nition 5:3; and let D; h(i; x; n); r(n) etc. be as in
Theorem 5:2.
For all n; i∈N; n¿0; if � is a sequence of q(4r(n)+l(i)) examples chosen accord-

ing to the distribution di; then with probability ¿1−1=n; one has D(d2(�; n); di)¡1=n.
Thus; if 2 is P-time; then D is computably PAC learnable wrt the indexes.
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Proof. If lth(�)¿l(i) + 1, then 2lth(�)¿2l(i)¿i. Hence i is a possible output of the
function 2 introduced in De@nition 5.3. Thus, imitating the proof of Theorem 5.2
with 2 in place of � and C�;n in place of B�;n, we see that if � is chosen at ran-
dom according to the distribution di and lth(�)¿q(4r(n)+ l(i)), then with probability
¿1− 1=n we have D(d2(�; n); di)¡1=n.

Corollary 5.5. If P=NP; then the learner 2 introduced in De+nition 5:3 is P-time
computable; therefore; every polynomially localized class of distributions D having a
P-representation is computably PAC learnable wrt the indexes.

Proof. Let O(a; b; n; �) be the oracle de@ned by

O(a; b; n; �) ≡ ∃i ∈ [a; b]
(
∀x ∈ range(�) |f�(x)− h(i; x; 8r(n))| ¡ 1

2r(n)

)
;

where a; b range over [0; 2lth(�)]. Then, one can compute 2 by a binary search using
lth(�) calls to the oracle O(a; b; n; �). Since O(a; b; n; �) is in NP, if P=NP, then 2
is P-time.

Lemma 5.6. Suppose that NP=RP. Then the learner 2 introduced in De+nition 5:3
can be computed in polynomial time by a probabilistic recursive function. In other
words; there are a probabilistic recursive function 6(�; n; ") : Seq× (N − {0})×Bseq
6→N which works in time polynomial in n; l(�]); l(") and a polynomial Q(x; y) such
that; whenever lth(")¿Q(lth(�); n); with probability ¿1 − 1=n; one has 6(�; n; ")=
2(�; n).

Proof. Let 8(a; b; n; �; ") : N2× (N − {0})× Seq×Bseq 8→{0; 1} be a probabilistic re-
cursive function which works in P-time in a; b; n; l(�]); lth("), and let R(a; b; n; x) be
a polynomial such that, whenever lth(")¿R(a; b; n; lth(�)), with probability
¿1− 1=2n lth(�), the function 8(a; b; n; �; ") gives the same answer as O(a; b; n; �).
We can simulate the computation of 2(�; n) replacing each call to the oracle O(a; b;

n; �) (lth(�) calls in total) by a computation of 8(a; b; n; �; "), where " is a binary
sequence of length at least R(a; b; n; lth(�)), chosen with lth(") random draws by means
of a fair coin. Note that l(a) and l(b) are 6l(�]). So, the whole computation is P-time
in n and l(�]).
Let � be the probability that 8 gives the same answer to each call as O (i.e. that 8

always gives the correct answer). By Proposition 2.1 we have

� ¿
(
1− 1

2n lth(�)

)lth(�)

¿
(
1− 1

2n lth(�)

)(−2n lth(�))(−1=2n)

¿ exp
(
−1

n

)
¿ 1− 1

n
:

Now, consider the algorithm 6(�; n; ") that simulates the behavior of 2(�; 2n) by
replacing each call to the oracle O(a; b; 2n; �) by a computation of 8(a; b; 2n; �; ").
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Again, the computation is polynomial in l(�]) and n. Moreover, with probability
¿1 − 1=2n; 6(�; n; ") simulates the function 2(�; 2n). Let r(n) and q(x) be as in
Lemma 5.4. If � is chosen according to the distribution di, and if lth(�)¿q(4r(2n) +
l(i)), then, by Lemma 5.4, with probability ¿1− 1=2n, one has D(di; d2(�;2n))¡1=2n.
Thus the probability that either our algorithm fails to simulate 2(�; 2n), or

D(di; d2(�;2n))¿1=2n is less than 1=2n+ 1=2n=1=n.
So, with probability ¿1− 1=n, our algorithm computes a j s.t. D(di; dj)¡1=2n.

As an immediate consequence we obtain

Theorem 5.7. If NP=RP; then every polynomially localized P-representable class of
distributions is computably PAC learnable wrt the indexes by a probabilistic recur-
sive function. In other words; there are a probabilistic recursive function 6(�; "; n)
and polynomials S(x; n); T (y; n) such that; whenever � is chosen according to the dis-
tribution di; lth(�)¿S(l(i); n); and " is a binary sequence of length ¿T (lth(�); n)
chosen at random using a fair coin; with probability ¿1− 1=n; 6(�; "; n) outputs a j
such that D(di; dj)¡1=n.

One might ask whether one can strengthen Theorem 5.7, proving that if NP=RP,
then any polynomially localized P represented class of distributions is computably PAC
learnable wrt to the indexes by a usual recursive function (i.e., by one which works
without coins). We prove that this is true under a rather natural additional assumption.

De�nition 5.8. A class D of distributions is said to be atomless iG there is a real
number �¡1 such that for all d∈D and for all n∈N one has d(n)¡�.

Theorem 5.9. Let D be as in Theorem 5:7; and suppose that in addition D is atomless.
If NP=RP; then D is computably PAC learnable wrt the indexes (by means of a
usual recursive function).

Proof. The idea is that we can simulate with high probability a su3ciently long se-
quence of coin Oips by means of a sequence of random examples which is only polyno-
mially longer. We proceed as follows. We ask examples in pairs: a0; a1; · · · ; a2n; a2n+1
until we get a2n �= a2n+1. As soon as we get such a pair a2n �= a2n+1, if a2n¡a2n+1
we add a 0 to the coin sequence; if a2n¿a2n+1 we add a 1. Since the probability
of drawing a number a2n followed by a diGerent number a2n+1 equals the probability
of drawing a2n+1 followed by a2n, 0 and 1 have the same probability. Moreover, for
every n, the probability of the existence of an i6n such that a2i �= a2i+1 is ¿1 − �n.
Thus, given natural numbers h; k, the probability that for k times one gets one bit upon
seeing at most 2h examples is ¿(1− �h)k . If h¿ ln(2)= ln(1=�), then �h61=2, and by
Proposition 2.1 (1−�h)k¿ exp(−2k�h). If we need such a probability to be ¿1−1=m,
it is su3cient that exp(−2k�h)¿ exp(−1=m), i.e., that h¿ ln(2mk)= ln(1=�). Thus,
in order to obtain a coin sequence of length at least k with probability ¿1 − 1=m,
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it is su3cient to ask r examples, where r is given by

(5:9:1) r = 2k
ln(2mk)
ln(1=�)

:

Now for any n; i∈N, the length k of the coin sequence needed by the learner in
Theorem 5.7 in order to identify a distribution di ∈D with an error ¡1=2n and with
probability ¿1 − 1=2n is polynomial in n and in l(i), say, k =P(n; l(i)). Letting, in
(5.9.1), m=2n and k =P(n; l(i)), we obtain that after

Q(n; l(i)) = 2P(n; l(i))
ln(4nP(n; l(i)))

ln(1=�)

examples, with probability ¿1−1=2n a coin sequence of the desired length P(n; l(i)) is
produced. But in this case the learner identi@es di with an error ¡1=2n with probability
¿1− 1=2n. So, the probability that either a coin sequence of the desired length is not
produced, or the learner fails to identify di with an error ¡1=2n is ¡1=n.

We are going to prove the converse of Theorem 5.7 that is

Theorem 5.10. If NP �=RP; then there is a P-representable polynomially localized
atomless class of distributions; which is not computably PAC learnable wrt the
indexes; not even by a probabilistic P-time recursive function.

Proof. Let P(x)≡∃y6x R(x; y), be any NP complete predicate, where R is in P.
Consider a P-time computable bijection • from N2 onto N whose inverse (:1(x); :2(x))
is in turn in P. Also, assume that • is increasing in both arguments.
Let di be de@ned as follows

di(x) =




1
2 if x = :1(i);

1
2 if x = :1(i) + 1; :2(i)6 :1(i) and R(:1(i); :2(i));

1
2 if x = :1(i) + 2; :2(i)6 :1(i) and ¬R(:1(i); :2(i));

1
2 if x = :1(i) + 3; and :2(i) ¿ :1(i);

0 otherwise:

Let D= 〈di : i∈N〉 and h(i)=di. Clearly, 〈N; h〉 is a P representation of D. Moreover
D is polynomially localized and atomless. Note that for all i∈N; P(i) is true iG there
exists such a distribution d∈D that d(i)= 1=2 and d(i + 1)=1=2.
To prove the claim, it is su3cient to show that, if D is computably PAC learn-

able wrt the indexes by a probabilistic P-time recursive function (according to the
representation 〈N; h〉 of course), then P(x) is in RP, therefore NP=RP. Let 6(�; "; n)
be a probabilistic recursive function, and let S(x; n); T (y; n) be polynomials such that,
if � is chosen at random according to the distribution di, if lth(�)¿S(l(i); n) and
lth(")¿T (lth(�); n), then with probability ¿1 − 1=n 6(�; "; n) outputs a j such that
D(di; dj)¡1=n.



L. Magnoni et al. / Theoretical Computer Science 299 (2003) 37–63 59

We de@ne a probabilistic recursive function ;(n; "; k) and a polynomial U (x; k) such
that if lth(")¿U (l(n); k), then ;(n; "; k) decides P(n) in time polynomial in l(n); k,
with probability ¿1−1=k. ;(n; "; k) is de@ned as follows. Suppose lth(")¿S(l((n; n)•);
k)+T (S(l((n; n)•); k); n). Use the @rst S(l((n; n)•); k) bits of " to simulate S(l((n; n)•);
k) many examples chosen according to a distribution d(n; i)• s.t. i6n and R(n; i)
(assuming that such an i exists). In other words, let, for j6S(l((n; n)•); k), �j = n
if "j =0 and �j = n+ 1 if "j =1. Note that if j; j′6n, if R(n; j) and R(n; j′) are both
true, then d(n; j)• =d(n; j′)• . Then, use the remaining bits to get a binary sequence =
(obtained by deleting the @rst S(l((n; n)•); k) bits of ") of length ¿T (lth(�); n).
Finally, compute 6(�; =; k). If :2(6(�; =; k))6n, check whether R(n; :2(6(�; =; k))) holds.
If so, then ∃y6n R(n; y), therefore P(n) holds. If there exists no distribution d(n; i)•
such that i6n and R(n; i), 6 never outputs h such that :2(h)6n and R(n; :2(h)).
Therefore, if P(n) does not hold, then our algorithm gives the correct answer with
probability 1. To the other direction, if there is a j6n such that R(n; j), then �
simulates S(l((n; n)•); k)¿S(l((n; j)•); k) examples chosen according to the distribu-
tion d(n; j)• . Therefore, with probability ¿1 − 1=k, 6(�; =; k) is an index h such that
D(d(n; j)• ; dh)¡1=k. If k¿2, the last inequality implies D(d(n; j)• ; dh)= 0. Thus we must
have :2(h)6n and R(n; :2(h)), i.e. R(n; :2(6(�; =; k))).
Our probabilistic algorithm works in time polynomial in l(n); k, and with probability

¿1− 1=k gives the correct answer to the NP question: “does P(n) hold”?

6. Learning by tests

The frequentist learner fails to identify classes of distributions that are not polyno-
mially localized. Many of such classes are computably PAC learnable wrt the indexes.
A trivial example is the following: let

> =
∑
n∈N

1

(n+ 2) ln2(n+ 2)
; and let d(n) =

1

>(n+ 2) ln2(n+ 2)
:

Clearly, the class D≡{d} is PAC learnable wrt the indexes (it is su3cient to guess
an index for d on any sequence of examples), but not polynomially localized. The
problem with the frequentist learner is that he does not take account of the space of
hypotheses, and, if the class of distributions is not polynomially localized, he needs
too many examples to reach a good approximation of the target distribution. In this
section, we present an alternative learning strategy, that takes account of the space of
hypotheses.
We start from an example: suppose we are given two distributions d1, d2, both not

polynomially localized, but such that the probabilities of choosing an even number
by a draw according to the distributions d1 and d2 are 1

3 and
2
3 , respectively. Then,

the frequentist learner fails to learn {d1; d2} by Theorem 4.3, even though there is
an obvious learning algorithm: count the number E of examples consisting of even
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numbers and the number O of examples consisting of odd numbers: if E¡O, conjecture
d1. Otherwise, conjecture d2.
Trying to generalize this example, we introduce the notion of test. The intuitive idea

is that a test for a distribution d is a @nite sequence of sets C1; : : : ; Ck such that we
are able to compute approximations of d(C1); : : : ; d(Ck). Clearly, once we know a test
C1; : : : ; Ck for d, it is reasonable to conjecture d on a sequence � of examples only if
for i=1 · · · k the frequence of Ci relative to � is su3ciently close to our approximation
of d(Ci). It is also intuitively clear that learning by tests is possible whenever for each
distribution d∈D we have a test C1; : : : ; Ck for d such that, if d′ ∈D is such that for
i=1; : : : ; k d′(Ci) is very close to d(Ci), then d′ is very close to d. In attempting to
formalize these intuitive ideas, we introduce the following de@nitions.

De�nition 6.1. Let d be a distribution. Let n∈N − {0}. A n test for d is a system
of the form "= 〈〈Ci : i=1; : : : ; k〉; g(i)〉 such that for all i6k, Ci is a set of natural
numbers, and |g(i)− d(Ci)|¡1=2n.
Let �∈ Seq. We say that � passes the n test " iG, for all i6k we have |f�(Ci) −

g(i)|¡1=n.

De�nition 6.2. A uniform P test for a class D= 〈di : i∈N〉 of distributions is a system
T= 〈〈〈Ci

jn : i6p(j; n)〉 : j; n∈N; n¿0〉; g(j; i; n)〉, where p(j; n) is a polynomial, such
that the following conditions hold:
• For all j; n∈N, n¿0, 〈〈Ci

jn : i6p(j; n)〉; ?i:g(j; i; n)〉 is a n test for dj (called the
(j; n)th test of T);

• g is P-time computable;
• The relation R(j; i; n; x)≡ i6p(j; n) and x∈Ci

jn is in P.

Note that, if we are given a uniform P test T, for all j, n and for all �∈ Seq, such
that lth(�)¿j and lth(�)¿n, we can determine by a P-time computation whether or
not � passes the (j; n)th test of T.

De�nition 6.3. Let D and T be as in De@nition 6.2. We say that T is discriminating
for D iG there is a k ∈N such that for all j; n∈N, n¿0, the following holds: for all
distribution dr , if for all i6p(j; n)|dr(Ci

jn)− g(j; i; n)|¡2=n, then D(dj; dr)¡ k
√
1=n.

Theorem 6.4. Assume that there is a uniform P test T which is discriminating for the
class D= 〈di : i∈N〉 of distributions. Then D is computably weakly PAC learnable
wrt the indexes.

Proof. Let T= 〈〈〈Ci
jn : i6p(j; n)〉 : j; n∈N; n¿0〉; g(j; i; n)〉. We de@ne a PAC learn-

ing algorithm � as follows. Given n∈N and �∈ Seq let �(�; n) be the minimal
i6lth(�) such that � passes the (i; nk)th test of T, if such an i exists, and 0
otherwise.
Clearly, � is a P-time algorithm. We prove that � weakly PAC learns D.
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Let � be a sequence drawn at random according to the distribution di ∈D. We de@ne
the events E0 and E1 as follows:

E0 :∃j ¡ i
(
� passes the (j; nk)th test of T and D(di; dj)¿

1
n

)
:

E1 : � does not pass the (i; nk)th test of T:

Clearly, if none of E0, E1 occurs, then D(di; d�(�;n))¡1=n.
Now we bind the probability of E0. Let j¡i be an index such that

D(dj; di)¿1=n= k
√
1=nk . By our assumptions, there is h6p(j; nk) such that |di(Ch

jnk )−
g(j; h; nk)|¿2=nk .
Since |di(Ch

jnk )−g(j; h; nk)|6|di(Ch
jnk )−f�(Ch

jnk )|+|f�(Ch
jnk )−g(j; h; nk)|, if � passes

the (j; nk)th test of T, then |di(Ch
jnk )−f�(Ch

jnk )|¿1=nk . By ChernoG’s bound, for any

@xed j; h this occurs with probabilty 62 exp(−lth(�)=n2k).
So, Pr(E0)62ip(i; nk) exp(−lth(�)=n2k).
Next, we bind Pr(E1). If E1 occurs, then, for some h6p(i; nk), one has

|f�(Ch
ink )− g(i; h; nk)|¿1=nk . Now

|f�(Ch
ink )− g(i; h; nk)|6|f�(Ch

ink )− di(Ch
ink )|+ |di(Ch

ink )− g(i; h; nk)|. Moreover, by the
de@nition of uniform P-test (cf. De@nition 6.2), one has
|di(Ch

ink )− g(i; h; nk)|¡1=2(nk). It follows that |f�(Ch
ink )− di(Ch

ink )|¿1=2nk .
By ChernoG’s bounds, for any @xed h, the probability of this is bounded by
2 exp(−lth(�)=4n2k). So Pr(E1)62p(i; nk) exp(−lth(�)=4n2k). We conclude that

Pr(E0 ∪E1)6 2ip(i; nk) exp
(
− lth(�)

n2k

)
+ 2p(i; nk) exp

(
− lth(�)
4n2k

)
:

Let q(i; n)= 2p(i; nk)(i + 1), r(n)= 4n2k . One has

Pr(E0 ∪E1)6 q(i; n) exp
(
− lth(�)

r(n)

)
:

So, if lth(�)¿r(n)(ln(q(i; n)) + ln(2n)), one has

Pr(E0 ∪E1)6
1
2n

¡
1
n
:

Since if none of E0, E1 occurs, then D(di; d�(�; n)), � weakly PAC learns D.

We may ask whether from the presence of a discriminating uniform P test for the
class D of distributions we can also infer the computable PAC learnability (and not
simply weak learnability) of D. The learning algorithm � de@ned in the proof of
Theorem 6.4 is P-time, but requires a number of examples polynomial in i (and not
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just in l(i)) in order to PAC learn di. One is tempted to replace � by the algorithm
@ de@ned below.

De�nition 6.5. Let I�; n= {j62lth(�) : � passes the (j; nk)th test of T}. We de@ne

@(�; n) =

{
min(I�;n) if I�;n �= ∅
0 otherwise:

The algorithm @ might fail to be P time for two reasons: the @rst one is that, since i is
only assumed to be bounded by 2lth(�) and not simply by lth(�), checking the frequency
of all Ch

jnk (a number polynomial in 2lth(�)) might not be feasible in time polynomial

in l(�]), even if n6lth(�). We can overcome this di3culty introducing a variant of
the concept of uniform P test.

De�nition 6.6. A sharply bounded uniform P tests for D is a system de@ned as in
De@nition 6.2 with the only exception that p(j; n) is replaced by p(l(j); n).

Note that, if T= 〈〈〈Ch
jn : h6p(l(j); n)〉 : j; n∈N; n¿0〉; g(j; h; n)〉, then for all

�∈Seq such that lth(�)¿n, and for all j62lth(�), checking whether or not � passes
the (j; nk)th test of T is polynomial in lth(�), n. Even if we assume that in De@nition
6.5 T is a sharply bounded uniform P test (and not simply a uniform P test), there
is another reason why @ might fail to be P time computable, namely, the presence
of a non-logarithmically bounded 3 operator (i.e., one bounded by 2lth(�)). In this re-
spect, we have the same situation we met in Section 5: if P=NP and T is a sharply
bounded uniform discriminating P test for D, then the algorithm @ de@ned in Def-
inition 6.5 is P-time and PAC learns D wrt the indexes. If NP=RP, then we can
replace @ by a probabilistic recursive function that works in P-time and PAC learns
D. Such a probabilistic recursive function can be replaced by a P time computable
function if, in addition, the class D to be learned is atomless. Proofs are quite similar
to those of Theorems 5.7 and 5.9. However, if NP �=RP, then the class of distributions
de@ned in the proof of Theorem 5.10 is not computably PAC learnable, even though
it is atomless, and there is a sharply bounded discriminating uniform P test for it.
Summing up, we can conclude

Theorem 6.7. (a) If NP=RP; then every class D of distributions for which there is
a sharply bounded discriminating uniform P test is computably PAC learnable wrt
the indexes by a probabilistic recursive function.
(b) If NP=RP; then every D as in (a); which; in addition; is atomless; is com-

putably PAC learnable wrt the indexes.
(c) If NP �=RP; there is an atomless class D; admitting a sharply bounded discrim-

inating uniform P test; which is not computably PAC learnable wrt the indexes; not
even by a probabilistic recursive function.
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