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a b s t r a c t

This paper discusses the dimensions of spline spaces over T-meshes of low degree.
Two new concepts are proposed: an extension of T-meshes and spline spaces with
homogeneous boundary conditions. In the dimensional analysis, the key strategy is linear
space embedding with the operator of the mixed partial derivative. A lower bound
on the dimension of the biquadratic spline spaces over general T-meshes is provided.
Furthermore, bymaking full use of the level structure of hierarchical T-meshes, a dimension
formula of biquadratic spline space over hierarchical T-meshes is proved. Additionally, a
topological explanation of the dimension formula is provided.
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1. Introduction

A T-mesh is a rectangular grid that allows T-junctions. T-splines, which represent a type of point-based spline defined
over a T-mesh, were proposed in [1,2] and have become an important tool in geometric modeling, surface reconstruction,
isogeometric analysis [3,4], and other applications. In the definition of T-splines, the T-mesh plays two roles: defining the
parametric domain decomposition of a T-spline and representing the topological structure of the control net of a T-spline
surface.

According to its definition, a T-spline is a piecewise polynomial rather than a single polynomial within a cell of a
T-mesh. This definition is incompatible with the standard definition of classical splines, according to which, given a spline
knot sequence, a univariate spline can be defined as a single polynomial between any two neighboring knots. Therefore,
in [5], the authors introduced spline spaces over T-meshes, where every function in the space can be exactly represented
by a polynomial within each cell of the T-mesh. We use S(m, n, α, β, T ) to denote a spline space over a T-mesh T , where a
function in the space is a polynomial of bi-degree (m, n) in each cell of T and continuous with order α along the horizontal
direction and with order β along the vertical direction. A dimension formula can be proved with the B-net method [5] and
the smoothing cofactormethod [6] for the spline space S(m, n, α, β, T )withm > 2α+1 and n > 2β+1. In [7], we provided
an approach to defining the basis functions of bicubic splines with first-order smoothness and examined applications of the
basis functions in surface fitting.

According to the dimension formula provided in [5], specified dimension formulae can be obtained for certain spline
spaces of low degree, such as S(1, 1, 0, 0, T ), S(2, 2, 0, 0, T ), S(3, 3, 0, 0, T ), and S(3, 3, 1, 1, T ). Furthermore, using
approaches similar to those used in [7], the basis functions of spline spaces can be constructed with favorable properties, for
example, compact support, nonnegativity, and the ability to form a partition of unity. To achieve higher-order smoothness
with as low a degree as possible, we attempt to obtain the dimension formulae and basis functions construction for the

∗ Corresponding author.
E-mail address: dengjs@ustc.edu.cn (J. Deng).

0377-0427/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2012.08.020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82156902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.cam.2012.08.020
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:dengjs@ustc.edu.cn
http://dx.doi.org/10.1016/j.cam.2012.08.020


J. Deng et al. / Journal of Computational and Applied Mathematics 238 (2013) 68–94 69

a b c d

Fig. 1. Horizontal T-vertices ((a) and (b)) and vertical T-vertices ((c) and (d)).

spline spaces S(m, n,m − 1, n − 1, T ). The most interesting formulae are those for S(2, 2, 1, 1, T ) and S(3, 3, 2, 2, T ). In
this paper, we focus mainly on the dimension of the former space.

The paper begins by introducing two concepts: an extended T-mesh associated with a spline space and spline spaces
with homogenous boundary conditions (HBC). Given a T-mesh T , its extension T ε associated with S(m, n, α, β, T ) is a
larger T-mesh properly constructed from T . We use S(m, n,m − 1, n − 1, T ) to represent the spline space over T with
HBC, which is a subset of S(m, n,m− 1, n− 1, T ). A function f ∈ S(m, n,m− 1, n− 1, T ) means that f smoothly vanishes
along the boundary of T . Suppose T ε is an extended T-mesh of T associated with S(2, 2, 1, 1, T ). We will show that the
dimension of S(2, 2, 1, 1, T ) equals the dimension of S(2, 2, 1, 1, T ε). Our practice shows that the dimensions of spline
spaces with HBC can be analyzed with a simple and consistent approach. In this paper, we will use this transition to analyze
the dimensions of biquadratic spline spaces over T-meshes.

As a foundation of the dimensional analysis, we discuss in detail the dimension formula and basis functions construction
for the space S(1, 1, 0, 0, T ). In [5], we showed that the dimension of a bilinear spline space is the sum of the numbers of
crossing vertices and boundary vertices in the given T-mesh. Here, we propose a new proof that shares the same scheme
as the analysis of a lower bound on the dimension of biquadratic spline spaces and avoids the problem of the recycling
dependence of T-vertices, as stated in [8].

An important technique in dimensional analysis is linear space embedding by the operator of themixed partial derivative.
This operator embeds the space S(m, n,m − 1, n − 1, T ) into the space S(m − 1, n − 1,m − 2, n − 2, T ). In this work,
we only discuss cases of m = n = 1 or 2. Using this method, a lower bound on the dimension of S(2, 2, 1, 1, T ) is proved.
Finally, bymaking use of the level structure of hierarchical T-meshes, a dimension formula is provided for biquadratic spline
spaces over hierarchical T-meshes.

The paper is organized as follows. In Section 2, the spline spaces over T-meshes are reviewed, and two concepts are
proposed: the extension of T-meshes and spline spaces with homogeneous boundary conditions. The dimension formula
and basis function construction of bilinear spline spaces of zero-order smoothness over T-meshes are discussed in detail in
Section 3. In Section 4, a lower bound on the dimension of biquadratic spline spaces over general T-meshes is provided.
In Section 5, using the level structure of hierarchical T-meshes, a dimension formula of biquadratic spline space over
hierarchical T-meshes is proved. Additionally, a topological explanation of the dimension formula is provided. Section 6
concludes the paper with some discussion.

2. T-meshes and spline spaces

A T-mesh is a rectangular grid that allows T-junctions.

Definition 2.1. Suppose T is a set of axis-aligned rectangles and the intersection of any two distinct rectangles in T either
is empty or consists of points on the boundaries of the rectangles. Then, T is called a T-mesh. Furthermore, if the entire
domain occupied by T is a rectangle, T is called a regular T-mesh. If some edges of T also form a T-mesh T ′, T ′ is called a
submesh of T .

In this paper, the T-meshes that we consider are regular, and we adopt the definitions of vertex, edge, and cell provided
in [5].

T-vertices in a T-mesh can be classified into two types: horizontal T-vertices and vertical T-vertices. The T-vertices shown in
Fig. 1(a) and (b) are horizontal, and those shown in Fig. 1(c) and (d) are vertical. In [5], edges and c-edges are defined. Here,we
introduce a new type of edge, the l-edge (‘‘long edge’’). An interior horizontal/vertical l-edge is a continuous line segment that
consists of interior horizontal/vertical edges and whose end points are boundary vertices or horizontal/vertical T-vertices.
In other words, an l-edge is a longest possible straight line segment in themesh. The four boundary straight line segments of
a regular T-mesh are called boundary l-edges. For example, in Fig. 2, the given T-mesh T has three interior horizontal l-edges
and three interior vertical l-edges.

Given two series of real numbers xi, i = 1, . . . ,m and yj, j = 1, . . . , n, where xi < xi+1 and yj < yj+1, a rectangular grid
with vertices (xi, yj), i = 1, . . . ,m, and j = 1, . . . , n can be formed. This grid is called a tensor-product mesh and is denoted
by (x1, . . . , xm) × (y1, . . . , yn), which is a special type of T-mesh. From a regular T-mesh T , a tensor-product mesh T c can
be constructed by extending all the interior l-edges to the boundary. T c is called the associated tensor-product meshwith T .
See Fig. 2 for an example.
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Fig. 2. A T-mesh T with its associated tensor-product mesh T c and its extension T ε .

2.1. A topological equation of T-meshes

In the proof of the dimension formulae discussed above, we will use the following topological equation of T-meshes:

Lemma 2.2. Given a regular T-mesh T , suppose T has F cells, V c crossing vertices, and E interior l-edges. Then,

F = V c
+ E + 1.

Proof. Suppose that in T there are V T T-vertices and V bT boundary vertices (excluding the four corner points). Because
every cell has four vertices, running through all of the cells we will meet each crossing vertex four times, each interior
T-vertex twice, each corner point once, and each other boundary vertex twice. It follows that

4F = 4V c
+ 2V T

+ 2V bT
+ 4.

However, the end points of every interior l-edge are either interior T-vertices or boundary vertices that are not corner points.
Therefore, we have V T

+ V bT
= 2E. From these two equations, we have F = V c

+ E + 1. �

2.2. Spline spaces over T-meshes

Given a T-mesh T , we use F to denote all of the cells in T and Ω to denote the region occupied by the cells in T . In [5],
the following spline space definition is proposed:

S(m, n, α, β, T ) := {f (x, y) ∈ Cα,β(Ω) : f (x, y)|φ ∈ Pmn, ∀φ ∈ F }, (2.1)

where Pmn is the space of the polynomials with bi-degree (m, n) and Cα,β is the space consisting of all the bivariate functions
continuous inΩ with order α along the x direction andwith order β along the y direction. It is obvious that S(m, n, α, β, T )
is a linear space.

Now, we introduce a new spline space over a T-mesh with the following definition:

S(m, n, α, β, T ) := {f (x, y) ∈ Cα,β(R2) : f (x, y)|φ ∈ Pmn, ∀φ ∈ F , and f |R2\Ω ≡ 0}. (2.2)

This new spline space is called a spline space over the given T-mesh T with homogeneous boundary conditions (HBC).
S(m, n, α, β, T ) consists of certain functions defined over Ω and S(m, n, α, β, T ) consists of some functions defined

over R2. However, it is obvious that

S(m, n, α, β, T ) ⊃ S(m, n, α, β, T )|Ω .

In this paper, wewill analyze the dimension of the biquadratic spline space S(2, 2, 1, 1, T ) over a T-meshT by investigating
the dimension of S(2, 2, 1, 1, T ε), where T ε is an extension of T associated with S(2, 2, 1, 1, T ). In the next subsection,
we will define extensions of T-meshes.

2.3. Extensions of T-meshes

In univariate spline theory [9], to define basis functions for spline spaces over given knot sequences, we must form
extended knot sequences by inserting more knots at the left and right ends of the given knot sequences.

In this subsection, this technique is adapted to T-meshes for dimensional analysis. To discuss the dimension of the spline
space S(m, n,m−1, n−1, T ), we also extend the given regular T-mesh T in the following fashion. A tensor-product mesh
M with 2(m + 1) vertical lines and 2(n + 1) horizontal lines is produced such that the central rectangle of M is identical
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Fig. 3. Bézier ordinates in an extended T-mesh.

to Ω , which is the region occupied by T . Next, the edges with an end point on the boundary of T are extended to reach
the boundary of M . The resulting mesh, which we denote as T ε , is an extension of the original T-mesh associated with
the present spline space. T ε is also called an extended T-mesh. Fig. 2 shows an example, in which the extended T-mesh is
associated with S(2, 2, 1, 1, T ).

The extension described here is associated with a spline space. For different spline spaces, different extended T-meshes
will be obtained. The following theorem shows that when an extension of the T-mesh is used, the dimensional analysis of
S(2, 2, 1, 1, T ε) is the same as the dimensional analysis of S(2, 2, 1, 1, T ).

Theorem 2.3. Given a T-mesh T , assume that T ε is its extension associated with S(2, 2, 1, 1, T ) and that Ω is the region
occupied by the cells in T . Then,

S(2, 2, 1, 1, T ) = S(2, 2, 1, 1, T ε)|Ω , (2.3)

dim S(2, 2, 1, 1, T ) = dim S(2, 2, 1, 1, T ε). (2.4)

Proof. We first prove Eq. (2.3). Because T ε is an extension of T , it follows that

S(2, 2, 1, 1, T ε)|Ω ⊂ S(2, 2, 1, 1, T ).

In the following, we will prove that for any f ∈ S(2, 2, 1, 1, T ), there exists f̄ ∈ S(2, 2, 1, 1, T ε) such that f̄ |Ω = f .
Here, we define the function f̄ over T ε by assigning the function’s Bézier ordinates in each cell of T ε

\ T . Because
f̄ ∈ C1,1 and there are no interior T-vertices in T ε

\ T , f̄ shares the same ordinates along the common boundary between
two neighboring cells. (These ordinates appear once in Fig. 3, which illustrates the distribution of the Bézier ordinates in the
left-bottom section of the extended region T ε

\ T .) According to the specification of f over T , it follows that the ordinates
labeled ‘‘•’’ are determined. Because f̄ meets the zero function along the boundary of the extended T-mesh T ε with order
one, the ordinates labeled ‘‘△’’ are also determined. The remaining ordinates, which are labeled ‘‘�’’, can be determined
by the corresponding neighboring horizontal or vertical ordinates labeled ‘‘△’’ and ‘‘•’’. Here, the continuous condition is
the collinear of the corresponding three points. The ordinates determined in this fashion automatically define a continuous
spline.

After determining the ordinates described above, the ordinate labeled ‘‘�’’ can be determined as follows. It follows that
the eight ordinates neighboring the ordinate ‘‘�’’ define a bilinear function. When the ordinate corresponding to ‘‘�’’ also
lies on the bilinear function, the continuation of order one in two directions can be guaranteed. In fact, if we meet cases of
recycling determinations when addressing the determination of all of the ordinates in the extension region around T , we
can address the ordinates using this method of bilinear functions construction.

Therefore, we obtain the specification of the function f̄ in S(2, 2, 1, 1, T ε), which satisfies f̄ |Ω = f . According to the
former analysis, it follows that

S(2, 2, 1, 1, T ) = S(2, 2, 1, 1, T ε)|Ω .

To prove Eq. (2.4), we will prove that for any nonzero function f̄ ∈ S(2, 2, 1, 1, T ε), it follows that f̄ |Ω ≢ 0. Suppose
f̄ |Ω ≡ 0, i.e., there exists p = (x0, y0) ∈ T ε

\ T such that f̄ (x0, y0) ≠ 0. In addition, assume Ω = (xl, xr) × (yb, yt).
If xl 6 x0 6 xr , y0 < yb, then f̄ (x0, y), y 6 yb is a quadratic spline whose support has only three breakpoints. This result
contradicts the minimal support of quadratic splines (the support of a nonzero quadratic spline should have at least four
breakpoints). Similarly, we can show that p is outside the regions xl 6 x0 6 xr , y0 > yt ; yb 6 y0 6 yt , x0 < xl; and
yb 6 y0 6 yt , x0 > xr . Therefore, without loss of generality, we assume x0 < xl, y0 < yb. However, this assumption also
results in a nonzero quadratic spline with three breakpoints in its support. Therefore, we obtain f̄ |Ω ≢ 0 and have proven
that

dim S(m, n, α, β, T ) = dim S(m, n, α, β, T ε),

which completes the proof of the theorem. �
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According to Theorem 2.3, we will consider only the biquadratic spline spaces over T-meshes with HBC.

Remark 2.4. A similar analysis can show that for anym and n,

S(m, n,m − 1, n − 1, T ) = S(m, n,m − 1, n − 1, T ε)|Ω , (2.5)

dim S(m, n,m − 1, n − 1, T ) = dim S(m, n,m − 1, n − 1, T ε), (2.6)

where T ε is an extension of T associated with S(m, n,m − 1, n − 1, T ) and Ω is the region occupied by the cells in T .
Therefore, we can replace the dimensional discussion for S(m, n,m − 1, n − 1, T ) with that for S(m, n,m − 1, n − 1, T ε).

2.4. Space embedding with the operator of the mixed partial derivative

In this subsection, wewill introduce the linear space embeddingwith the operator of themixed partial derivative. Before
proceeding, we propose the following definition.

Definition 2.5. Suppose we are given a set S of equations {fi(x1, . . . , xm), i = 1, . . . , n}, where for any i, fi is a linear
combination of variables x1, . . . , xm. If the number of a maximal linearly independent subset in S is r , then r is called the
rank of S, and n − r is called the defective rank of S.

According to linear algebra, the rank of a given equation set does not depend on the choice of the set’s maximal linearly
independent subset.

The operator of the mixed partial derivative is defined as follows:

D :=
∂2

∂x∂y
: S(m, n,m − 1, n − 1, T ) → S(m − 1, n − 1,m − 2, n − 2, T ), (2.7)

wherem, n > 1. D is linear, i.e.,

D(αf + βg) = αD(f ) + βD(g),

where f , g ∈ S(m, n,m − 1, n − 1, T ) and α, β are constants. However, because applied functions satisfy the HBC, D is
injective, i.e., for any f1, f2 ∈ S(m, n,m − 1, n − 1, T ), if f1 ≠ f2, then D(f1) ≠ D(f2). However, D is not an onto mapping.
For example, for any nonzero g ∈ S(m, n,m− 1, n− 1, T ), it follows that D(g) must attain positive values in certain parts
and negative values in others. Therefore, a nonnegative function in S(m−1, n−1,m−2, n−2, T ) has no pre-image under
the operator D .

Define

I(g)(x, y) =

 x

−∞

 y

−∞

g(s, t)dsdt. (2.8)

I is also linear and injective. For any f ∈ S(m, n,m−1, n−1, T ), I◦D(f ) = f . Therefore, I can be considered a left inverse
operator of D .

It follows that for any g ∈ S(m−1, n−1,m−2, n−2, T ),I(g) is a piecewise polynomial of degree (m, n)with smoothness
Cm−1,n−1. With respect to functions in S(m, n,m − 1, n − 1, T ), ∂mI(g)/∂xm or ∂nI(g)/∂yn may be discontinuous inside
certain cells of T . However, this discontinuity must occur on the extension of certain l-edges of T . Let

dm,n = dim S(m, n,m − 1, n − 1, T ).

If we know dm−1,n−1, i.e., the dimension of S(m−1, n−1,m−2, n−2, T ), and the number rm−1,n−1 of linear-independent
constraints ensuring I(g) ∈ S(m, n,m − 1, n − 1, T ) for any g ∈ S(m − 1, n − 1,m − 2, n − 2, T ), it follows that

dm,n = dm−1,n−1 − rm−1,n−1. (2.9)

Here, the constraints are equations of linear combinations of certain variables. However, if there are r ′

m−1,n−1 constraints
(these constraints may be linearly dependent) proposed for ensuring I(g) ∈ S(m, n, m − 1, n − 1, T ) for any g ∈

S(m − 1, n − 1,m − 2, n − 2, T ), it follows that

dm,n > dm−1,n−1 − r ′

m−1,n−1. (2.10)

Suppose the rank of these r ′

m−1,n−1 constraints is αm−1,n−1. Then, we have

dm,n = dm−1,n−1 − αm−1,n−1. (2.11)

In the remainder of the paper, Eqs. (2.9)–(2.11) are used to prove the dimension formulae of bilinear and biquadratic
spline spaces over T-meshes.
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3. Dimensions and basis functions of S(1, 1, 0, 0, T )

In [5], we proved the following dimension formula of the spline space S(m, n, α, β, T ) over a T-mesh:

dim S(m, n, α, β, T ) = F(m + 1)(n + 1) − Eh(m + 1)(β + 1) − Ev(n + 1)(α + 1) + V (α + 1)(β + 1), (3.1)

where m > 2α + 1, n > 2β + 1, F is the number of cells in T ; Eh and Ev are the numbers of horizontal and vertical
interior edges, respectively; and V is the number of interior vertices (including crossing and T-vertices). Specifically, when
m = n = 1 and α = β = 0, it follows that

dim S(1, 1, 0, 0, T ) = V c
+ V b, (3.2)

where V c is the number of crossing vertices, and V b the number of boundary vertices. Using an extension of the T-meshes
associated with S(1, 1, 0, 0, T ), it follows that

dim S(1, 1, 0, 0, T ε) = dim S(1, 1, 0, 0, T ) = V c
ε , (3.3)

where V c
ε is the number of crossing vertices in the extended T-mesh T ε , which equals the total number of crossing vertices

and boundary vertices in T .
Next, we will prove that the former formula holds for a general regular T-mesh and an extended T-mesh. The method

applied in the proof is similar to the method proposed in the next section for proving a lower bound on the dimension
of S(2, 2, 1, 1, T ). This method solves the problem of the recycling dependence of T-vertices, which occurs in the proof
proposed in [5].

3.1. Notation

In the given T-mesh T , let E denote the number of interior l-edges and V c and V b denote the number of crossing vertices
and boundary vertices, respectively. Define S(0, 0, −1, −1, T ) as the space consisting of functions that are constant within
each cell of the T-mesh T and have no smoothness requirement between neighboring cells. It is obvious that the space’s
dimension is the number of cells in the T-mesh.

In the following analysis, we use the standard notation for one-sided limits from calculus. For a function f (x) over some
interval I , we write f (x−

0 ) for the limit as x increases in value approaching x0 and f (x+

0 ) for the limit as x decreases in value
approaching x0.

3.2. Some lemmas

When m = n = 1, the following lemma proposes the constraints ensuring I(g) ∈ S(1, 1, 0, 0, T ) for any g ∈

S(0, 0, −1, −1, T ).

Lemma 3.1. Given a regular T-mesh T , let g ∈ S(0, 0, −1, −1, T ). Then,

I(g)(x, y) ∈ S(1, 1, 0, 0, T )

if and only if the following two sets of conditions are satisfied simultaneously:

1. For any horizontal l-edge lh, x1

x0
g(s, y−

0 )ds =

 x1

x0
g(s, y+

0 )ds, (3.4)

where the two end points of lh have the coordinates (x0, y0) and (x1, y0);
2. For any vertical l-edge lv , y1

y0
g(x−

0 , t)dt =

 y1

y0
g(x+

0 , t)dt, (3.5)

where the two end points of lv have the coordinates (x0, y0) and (x0, y1).

Proof. We first prove the necessity of the lemma. For any horizontal l-edge lh, its right end point (x1, y0) is either a T-vertex
or a boundary vertex. Suppose the edge through the vertex (x1, y0) and perpendicular with lh is ev , as shown in Fig. 4. If
I(g)(x, y) ∈ S(1, 1, 0, 0, T ), then I(g)|ev is a linear polynomial in a neighborhood of (x1, y0). Therefore, it follows that

∂

∂y
I(g)(x1, y−

0 ) =
∂

∂y
I(g)(x1, y+

0 ). (3.6)
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Fig. 4. A horizontal l-edge (1).

According to the definition of I in Eq. (2.8), Eq. (3.6) can be rewritten as x1

−∞

g(s, y−

0 )ds =

 x1

−∞

g(s, y+

0 )ds. (3.7)

Extend lh to reach the left boundary of the T-mesh. If there are no other horizontal l-edges on the extension edge, then in
every cell that intersects the extension edge g is a pure constant. Then, g(s, y−

0 ) = g(s, y+

0 ) when s 6 x0, and x0

−∞

g(s, y−

0 )ds =

 x0

−∞

g(s, y+

0 )ds. (3.8)

According to Eqs. (3.7) and (3.8), it follows that Eq. (3.4) in the first condition holds for any horizontal l-edge.
If additional horizontal l-edges on the extension edge exist, we proceed through these horizontal l-edges from left to

right. For the first such l-edge, we can use the former approach to prove that Eq. (3.4) holds. Then, we consider the other
l-edges one by one and prove that the corresponding equation (3.8) holds. Then, Eq. (3.4) holds. Therefore, we finish by
proving that Eq. (3.4) holds for every horizontal l-edge.

For any vertical l-edge,we can prove that the corresponding equation (3.5) holds in a similarway. Therefore, the necessity
of the lemma is proved.

We will now prove the sufficiency of the lemma. Suppose g ∈ S(0, 0, −1, −1, T ) satisfies the two sets of conditions in
the lemma, however, I(g) ∉ S(1, 1, 0, 0, T ), i.e., there exists a cell for which ∂I(g)/∂x or ∂I(g)/∂y has at least one point of
discontinuity. Define two sets consisting of the cells of T as follows. Let Bx denote all of the cells for which ∂I(g)/∂x has at
least one point of discontinuity, and let By denote all of the cells for which ∂I(g)/∂y has at least one point of discontinuity.
Then, according to the assumption, Bx ∪ By is not empty. Without loss of generality, we assume that By is not empty.
Consider a cell in By whose left-bottom corner has the minimal y coordinate in By. If more than one such cell exists, select
the cell whose left-bottom corner has the minimal x coordinate. We have now selected a unique cell c . In c , ∂I(g)/∂y has
at least one point of discontinuity (x̂, ŷ). Therefore, it follows that x̂

−∞

g(s, ŷ−)ds ≠

 x̂

−∞

g(s, ŷ+)ds. (3.9)

Consider the horizontal straight line through (x̂, ŷ). If there is no l-edge of T on the left side of the straight line through
(x̂, ŷ), then Eq. (3.9) fails to hold. If there is at least one l-edge on the left side of (x̂, ŷ), then, according to the first condition,
a contradiction also arises. Therefore,By is empty. In the same fashion, it follows thatBx is also empty. This result contradicts
the assumption that Bx ∪ By is not empty. Therefore, we finish the proof of the sufficiency. �

There are E + 4 conditions in Lemma 3.1, where E + 4 is the total number of the interior l-edges and the four boundary
l-edges. The following lemma is a fundamental result that shows that these E+4 conditions are equivalent to E+2 conditions
in another form.

Lemma 3.2. Given a regular T-mesh T , the rectangle occupied by T is (xl, xr) × (yb, yt), where the different y coordinates of
the rectangle’s horizontal l-edges are y0 < y1 < · · · < yn. Suppose g ∈ S(0, 0, −1, −1, T ). Then, xr

xl
g(s, y−

i )ds =

 xr

xl
g(s, y+

i )ds, i = 0, 1, . . . , n (3.10)

is equivalent to xr

xl
g(s, y)ds = 0, y ∈ (yi, yi+1), i = 0, . . . , n − 1. (3.11)

Because g is a piecewise constant,
 xr
xl

g(s, y)ds, y ∈ (yi, yi+1) is a constant independent of y.

Proof. Because g is a piecewise constant in T and vanishes out of T , it follows that xr

xl
g(s, y−

0 )ds =

 xr

xl
g(s, y)ds = 0, y < y0,
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xl
g(s, y+

0 )ds =

 xr

xl
g(s, y)ds, y0 < y < y1.

Therefore, according to Eq. (3.10), when i = 0, we obtain xr

xl
g(s, y)ds = 0, y ∈ (y0, y1).

This result means that Eq. (3.11) holds when i = 0. Similar discussions guarantee that Eq. (3.11) holds when i =

1, 2, . . . , n − 1.
However, for any i = 0, 1, 2, . . . , n − 1, if all the equations in (3.11) hold, it is straightforward to prove that all the

equations in (3.10) hold. �

Remark 3.3. The statement in Lemma 3.2 applies to horizontal l-edges. A similar statement can bemade for vertical l-edges.

Asmentioned, for a given T-mesh T , an associated tensor-product mesh T c can be obtained by extending all the interior
l-edges to the boundary of T . Let T c

= (x0, x1, . . . , xm) × (y0, y1, . . . , yn), where x0 = xl, xm = xr , and y0 = yb, yn = yt .
Suppose there are E ′ interior l-edges in T c and E interior l-edges in T , where E ′ 6 E (because it is possible that more than
one l-edge in T is on the same l-edge in T c). Select any horizontal l-edge ℓ from T c , and suppose the horizontal l-edges
ℓ1, . . . , ℓk in T lie on ℓ. It follows that the constraints

ℓi

g(s, ŷ−)ds =


ℓi

g(s, ŷ+)ds, i = 1, . . . , k

are equivalent to the constraints
ℓi

g(s, ŷ−)ds =


ℓi

g(s, ŷ+)ds, i = 1, . . . , k − 1,


ℓ

g(s, ŷ−)ds =


ℓ

g(s, ŷ+)ds, (3.12)

where ŷ is the vertical coordinate of ℓ. When we run through all of the horizontal l-edges in T c , the last constraint in Eq.
(3.12) will form a subset of constraints with n + 1 elements as follows: xm

x0
g(s, y−

j )ds =

 xm

x0
g(s, y+

j )ds, j = 0, . . . , n


.

According to Lemma 3.2, these n + 1 constraints are equivalent to the following n constraints: xm

x0
g(s, y)ds = 0, y ∈ (yj, yj+1), j = 0, . . . , n − 1


.

A similar equivalence can be produced for the vertical l-edges. Here, we should note that for any boundary l-edge, there is
only one constraint stated in Lemma 3.1. Therefore, the necessary and sufficient conditions that I(g) ∈ S(1, 1, 0, 0, T ) for
g ∈ S(0, 0, −1, −1, T ) are E + 2 constraints in this fashion. However, because g is a piecewise constant function, it follows
that 

+∞

−∞


+∞

−∞

g(s, t)dsdt =

m−1
i=0

(xi+1 − xi)Ci =

n−1
j=0

(yj+1 − yj)Dj, (3.13)

where

Ci =

 yn

y0
g(x, y)dy, x ∈ (xi, xi+1),

Dj =

 xm

x0
g(x, y)dx, y ∈ (yj, yj+1).

By Eq. (3.13), the m constraints {Ci = 0, i = 0, . . . ,m − 1} and the n constraints {Dj = 0, j = 0, . . . , n − 1} are
linearly dependent. These m + n constraints are in the E + 2 constraints, which ensure I(g) ∈ S(1, 1, 0, 0, T ) for
g ∈ S(0, 0, −1, −1, T ). Therefore, these E + 2 constraints have a defective rank of at least one. The latter dimension
Theorem 3.4 will show that the defective rank is exactly one.

3.3. Dimension theorem

Theorem 3.4. Given a regular T-mesh T with V c crossing vertices, it follows that

dim S(1, 1, 0, 0, T ) = V c .
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Proof. First, we prove that dim S(1, 1, 0, 0, T ) 6 V c . For this purpose, suppose a function f ∈ S(1, 1, 0, 0, T ) that reaches
zero at all of the crossing vertices. We intend to prove that f ≡ 0.

Suppose f ≢ 0. Without loss of generality, we assume f is greater than zero in certain regions in T . There then exists a
point p in T such that f (p) = δ = max f > 0. Let p be in the cell c. Only the following two cases will occur:

1. there exists an edge e of c such that f is a constant δ along e;
2. for any edge e of c , f is not a constant along e.

Consider Case 1. Let l0 denote the l-edge on which e lies, and define a set L that consists of the l-edges on which f are
constants δ. P consists of the end points of the l-edges in L. Because l0 ∈ L, both L and P are non-empty. Now, we categorize
the vertices in P into two types. If a vertex in P is also an interior vertex on another l-edge in L, then the vertex is called a
flat vertex. Otherwise, it is called a non-flat vertex. In the following, we will prove that there must exist at least one non-flat
vertex in P . If at least one non-flat vertex exists in P , select one non-flat vertex q. Then, qmust lie on an l-edge l1 that is not
in L. It follows that q is an interior point on l1. Because f (q) = δ and f |l1 is not a constant, there exists a point r on l1 such
that f (r) > δ, which contradicts that δ is the maximum of f over T .

In fact, the non-flat vertex q can be selected as the vertex in P with the minimal y coordinate. If there exists more than
one vertex with the minimal y coordinate, the vertex with the minimal x coordinate is selected. Such a selection ensures
that q is a non-flat vertex. If q is not a non-flat vertex, q lies on two l-edges, l2 and l3, in L, where l2 is horizontal and l3 is
vertical. If q is a horizontal T-vertex, the bottom end point of l3 has a y coordinate that is smaller than q. If q is a vertical
T-vertex, the left end point of l2 has the same y coordinate as q but a smaller x coordinate than q. Both cases contradict the
selection of q. Therefore, q is a non-flat vertex, and we have proved f ≡ 0 for Case 1.

We now consider Case 2. Because f |c is a bilinear function and f is not a constant along any edges of c , f reaches its
maximum only at one of the corners of c. Therefore, p is a corner of c and a T-vertex, for example a horizontal T-vertex. The
vertical l-edge through p is assumed to be l4, which takes p as its interior point. Because f (p) = δ and f |l4 is not a constant,
there exists a point s on l4 such that f (s) > δ, which contradicts that δ is the maximum of f over T .

If the considerations for both cases are summarized, it follows that f ≡ 0. Then, all the crossing vertices in T form
a determining set of the spline space S(1, 1, 0, 0, T ). According to the theory of the determining sets in spline functions
[10,11], we obtain

dim S(1, 1, 0, 0, T ) 6 V c . (3.14)

However, in the following, we will prove that dim S(1, 1, 0, 0, T ) > V c . For this purpose, we consider the operator of
the mixed partial derivative defined in Eq. (2.7) asm = n = 1:

D : S(1, 1, 0, 0, T ) → S(0, 0, −1, −1, T ).

The spline space S(0, 0, −1, −1, T ) has dimension F , which represents the number of cells in T . According to the analysis
presented in the preceding section, to ensure that I(g) ∈ S(1, 1, 0, 0, T ), we must satisfy E + 2 constraints, which have a
defective rank of at least one. Then, according to Lemma 2.2,

dim S(1, 1, 0, 0, T ) > F − (E + 2) + 1 = V c . (3.15)

If Eqs. (3.14) and (3.15) are combined, it follows that the dimension theorem is proved, i.e.,

dim S(1, 1, 0, 0, T ) = V c . �

3.4. Basis functions

We can construct a set of basis functions {bi(x, y)}V
c

i=1 for the spline space S(1, 1, 0, 0, T ). Similar to standard B-splines,
the basis functions should have the following properties:

1. Compact support: For any i, bi(x, y) has as small a support as possible;
2. Nonnegativity: For any i, bi(x, y) > 0;
3. Partition of unity: If T is an extension of some T-mesh T0 associated with the spline space S(1, 1, 0, 0, T0) and the region

occupied by T0 is Ω , then
V c
i=1

bi(x, y) = 1, (x, y) ∈ Ω.

These properties will facilitate their applications in geometric modeling. In fact, when representing a geometric shape with
a linear combination of basis functions satisfying these properties, we can implement local shape control, affine invariance,
and variational diminishing. See [12] for details.

Basis functions with these properties can be constructed as follows. Suppose the crossing vertices in T are vi with
coordinate (xi, yi), i = 1, . . . , V c . Then, we require that the function bi(x, y) satisfy bi(xj, yj) = δij. According to the
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dimension Theorem 3.4 and the first part of its proof, bi(x, y) is uniquely determined. All of the functions bi(x, y) form a
set of basis functions of the spline space and have the former three properties. It is straightforward to show that Properties
1 and 2 are satisfied. Now, we prove Property 3.

Theorem 3.5. Suppose T is an extension of some T-mesh T0 associated with the spline space S(1, 1, 0, 0, T0), and the region
occupied by T0 is Ω . The crossing vertices in T are vi with the coordinate (xi, yi), i = 1, . . . , V c . The function set {bi(x, y)}V

c

i=1 ⊂

S(1, 1, 0, 0, T ) satisfies bi(xj, yj) = δij. Then,

V c
i=1

bi(x, y) = 1, (x, y) ∈ Ω. (3.16)

Proof. Let

f (x, y) =

V c
i=1

bi(x, y)

and ℓ denote the boundary of T0. To show that Eq. (3.16) holds, we first prove that f |ℓ ≡ 1. Because the vertices on ℓ are
crossing vertices in T , it follows that f reaches 1 on these vertices. Because f |ℓ is a piecewise linear function with knots
being these vertices, it follows that f |ℓ ≡ 1. Then, in the following, we prove that for any (x, y) ∈ Ω , f (x, y) = 1. Consider
the function

g(x, y) =


f (x, y) − 1 (x, y) ∈ Ω,
0 otherwise.

Because f |ℓ ≡ 1, we have g ∈ S(1, 1, 0, 0, T ). However, g is zero at the crossing vertices of T . According to the proof of
Theorem 3.4, it follows that g ≡ 0, i.e., f (x, y) = 1, (x, y) ∈ Ω . �

In this section, certain interesting questions remain.
1. How can we directly specify the former basis functions in every cell of a general T-mesh?
2. How can we evaluate the function or the surface represented in the linear combination of the former basis functions?
3. What is the ‘‘knot’’ insertion algorithm in this spline space?

These questions also apply to higher degree spline spaces over T-meshes. The answers to these questions are required if
we want to effectively represent, evaluate, and modify spline functions over T-meshes in geometric modeling and other
areas. Because of their simplicity, bilinear spline spaces over T-meshes should be among our first choices to answer these
questions. We hope the solutions for bilinear cases may help us to find answers regarding higher degree spline spaces over
T-meshes.

4. A lower bound on the dimension of S(2, 2, 1, 1, T )

We can apply a method similar to that proposed in the preceding section to the dimensional analysis of S(2, 2, 1, 1, T )
and obtain a lower bound on the dimension, i.e.,

dim S(2, 2, 1, 1, T ) > V c
− E + 1. (4.1)

4.1. Some lemmas

We consider the operator of the mixed partial derivative as follows:

D :=
∂2

∂x∂y
: S(2, 2, 1, 1, T ) → S(1, 1, 0, 0, T ).

The operator I(g) is defined in the same manner as Eq. (2.8). The following lemmas discuss constraints that ensure
I(g) ∈ S(2, 2, 1, 1, T ) for any g ∈ S(1, 1, 0, 0, T ).

Lemma 4.1. Given a regular T-mesh T , let the coordinates of the end points of any horizontal l-edges lhi be (xhi1, y
h
i ) and (xhi2, y

h
i ),

i = 0, 1, . . . ,m, and the coordinates of the end points of any vertical l-edge lvj be (xv
j , y

v
j1) and (xv

j , y
v
j2), j = 0, 1, . . . , n. For any

g ∈ S(1, 1, 0, 0, T ), it follows that

I(g) ∈ S(2, 2, 1, 1, T ) ⇔


 xhi2

xhi1

∂

∂y
g(s, yh−i )ds =

 xhi2

xhi1

∂

∂y
g(s, yh+i )ds, i = 0, 1, . . . ,m, and yvj2

yvj1

∂

∂x
g(xv−

j , t)dt =

 yvj2

yvj1

∂

∂x
g(xv+

i , t)dt, j = 0, 1, . . . , n.
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Fig. 5. A horizontal l-edge (2).

Proof. We first prove the necessity H⇒. Let f (x, y) = I(g)(x, y). Without loss of generality, we only prove that when
f ∈ S(2, 2, 1, 1, T ) the constraints corresponding to horizontal l-edges are satisfied. As shown in Fig. 5, the two end points
of the horizontal l-edge are P1(xhi1, y

h
i ) and P2(xhi2, y

h
i ). The vertical edge on which P2 lies is ℓ. Because f ∈ S(2, 2, 1, 1, T ), it

follows that f (xhi2, y) is a quadratic polynomial with respect to the variable y in a neighborhood of P2 along ℓ. Therefore,

f (xhi2, y
h−
i ) = f (xhi2, y

h+
i ),

∂

∂y
f (xhi2, y

h−
i ) =

∂

∂y
f (xhi2, y

h+
i ),

∂2

∂y2
f (xhi2, y

h−
i ) =

∂2

∂y2
f (xhi2, y

h+
i ).

According to the definition of f and the continuity of g , the first two equations hold trivially. Substituting the definition of f
into the last equation, we have xhi2

−∞

∂

∂y
g(s, yh−i )ds =

 xhi2

−∞

∂

∂y
g(s, yh+i )ds. (4.2)

Extend the current l-edge to the left boundary of the T-mesh. If no other l-edges exist on the extension, then in every cell
that intersects the extension on the left side of (xhi1, y

h
i ), g is a single bilinear function. It follows that xhi1

−∞

∂

∂y
g(s, yh−i )ds =

 xhi1

−∞

∂

∂y
g(s, yh+i )ds. (4.3)

Subtracting Eq. (4.3) from Eq. (4.2), we have xhi2

xhi1

∂

∂y
g(s, yh−i )ds =

 xhi2

xhi1

∂

∂y
g(s, yh+i )ds.

This result proves that the equation in the lemma corresponding to the current l-edge holds. If other l-edges exist on the
extension, we consider these l-edges one by one from left to right. We can prove that the former equations hold for these
l-edges. Therefore, for the current l-edge, according to Eq. (4.2), the same equation also holds.

Next, we prove the sufficiency ⇐H. We will show that for any g ∈ S(1, 1, 0, 0, T ), if the following equations hold xhi2

xhi1

∂

∂y
g(s, yh−i )ds =

 xhi2

xhi1

∂

∂y
g(s, yh+i )ds, i = 0, 1, . . . ,m, (4.4)

 yvj2

yvj1

∂

∂x
g(xv−

j , t)dt =

 yvj2

yvj1

∂

∂x
g(xv+

i , t)dt, j = 0, 1, . . . , n, (4.5)

then f is a single biquadratic polynomial in each cell of T .
In contrast, suppose that in some cell ci, f is piecewise with the horizontal lines of discontinuity y = yi1 , . . . , y = yini and

the vertical lines of discontinuity x = xi1 , . . . , x = ximi
of the partial second-order derivatives. Let Cy =


i{yi1 , . . . , yini },

Cx =


i{xi1 , . . . , ximi
}. Then, according to the assumption, Cx


Cy is non-empty. Without loss of generality, we assume

Cy is non-empty. Let ŷ = miny∈Cy y. Suppose ci is the leftmost cell that takes y = ŷ as its inner line of discontinuity of the
partial second-order derivatives with respect to x. Denote the x coordinate of the left boundary edge of ci as x0, and let (x1, ŷ)
represent a point on the line of discontinuity, where x1 > x0. It follows that x0

−∞

∂

∂y
g(s, ŷ−)ds =

 x0

−∞

∂

∂y
g(s, ŷ+)ds.

Because (x1, ŷ) is one point of discontinuity, it follows that x1

−∞

∂

∂y
g(s, ŷ−)ds ≠

 x1

−∞

∂

∂y
g(s, ŷ+)ds.
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Therefore, x1

x0

∂

∂y
g(s, ŷ−)ds ≠

 x1

x0

∂

∂y
g(s, ŷ+)ds.

This result contradicts that ∂
∂yg(x, y) is continuous inside the cell ci. Therefore, we have proved that f is a single biquadratic

polynomial in each cell of T .
To prove f ∈ S(2, 2, 1, 1, T ), we still must verify that f satisfies the HBC. In fact, using the same approach, we can

prove that f is a single biquadratic polynomial outside T . However, f (x, y) is zero when x 6 x0, y 6 y0, where (x0, y0) is
the coordinate of the left-bottom corner of the T-mesh T . Therefore, f is zero everywhere outside T , which ensures that f
satisfies the HBC. Therefore, f ∈ S(2, 2, 1, 1, T ). �

According to Lemma 4.1 and because dim S(1, 1, 0, 0, T ) = V c , to ensure f ∈ S(2, 2, 1, 1, T ), there are E+4 constraints
with V c under-determining coefficients, where E is the number of interior l-edges. However, these constraints are not
linearly independent, as stated in the following lemma.

Lemma 4.2. Given a regular T-mesh T whose occupied rectangle is (xl, xr) × (yb, yt), assume that the different y coordinates
from all the horizontal l-edges are y0 < y1 < · · · < yn. For g ∈ S(1, 1, 0, 0, T ), it follows that xr

xl

∂

∂y
g(s, y−

i )ds =

 xr

xl

∂

∂y
g(s, y+

i )ds, i = 0, . . . , n (4.6)

is equivalent to xr

xl
g(s, yi)ds = 0, i = 1, . . . , n − 1. (4.7)

Proof. First, we prove the necessity. Beginning from the bottom boundary l-edge l0, we have xr

xl

∂

∂y
g(s, y−

0 )ds = 0,
 xr

xl
g(s, y0)ds = 0.

Then, according to Eq. (4.6), when i = 0, we have xr

xl

∂

∂y
g(s, y+

0 )ds = 0.

However, according to the piecewise bilinear definition of g , we have xr

xl

∂

∂y
g(s, y0+)ds =

 xr

xl

∂

∂y


y1 − y
y1 − y0

g(s, y0) +
y − y0
y1 − y0

g(s, y1)

ds

=
1

y1 − y0

 xr

xl
g(s, y1)ds −

 xr

xl
g(s, y0)ds


=

1
y1 − y0

 xr

xl
g(s, y1)ds. (4.8)

Therefore, xr

xl
g(s, y1)ds = 0.

Recursively, we can prove that Eq. (4.7) holds for every horizontal l-edge.
To prove the sufficiency, we follow a deductive process similar to the one described in Eq. (4.8). We have xr

xl

∂

∂y
g(s, y−

i )ds =
1

yi − yi−1

 xr

xl
g(s, yi)ds −

 xr

xl
g(s, yi−1)ds


, xr

xl

∂

∂y
g(s, y+

i )ds =
1

yi+1 − yi

 xr

xl
g(s, yi+1)ds −

 xr

xl
g(s, yi)ds


.

Therefore, Eq. (4.7) ensures that Eq. (4.6) holds. �



80 J. Deng et al. / Journal of Computational and Applied Mathematics 238 (2013) 68–94

Remark 4.3. From the proof of Lemma 4.2, we can also conclude that for horizontal l-edges, xr

xl

∂

∂y
g(s, y−

i )ds =

 xr

xl

∂

∂y
g(s, y+

i )ds, i = 0, . . . , n

is equivalent to xr

xl

∂

∂y
g(s, y−

i )ds = 0, i = 1, . . . , n − 1.

Lemma 4.2 states that there are at least two respective redundant constraints among those corresponding to horizontal
l-edges and vertical l-edges. The following lemma indicates that we can consider the constraints along the four boundary
l-edges redundant.

Lemma 4.4. Given a regular T-mesh T , the rectangle that it occupies is (xl, xr)× (yb, yt), where the different y coordinates from
the horizontal l-edges are y0 < y1 < · · · < yn. Let g ∈ S(1, 1, 0, 0, T ). Then, Eq. (4.6) is equivalent to xr

xl

∂

∂y
g(s, y−

i )ds =

 xr

xl

∂

∂y
g(s, y+

i )ds, i = 1, . . . , n − 1. (4.9)

Proof. The necessity is obvious. To prove the sufficiency, we show that Eq. (4.9) implies that Eq. (4.7) holds. In fact, suppose

Ii =

 xr

xl
g(s, yi)ds, i = 0, 1, . . . , n.

Then, I0 = In = 0. Our object is to prove that for any i = 1, 2, . . . , n−1, Ii = 0. By a similar deduction as that used to obtain
Eq. (4.8), we have xr

xl
g(s, yi)ds =

yi+1 − yi
yi+1 − yi−1

 xr

xl
g(s, yi−1) +

yi − yi−1

yi+1 − yi−1

 xr

xl
g(s, yi+1)ds,

i.e.,

Ii =
yi+1 − yi

yi+1 − yi−1
Ii−1 +

yi − yi−1

yi+1 − yi−1
Ii+1

holds for any i = 1, 2, . . . , n − 1. Therefore, the point set {(yi, Ii)}ni=0 is collinear, which indicates that a linear function
f (y) exists such that f (yi) = Ii, i = 0, . . . , n. Because y0 = yn = 0, it follows that f (y) ≡ 0, which indicates that Ii = 0,
i = 1, 2, . . . , n. Thus, the sufficiency is proved. �

Remark 4.5. The statements in Lemmas 4.2 and 4.4 apply to horizontal l-edges. Similar statements can bemade for vertical
l-edges.

4.2. A lower bound on dimensions

For a given regular T-mesh T that has E interior l-edges, we assume that its associated tensor-product mesh T c has E ′

interior l-edges, where E ′ 6 E and T c
= (x0, x1, . . . , xm) × (y0, y1, . . . , yn). Suppose the horizontal l-edges ℓ1, . . . , ℓk in T

lie on the horizontal l-edge ℓ in T c , where the vertical coordinate of ℓ is ŷ. Then, we have that
ℓi

∂

∂y
g(s, ŷ−)ds =


ℓi

∂

∂y
g(s, ŷ+)ds, i = 1, . . . , k

are equivalent to
ℓi

∂

∂y
g(s, ŷ−)ds =


ℓi

∂

∂y
g(s, ŷ+)ds, i = 1, . . . , k − 1,


ℓ

∂

∂y
g(s, ŷ−)ds =


ℓ

∂

∂y
g(s, ŷ+)ds.

When we consider all of the horizontal l-edges in T c , the last constraint in the former equation will form a subset of
constraints with n + 1 elements: xm

x0

∂

∂y
g(s, y−

i )ds =

 xm

x0

∂

∂y
g(s, y+

i )ds, i = 0, . . . , n


.

According to Lemma 4.2, these constraints are equivalent to the following n − 1 constraints: xm

x0
g(s, yi)ds = 0, i = 1, . . . , n − 1


.
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A similar conclusion can be made for the vertical l-edges. Therefore, the number of sufficient and necessary constraints that
ensure I(g) ∈ S(2, 2, 1, 1, T ) for g ∈ S(1, 1, 0, 0, T ) is simply E.

Moreover, in the tensor-product mesh T c , because g is a piecewise linear function, it follows that
+∞

−∞


+∞

−∞

g(s, t)dsdt =

m−1
i=1

(xi+1 − xi−1)Ei =

n−1
j=1

(yj+1 − yj−1)Fj, (4.10)

where

Ei =

 yn

y0
g(xi, y)dy, Fj =

 xm

x0
g(x, yj)dx.

Therefore, among the former E constraints, the element number in any maximally linearly independent subset is at most
E − 1 when these constraints are not empty (i.e., V c > 0).

Based on the foregoing analysis, a lower bound on the dimensions of the spline space S(2, 2, 1, 1, T ) can be obtained as
follows:

Theorem 4.6. Given a regular T-mesh T with V c > 0 crossing vertices and E interior l-edges, it follows that

dim S(2, 2, 1, 1, T ) > V c
− E + 1. (4.11)

Proof. Because V c > 0, the constraints are not empty, and E > 1. According to the former analysis and Theorem 3.4,
the dimension of S(1, 1, 0, 0, T ) is V c . For any g ∈ S(1, 1, 0, 0, T ), the constraints ensuring I(g) ∈ S(2, 2, 1, 1, T ) have
maximally linearly independent subsets with element numbers of E−1 at most. Here, both D and I are linear and injective
(see Section 2.4. Therefore, dim S(2, 2, 1, 1, T ) > V c

− E + 1. �

The lower bound in the theorem is sharp for spline spaces over certain T-meshes. For example, consider the T-mesh T

shown in Fig. 2. Use of the B-net method in [5] can show that dim S(2, 2, 1, 1, T ) = 0. However, in T , V c
= 5, E = 6. Then,

V c
− E + 1 = 0, which indicates that the lower bound is reached in this T-mesh.
It is straightforward to verify that the former lower bound is exactly the dimension of the biquadratic spline space over

a tensor-product mesh if V c
− E + 1 > 0. In the next section, we will prove that for certain special hierarchical T-meshes,

the lower bound is also sharp.
To conclude this section, we use Theorems 2.3 and 4.6 to provide a lower bound on the dimensions of spline spaces over

T-meshes.

Corollary 4.7. Given a regular T-mesh T with V c crossing vertices, E interior l-edges, and V b boundary vertices, it follows that

dim S(2, 2, 1, 1, T ) > 2V b
+ V c

− E + 1. (4.12)

Proof. Let T ε be an extension of T associated with the spline space S(2, 2, 1, 1, T ). Then, according to the construction
rule of an extended T-mesh, a crossing vertex ofT is also a crossing vertex ofT ε; a boundary vertex (but not a corner vertex)
of T results in two crossing vertices of T ε; and a corner vertex of T results in four crossing vertices of T ε . Therefore, there
are V c

+2(V b
−4)+16 = 2V b

+V c
+8 crossing vertices in T ε . However, it is obvious that there are (E +8) l-edges in T ε .

According to Theorems 2.3 and 4.6, we have

dim S(2, 2, 1, 1, T ) = dim S(2, 2, 1, 1, T ε)

> (2V b
+ V c

+ 8) − (E + 8) + 1
= 2V b

+ V c
− E + 1. �

5. The dimensions of spline spaces S(2, 2, 1, 1, T ) over hierarchical T-meshes

In this section, a careful analysis of the constraints in Section 4 will help us construct a dimension formula of the spline
space S(2, 2, 1, 1, T ) over a hierarchical T-mesh. Here, the key procedure consists of the following components:

1. A general hierarchical T-mesh is divided into crossing-vertex-connected branches (Definition 5.3). Then, the spline space
over the hierarchical T-mesh is divided into the direct sum of some subspaces, each of which is defined over a crossing-
vertex-connected hierarchical branch, which is also a T-mesh (see Section 5.6).

2. In a crossing-vertex-connected hierarchical T-mesh, the constraint set is proved to have a defective rank (see
Definition 2.5) of exactly one by the following process:
(a) The constraints are converted into a new form to reflect the level structure of the hierarchical T-mesh (see Section 5.2).
(b) A new set of basis functions of S(1, 1, 0, 0, T ) is defined according to the structure of the T-mesh such that the

occurrence of the basis function coefficients in the constraints is regularized (see Section 5.3 and Proposition 5.12).
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(a) Level 0. (b) Level 1. (c) Level 2.

Fig. 6. A hierarchical T-mesh.

(c) The l-edges and the corresponding constraints are ordered according to the structure of the T-mesh. For each l-edge
and constraint, a characteristic vertex is introduced. Write all of the constraints in vector form (C0, C1, . . . , CT )

T in
increasing order. The constraint C0 can be removed because we know that all of the constraints have a defective rank
of at least one. Therefore, we must show that (C1, . . . , CT )

T has full rank (see Section 5.1.2).
(d) Assume the characteristic vertex of Ci is Vi, i = 1, . . . , T . Arrange the coefficients into a vector

(β1, . . . , βT , βT+1, . . . , βM)T such that βi is the coefficient of the basis function corresponding to Vi, i = 1, 2, . . . , T ,
in S(1, 1, 0, 0, T ). There then exists a non-singular upper-triangularmatrixM = (mij)T×M such that (C1, . . . , CT )

T
=

M(β1, . . . , βM)T .
Therefore, the complete set of constraints has a defective rank of one.

5.1. Hierarchical T-meshes

A hierarchical T-mesh [7] is a special type of T-mesh that has a natural level structure. It is defined recursively. Generally,
we start from a tensor-product mesh (level 0). Then, the individual cells at level k are each divided into four subcells, which
are cells at level k + 1. For simplicity, we subdivide each cell by connecting the middle points of the opposite edges with
two straight lines. Fig. 6 illustrates the process of generating a hierarchical T-mesh. To emphasize the level structure of a
hierarchical T-mesh T , in certain cases, we denote the T-mesh of level k as T k. The maximal level number that appears is
called the level of the hierarchical T-mesh.

Definition 5.1. In a regular T-mesh, a cross-cut l-edge is an l-edge with two end points on the boundary of the T-mesh.
The four boundary l-edges are cross-cut l-edges. The horizontal and vertical cross-cut l-edges form a tensor-product mesh,
which is called themaximal tensor-product submesh of the given T-mesh.

Suppose a hierarchical T-mesh T is formed from a tensor-product mesh T 0. It is obvious that T 0 is a submesh of the
maximal tensor-product submesh of T .

A given hierarchical T-mesh T can be extended to obtain an extended T-mesh T ε associated with the spline space
S(2, 2, 1, 1, T ). In the following, the term ‘‘hierarchical T-meshes’’ refers to both classical hierarchical T-meshes and their
extensions.

Over a hierarchical T-mesh T , the dimension of S(2, 2, 1, 1, T ) may be greater than the lower bound provided in
Theorem 4.6. For example, consider the hierarchical T-mesh shown in Fig. 7 in which the mesh of level 0 is a tensor-product
mesh with size 3 × 3, and in the level 1 mesh, only one cell is subdivided. In this mesh, V c

= 5, E = 6. The lower bound is
V c

− E + 1 = 0. However, the dimension of the biquadratic spline space over the mesh is obviously at least one.

5.1.1. Level numbers of edges, l-edges, and crossing-vertices
We assign each edge or l-edge in a hierarchical T-mesh to the level number of the T-mesh on which the edge or l-edge

appears. An l-edge of level k consists of edges on level k. The extension of an edge in the extended T-mesh is assigned to the
same level as its source. The newly added l-edges in the extended T-mesh are assigned to level 0.

A crossing vertex is assigned two level numbers denoted (kh, kv). These numbers correspond to the level number kh of
the horizontal l-edge and the level number kv of the vertical l-edge where the vertex lies, respectively, and kh and kv are
called the horizontal level and the vertical level, respectively, of the crossing vertex.

For example, in the hierarchical T-mesh T shown in Fig. 8, suppose the middle horizontal l-edge is of level p0 and that
the upper and lower neighboring l-edges are of levels p1 and p2, respectively. Here, p0 > p1, p0 > p2. Because v1 is the
intersection of two l-edges with level p0, its level is (p0, p0). Similarly, because v2 is the intersection of a horizontal l-edge
of level p0 and a vertical l-edge of level p1, its level is (p0, p1).
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Fig. 7. A hierarchical T-mesh in which the dimension is greater than the lower bound.

Fig. 8. Level numbers of edges, l-edges, and crossing vertices.

Fig. 9. A hierarchical T-mesh showing its decomposition according to the edge levels.

5.1.2. Ordering on interior l-edges
To reasonably sort the constraints, we introduce a partial ordering on interior l-edges in a hierarchical T-mesh. This order

will be used in the proof of Theorem 5.13 to facilitate the rank analysis of the constraints. First, however, we propose the
following definition:

Definition 5.2. In a hierarchical T-mesh T , two interior l-edges are continuous if they intersect in a crossing vertex of T .
An l-edge set S is connected if for any two l-edges ℓ0 and ℓ1 in S there exists a continuous series of l-edges l0, l1, . . . , lk in S
between ℓ0 and ℓ1, i.e., l0 = ℓ0, lk = ℓ1, and li and li+1 are continuous for any i = 0, 1, . . . , k − 1.

Consider a crossing-vertex-connected hierarchical T-mesh T . Fix a level number k > 0. Then, all l-edges of level k are
possibly not connected (see Fig. 9 for an example in which all of the edges of level 2 are not connected). We assume that
the l-edges of level k form somemaximal connected branches. Denote these branches as θk,i, i = 1, . . . , Tk. Therefore, in the
example of Fig. 9, we have T0 = 1, T1 = 1, and T2 = 2. Because T is crossing-vertex-connected, when k > 1 there exists
at least one crossing vertex of level number (k, j) or (j, k) on some l-edge in the branch θk,i, where j < k. (For example, see
Fig. 9, in which the specified crossing vertex is shown in light gray.) This crossing vertex is the intersection between two
l-edges of levels k and j. The l-edge of level j is called an entering l-edge of the branch that is connected to each l-edge in θk,i.
The ‘‘entering l-edge’’ of all the l-edges of level zero is defined as any l-edge of level zero.

Fix an entering l-edge ℓ0 of θk,i. In θk,i, there aremany continuous series of l-edges connecting ℓ ∈ θk,i and ℓ0. The number
of l-edges in a series is called the length of the series, and the minimal length of the series connecting ℓ and ℓ0, which is
called the distance between ℓ and ℓ0, is denoted dist(ℓ, ℓ0). Suppose e0 = ℓ0, e1, . . . , es = ℓ is an l-edge series of minimal
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Fig. 10. A hierarchical T-mesh with a path between two connected crossing vertices.

length within the continuous series connecting ℓ and ℓ0. Then, the intersection between es = ℓ and es−1 is a crossing vertex
on ℓ, which is called a characteristic vertex of the l-edge ℓ, and the vertex’s level is (k, j) or (j, k), where j 6 k.

After selecting the entering l-edges for all the connected branches θk,i, we introduce a partial ordering <1 of the interior
l-edges in T . For any two interior l-edges ℓ1 and ℓ2 of levels k1 and k2, respectively, where ℓj is in the branch θkj,ij , j = 1, 2,
we define ℓ1 <1 ℓ2 if

1. k1 < k2, or
2. k1 = k2 and i1 < i2, or
3. k1 = k2 and i1 = i2, dist(ℓ1, ℓ0) < dist(ℓ2, ℓ0), where ℓ0 is the entering l-edge of the connected branch in which both ℓ1

and ℓ2 lie.

This order is incomplete, because, in Case 3, it is possible for two different interior l-edges that dist(ℓ1, ℓ0) = dist(ℓ2, ℓ0).

5.1.3. Crossing-vertex-connected hierarchical T-meshes
To construct examples of spline spaces over hierarchical T-meshes where the lower bound in Eq. (4.11) is sharp, we focus

on a special type of hierarchical T-meshes.

Definition 5.3. For a regular T-mesh, if between any two different crossing vertices a continuous poly line consisting of
edges in the mesh exists such that every joint between two neighboring horizontal and vertical edges on the poly line is a
crossing vertex in the mesh, then the T-mesh is called crossing-vertex-connected. The poly lines in such a mesh are called
paths between the crossing vertices.

For example, two crossing vertices labeled with red dots are selected in the T-mesh shown in Fig. 10. A path between
these two vertices is illustrated in green, and the joints are shown with black triangles.

Definition 5.4. In forming a hierarchical T-mesh, from level k to level k + 1, if there exists a cell of level k to be subdivided
for which all horizontal and vertical neighboring cells of level k remain unchanged, the cell is called an isolated subdivided
cell. Here, we require that at least one neighboring cells exists. Furthermore, if an isolated subdivided cell is not a boundary
cell (whose four boundary edges are interior edges of the mesh), the cell is called a non-boundary isolated subdivided cell.

The following proposition states the relationship between crossing-vertex-connected hierarchical T-meshes and isolated
subdivided cells.

Proposition 5.5. Suppose T is a hierarchical T-mesh whose maximal tensor-product submesh has at least one crossing vertex.
Then, T is crossing-vertex-connected if and only if in any level of forming the hierarchical T-mesh, no isolated subdivided cells
exist.

Proof. Assume the maximal tensor-product submesh of T is M and the level of T is k0. Define

M k
= T k

∪ M ,

where A ∪ B represents a T-mesh with edges in either A or B. It follows that M k0 = T k0 = T .
To finish the proof, we will use an important characteristic of a hierarchical T-mesh whose maximal tensor-product

submesh has at least one crossing vertex: For any k (0 6 k 6 k0), any interior l-edge ℓ in M k has at least one crossing vertex
in M k. In fact, according to the status of ℓ, we have the following two possibilities:

• ℓ is in M : Because M has at least one crossing vertex, M has at least one interior horizontal cross-cut l-edge and at least
one interior vertical cross-cut l-edge. Therefore, ℓ has at least one crossing vertex in M ;
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(a) A tensor-product mesh. (b) Four cells are subdivided.

Fig. 11. Forming a hierarchical T-mesh from a tensor-product mesh without an interior crossing vertex.

• ℓ is in T k with k > 0: ℓ consists of some edges with level k. As previously mentioned, the edges of level k appear when
we subdivide certain cells of level k − 1 by connecting the middle points of the opposite edges of each cell with straight
lines. Therefore, ℓ has at least one crossing vertex of level (k, k).

Here, we do not need to consider the case that ℓ is in T 0 because T 0 is a submesh of M .
Next, we prove that if in any level of forming T , no isolated subdivided cells exist, then T is crossing-vertex-connected.

It is obvious that M 0
= M is crossing-vertex-connected. Suppose v0 is a crossing vertex of M . According to the definition

of crossing-vertex-connection, we must only prove that for any k > 0, if v is a crossing vertex in M k, a path exists between
v and v0. If this supposition is true for k, we will prove that it is also true for k+1. From M k to M k+1, let v be a new crossing
vertex, which is the intersection of two l-edges ℓ1, ℓ2 ∈ M k+1 with levels k1 and k2, respectively. Without loss of generality,
we assume k1 6 k2. It follows that k2 = k + 1. We have the following two cases:

1. k1 < k2 = k + 1:
In this case, ℓ1 is in M k and has a crossing vertex v′ in M k. Therefore, a path exists between v and v′. Consequently, a
path exists between v and v0.

2. k1 = k2 = k + 1:
This case indicates that a cell c ofM k is subdivided by connecting themiddle points of its opposite edgeswith two straight
line segments. The two straight line segments are on ℓ1 and ℓ2, respectively, and their intersection is v. However, c is
not an isolated subdivided cell. Therefore, either ℓ1 or ℓ2 must intersect an l-edge of a level less than k + 1. Suppose the
intersection is v′. According to Case 1, a path exists between v′ and v0. Therefore, a path exists between v and v0.

This result indicates that for any k > 0, if v is a crossing vertex in M k, a path exists between v and v0. Therefore, M k is
crossing-vertex-connected, which completes the proof of the sufficiency of the lemma.

Finally, we prove the necessity of the lemma, i.e., if T is crossing-vertex-connected, then in any level of forming T , no
isolated subdivided cells exist. We assume that c is an isolated subdivided cell of level k. Suppose v is the new crossing
vertex of level (k+ 1, k+ 1) inside c. Then, v is not in M , and we can find another crossing vertex v1 in M . Therefore a path
does not exist between v and v1, which contradicts that T is crossing-vertex-connected. �

In Proposition 5.5, we only consider a hierarchical T-mesh whose maximal tensor-product submesh has at least one
crossing vertex. If we form a hierarchical T-mesh from a tensor-product mesh without a crossing vertex, we might obtain a
mesh that is not crossing-vertex-connected, even if in any level of forming the mesh, no isolated subdivided cells exist. See
Fig. 11, where the tensor-product mesh in Fig. 11(a) has no crossing vertex and themesh in Fig. 11(b) is not crossing-vertex-
connected, although no isolated subdivided cells exist.

In practice, we rarely begin from a tensor-product mesh without a crossing vertex because we usually use a hierarchical
T-mesh that is an extension of some hierarchical T-mesh associated with a biquadratic spline space. However, if we must
calculate the dimension of S(2, 2, 1, 1, T ), where the maximal tensor-product submesh of T has no crossing vertex, then
a set of hierarchical T-meshes {Ti} exists where Ti is a submesh of T and its maximal tensor-product submesh has at least
one crossing vertex such that

dim S(2, 2, 1, 1, T ) =


i

dim S(2, 2, 1, 1, Ti). (5.1)

Because the maximal tensor-product submesh of T has no crossing vertex, T has some cells of level 0 that remain
unchanged in the latter subdivision when forming T . Each of those cells has a pair of opposite edges, which are on the
boundary of T . Therefore, according to the HBC of S(2, 2, 1, 1, T ), for any f ∈ S(2, 2, 1, 1, T ), f ≡ 0 over these cells.
After deleting these cells, we obtain hierarchical T-meshes {Ti}, where Ti is a submesh of T and its maximal tensor-product
submesh has at least one crossing vertex. Here, Ti ∩ Tj = ∅ for any i ≠ j. Therefore, Eq. (5.1) holds.

Remark 5.6. In the remainder of the paper,we only consider a hierarchical T-meshwhosemaximal tensor-product submesh
has at least one crossing vertex.

5.1.4. Division of a general hierarchical T-mesh
In this subsection, we discuss how to divide a general hierarchical T-mesh into the union of some crossing-vertex-

connected hierarchical T-meshes. Suppose the given hierarchical T-mesh is T , and let ci, i = 1, . . . , C be all the isolated
subdivided cells of level k > 0 in forming T . Then, the subdivision occurring in ci to form T will also form a hierarchical
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(a) T . (b) Vi = Ui , i = 1, 2. (c) V3 = U3 \ {U1}. (d) V0 = T \ {U1, U2, U3}.

Fig. 12. Dividing a general hierarchical T-mesh into the union of some crossing-vertex-connected hierarchical T-meshes.

T-mesh, denoted Ui. Here, Ui occupies the same region as the cell ci. In the following, we will apply a T-mesh operation ‘‘\’’.
Suppose Ti, i = 0, 1, . . . , k are hierarchical T-meshes. Then, T0 \ {T1, . . . , Tk} is a new T-mesh that consists of edges and
vertices in T0 but not in the interior of Ti, i = 1, . . . , k. Let U0 = T , and

Vi = Ui \ {Uj : Uj is a submesh of Ui, j = 1, . . . , C, j ≠ i}, i = 0, 1, . . . , C .

Then, it is straightforward to verify that Vi is a crossing-vertex-connected hierarchical T-mesh. Here, V0 derives from T . The
other Vi’s derive from the isolated subdivided cells of level k > 0. It follows that T can be viewed as the disjoint union of Vi,
i = 0, 1, . . . , C .

See Fig. 12 for an example. Fig. 12(a) is a hierarchical T-mesh T with three isolated subdivided cells c1, c2 and c3, whose
boundaries are in red, green, and blue, respectively. Then, for i = 1, 2, 3, Ui is a hierarchical T-mesh formed by all the edges
of T within ci. {Vi}

4
i=0 are given as in Fig. 12(b)–(d).

In Sections 5.2–5.5, we prove that the lower bound on the dimension proposed in Theorem 4.6 is exactly the dimension
of S(2, 2, 1, 1, T ) over a crossing-vertex-connected hierarchical T-mesh. Then, in Section 5.6, a dimension theorem can be
proposed to calculate the dimension of the spline space over a general hierarchical T-mesh by dividing the hierarchical
T-mesh into the union of some crossing-vertex-connected hierarchical branches.

5.2. Conversion of constraints

In Section 4, we proposed different versions of the necessary and sufficient conditions that ensure I(g) ∈ S(2, 2, 1, 1, T )
for any g ∈ S(1, 1, 0, 0, T ). To facilitate the latter analysis, we use the following notation and constraints.

For any regular T-mesh T , denote its occupied rectangle as (xl, xr) × (yb, yt). T c is an associated tensor-product mesh
with T . Assume the y coordinates of the horizontal l-edges in T c are yb = y0 < y1 < · · · < ym < ym+1 = yt and the
x coordinates of the vertical l-edges in T c are xl = x0 < x1 < · · · < xn < xn+1 = xr . For i = 0, 1, . . . ,m + 1, assume
the horizontal l-edges lhi1, . . . , l

h
iαi

have the y coordinate y = yi. Here, lhi1, . . . , l
h
iαi

are sorted from left to right. However, for
j = 0, 1, . . . , n + 1, assume the vertical l-edges lvj1, . . . , l

v
jβj

have the x coordinate x = xj. Here, lvj1, . . . , l
v
jβj

are sorted from
bottom to top. It follows that α0 = αm+1 = β0 = βn+1 = 1, α1 + · · · + αm + β1 + · · · + βn = E.

With this notation, we can allocate the E constraints on the interior l-edges inT c according to Lemma 4.4 in the following
manner. For any interior horizontal l-edge y = yi, the corresponding constraints are

lhik

∂

∂y
g(s, y−

i )ds =


lhik

∂

∂y
g(s, y+

i )ds, k = 1, . . . , αi. (5.2)

For any interior vertical l-edge x = xj, the corresponding constraints are
lvjk

∂

∂x
g(x−

j , t)dt =


lvjk

∂

∂x
g(x+

j , t)dt, k = 1, . . . , βj. (5.3)

Furthermore, by applying a deduction similar to that used in Eq. (4.8), Eqs. (5.2) and (5.3) are equivalent to

(yi+1 − yi−1)

 xhik1

xhik0

g(s, yi)ds = (yi+1 − yi)
 xhik1

xhik0

g(s, yi−1)ds + (yi − yi−1)

 xhik1

xhik0

g(s, yi+1)ds, k = 1, . . . , αi, (5.4)

(xj+1 − xj−1)

 yvjk1

yvjk0

g(xj, t)dt = (xj+1 − xj)
 yvjk1

yvjk0

g(xj−1, t)dt + (xj − xj−1)

 yvjk1

yvjk0

g(xj+1, t)dt, k = 1, . . . , βj, (5.5)

respectively, where xhik0 and xhik1 are the x coordinates of the two end points of lhik, and yv
jk0 and yv

jk1 are the y coordinates of
the two end points of lvjk.
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We now focus on hierarchical T-meshes, for which the corresponding constraints can be converted into a form that
reflects the level structure of the T-mesh. First, we introduce two definitions.

In a hierarchical T-mesh T , select any horizontal l-edge ℓ of level k > 0. Therefore, ℓ appears in T since T k. On l, one
or more crossing vertices exist with vertical level k. These crossing vertices are the center of some inserted crossing from
T k−1 to T k. The l-edge ℓ consists of the horizontal edges of this inserted crossing. It follows that the vertical edges of the
inserted crossing intersect the two l-edges ℓt and ℓb in T k−1. Here, we assume that ℓb of level kb lies under ℓ and that ℓt of
level kt lies above ℓ.

Definition 5.7. For a horizontal l-edge l of level k > 0, the l-edges ℓb and ℓt are defined as described above. Then, ℓb and
ℓt are called the support l-edges of ℓ. The support l-edges of a horizontal l-edge ℓ of level 0 are defined as the two nearest
horizontal l-edges of level 0 that lie above and below ℓ, respectively. For vertical l-edges, the support l-edges are defined
similarly.

It is obvious that for any horizontal/vertical l-edge ℓ, two vertical/horizontal l-edges that pass through the two end points
of ℓ intersect the two support l-edges of ℓ in cases where there is no other crossing vertex between the intersection points
and the end points along the two vertical/horizontal l-edges.

In Eqs. (5.4) and (5.5), a constraint along an l-edge is represented by the linear combination of three integrations. These
integrations are conducted along the current l-edge and its two neighboring horizontal/vertical lines, respectively, with
the same integration limits. Here, the horizontal/vertical lines share the same y/x coordinates as the two-sided nearest
horizontal/vertical l-edges to the current l-edge. In the following lemma, we will convert these constraints into a new form
such that every constraint along an l-edge is a linear combination of three integrations along the current l-edge and its
support l-edges. With this form, every constraint will involve undetermined coefficients in a manner that simplifies the
determination of rank.

Lemma 5.8. Given a hierarchical T-mesh T , select an interior horizontal l-edge ℓh
i . Suppose the y coordinate of ℓh

i is yhi , the x
coordinates of its two end points are xhi1 and xhi2, and the y coordinates of its support l-edges are yhbi and yhti . Then, Eq. (5.4) holds
for the interior horizontal l-edges if and only if for each interior horizontal l-edge the following equation holds:

(yhti − yhbi )

 xhi2

xhi1

g(s, yhi )ds = (yhti − yhi )
 xhi2

xhi1

g(s, yhbi )ds + (yti − yhbi )

 xhi2

xhi1

g(s, yhti )ds. (5.6)

Proof. Necessity. Suppose the interior horizontal l-edge ℓh is of level k, and its two support l-edges are ℓb and ℓt . Between
ℓh and ℓb, other l-edges exist. Suppose the different y coordinates of these l-edges are ȳ0 < ȳ1 < · · · < ȳn̄, where ȳ0 and
ȳn̄ correspond to ℓb and ℓh, respectively. Suppose again that the different y coordinates of the l-edges between ℓh and ℓt are
ȳn̄ < ȳn̄+1 < · · · < ȳn̄+m̄, where ȳn̄+m̄ corresponds to ℓt . According to the definition of the support l-edges, the horizontal
l-edges, excluding ℓh, ℓb and ℓt , are of a level greater than k. Therefore, no l-edge existswhose vertical projection onto ℓh takes
one of the end points of ℓh as its interior point. Therefore, according to the constraints set forth in Eq. (5.4) that correspond
to these l-edges, we can conclude that (ȳi−1, Ii−1), (ȳi, Ii), and (ȳi+1, Ii+1) are collinear, where i = 1, . . . , m̄ + n̄ − 1, and

Ii =

 xhi2

xhi1

g(s, ȳi)ds.

Then, (ȳ0, I0), (ȳn̄, In̄), and (ȳn̄+m̄, In̄+m̄) are collinear, which indicates that the corresponding constraint in Eq. (5.6) holds.
Sufficiency. We prove the sufficiency inductively from the highest level to the lowest level. We will show that for any

given level k0, if the constraints defined in Eq. (5.6) that correspond to the l-edges of level k > k0 hold, then the constraints
in Eq. (5.4) that correspond to all the l-edges of level k0 also hold.

Suppose the maximal level number in the hierarchical T-mesh T is M . For an interior horizontal l-edge of level M ,
it follows from the fact that other l-edges between the current l-edge and its support l-edges do not exist that the
corresponding constraint defined in Eq. (5.4) is the same as the constraint defined in Eq. (5.6).

We now assume that for the interior horizontal l-edges of levels greater than k, if the corresponding constraints in Eq.
(5.6) hold, then the corresponding constraints in Eq. (5.4) also hold. Select an arbitrary interior horizontal l-edge ℓh of level
k whose support l-edges are ℓb and ℓt . The two-sided nearest l-edges of ℓh have the y coordinates h0 and h1. Because the
level numbers of the other horizontal l-edges between ℓh and ℓb are greater than k, according to the inductive assumption,
the integration values along these horizontal lines with the integration interval [xhi1, x

h
i2] are collinear with respect to their

y coordinates. In particular, the corresponding integration values along ℓh, ℓb and y = h0 are collinear with respect to their
y coordinates. Similarly, the integration values along ℓh, ℓt and y = h1 are collinear with respect to their y coordinates.
Therefore, the integration values along ℓh, y = h0 and y = h1 are collinear with respect to their y coordinates, which
completes the proof of the sufficiency. �

Remark 5.9. The statement in Lemma 5.8 applies to horizontal l-edges. A similar statement can be made for vertical
l-edges.
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(a) A part in T k−1 . (b) After inserting crosses. (c) Support example 1. (d) Support example 2.

Fig. 13. The support of the hierarchical basis functions.

In the next subsection, we will specify a proper set of basis functions of S(1, 1, 0, 0, T ) such that the coefficients of g
appear in these constraints in a regular form under these basis functions.

5.3. Hierarchical basis functions of S(1, 1, 0, 0, T )

In Section 3.4, an approach was proposed for specifying a set of basis functions of S(1, 1, 0, 0, T ) with many favorable
properties. Now, we specify a new set of basis functions for S(1, 1, 0, 0, T ) that do not possess the partition of unity.
However, under this set, the constraints in Lemma 5.8 appear in a regular form, which facilitates the rank determination of
the constraints.

The new set of basis functions is defined level by level when forming the hierarchical T-mesh. Every basis function is
associated with a crossing vertex. At level 0, we consider the level 0 T-mesh T 0 and introduce the functions as standard
bilinear tensor-product B-splines. Therefore, every function can be associated with a crossing vertex in T 0 in such a way
that the function reaches one at the crossing vertex and zero at the other crossing vertices of T 0. Use the set B0 to denote
all these functions. Suppose the current level number is k > 1. Consider a newly appearing crossing vertex in this level.

1. If the level of the crossing vertex is (k, k), then the crossing vertex must be the center of an inserted cross in a cell c of
T k−1. Therefore, a function associated with the crossing vertex can be defined such that the function reaches one at the
vertex and the support of the function is c (see Fig. 13(c); in the figure, the light-gray region is the support of the specified
function associated with the new crossing vertex labeled ‘‘•’’). Here, the discontinuity of the derivatives ∂/∂x and ∂/∂y
appears on the edges of the inserted cross.

2. Otherwise, the crossing vertex is the middle point of an edge e in T k−1, where e is the common edge of two neighboring
cells c1 and c2, each of which is subdivided by inserting a cross from level k − 1 to k. In this case, a function can be
defined such that the function reaches one at the current crossing vertex, its support is exactly c1 ∪ c2, and its derivative
discontinuity in the support lies only on the lines through the current crossing vertex (see Fig. 13(d) in which the
derivatives ∂/∂x and ∂/∂y are continuous along the dashed edges).

All of the functions introduced at level k are denoted as Bk.

Lemma 5.10. Suppose the maximal level number of the hierarchical T-mesh T is M. Define B =
M

k=0 Bk. Then, B is a set of
basis functions of S(1, 1, 0, 0, T ).

Proof. By the definition of the functions inBk, it follows that the number of functions inB is exactly the number of crossing
vertices in T . Moreover, these functions are in the spline space S(1, 1, 0, 0, T ). Therefore, to prove that B forms a set of
basis functions of S(1, 1, 0, 0, T ), we only must show that the functions in B are linearly independent.

Assume the region occupied by T isΩ . LetBk
= {bk1(x, y), . . . , b

k
nk(x, y)}. Suppose that a set of coefficients of α

k
i ensures

that

f (x, y) :=

M
k=0

nk
i=0

αk
i b

k
i (x, y) = 0, (x, y) ∈ Ω.

Now, we will prove that αk
i = 0 for any i and k.

Consider the values of f at every crossing vertex v0
i of level (0, 0). Because f ≡ 0, it follows that f (v0

i ) = 0. However, the
function b0i (x, y) in B0 associated with v0

i is one at v0
i , and the other functions vanish at v0

i . Therefore, f (v
i
0) = α0

i b
0
i (v

i
0) =

α0
i , i.e., α

0
i = 0, and we obtain

f (x, y) =

M
k=1

nk
i=0

αk
i b

k
i (x, y).

Suppose we have proved that α
j
i = 0, i = 0, . . . , nj, j = 0, 1, . . . , k − 1. Now, we consider the functions and their

coefficients introduced at level k. Each such function is associated with a crossing vertex. First, we consider the functions
associated with crossing vertices whose vertical and horizontal level numbers differ. On such a crossing vertex, all the
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functions are zero except the function associated with the current crossing vertex. Therefore, the corresponding coefficient
is zero. Next, we consider the other functions that are associated with crossing vertices of the same vertical and horizontal
level numbers. In a similar manner, we can conclude that their coefficients are also zero. Therefore, all of the coefficients are
zero, and the functions in B are linearly independent. Thus they form a set of basis functions of S(1, 1, 0, 0, T ). �

We will call this set of basis functions the hierarchical basis functions of S(1, 1, 0, 0, T ).

5.4. Concretion of the constraints

For a given hierarchical T-mesh T , suppose the hierarchical basis functions of S(1, 1, 0, 0, T ) are

{bki (x, y)} = {cj(x, y)}V
c

j=1,

where bki (x, y) is associated with a crossing vertex appearing in T since level k.
Represent g as

g(x, y) =

V c
j=1

αjcj(x, y). (5.7)

Because there is a one-to-one mapping between the basis functions and the crossing vertices, the coefficient of a basis
function is also called the coefficient of the corresponding crossing vertex.

We now state the characteristics of the constraints after substituting the representation of g defined in Eq. (5.7) into
Eq. (5.6), which ensures I(g) ∈ S(2, 2, 1, 1, T ). First, we consider the constraints corresponding to the interior l-edges of
level 0.

Proposition 5.11. After substituting Eq. (5.7) into Eq. (5.6) and performing a proper transformation, the constraints
corresponding to the interior horizontal l-edges of level 0 are in such a form that the nonzero terms in a constraint consist of
those associated with the crossing vertices on the same l-edge.

Proof. Each interior horizontal l-edge of level 0 must traverse the entire mesh. The support l-edges of a horizontal l-edge
of level 0 are also of level 0. Over the T-mesh T 0, we apply Lemma 4.2 and find that all the constraints corresponding to the
interior horizontal l-edges of level 0 are equivalent to the constraints that the integration of g along each interior horizontal
l-edge is zero. For every l-edge of level 0, only the coefficients of the crossing vertices on the current l-edge are nonzero.
Therefore, the integration can be represented by a linear combination of the coefficients of the crossing vertices on the
current l-edge. �

Next, we consider the constraints corresponding to the interior l-edges of a level greater than 0.

Proposition 5.12. Suppose the current interior horizontal l-edge is of level k > 0. After substituting Eq. (5.7) into Eq. (5.6), the
nonzero coefficients of the basis functions in the corresponding constraint consist of two parts, as follows:

A. the coefficients of the crossing vertices on the current l-edge;
B. the possible coefficients of the crossing vertices of a horizontal level less than k and a vertical level greater than k.

Proof. Select an interior horizontal l-edge ℓh of level k > 0. Suppose its support l-edges are ℓb and ℓt , which are of levels
k1 and k2, respectively. Assume that the x coordinates of the two end points of ℓh are xh0 and xh1 and that the vertical l-edges
through the two end points are ℓv

l and ℓv
r . Then, the two vertical l-edges ℓv

l and ℓv
r intersect ℓb and ℓt . Consider the crossing

vertices whose associating basis functions are nonzero on ℓh, ℓb
|
[xh0,x

h
1]

or ℓt
|
[xh0,x

h
1]
. These crossing vertices can be classified

into the following cases with respect to their levels (kh0, k
h
1):

1. kh0 < k:
(a) kh1 6 k. Because for any x ∈ [xh0, x

h
1] the corresponding three points on ℓh, ℓt , and ℓb with the horizontal coordinates x

appear simultaneously in a cell of T k−1 (including its boundary), it follows that for the current basis function b(x, y),
Eq. (5.6) holds as g = b(x, y). This result indicates that the coefficient of b(x, y) does not appear in the constraint
after simplification.

(b) kh1 > k. This type of coefficient can appear in the constraint.
2. kh0 = k. This type of crossing vertex does not contribute to the constraint unless the crossing vertex lies on lh.
3. kh0 > k. The basis function associated with this type of crossing vertex vanishes on ℓh, ℓb and ℓt between xh0 and xh1.

Therefore, the corresponding coefficient does not appear in the constraint.

Therefore, nonzero coefficients occur in Cases 1(b) and 2, which correspond to Cases B and A, respectively, in the proposition
description. �



90 J. Deng et al. / Journal of Computational and Applied Mathematics 238 (2013) 68–94

We can similarly classify the coefficients’ appearance in the constraints corresponding to interior vertical l-edges.
Following this classification, we know that the coefficient of a crossing vertex of level (k1, k2) can appear in any of the

following three locations:

1. The constraints corresponding to the horizontal l-edge through the vertex;
2. The constraints corresponding to the vertical l-edge through the vertex;
3. If k1 < k2 −1 (or k1 −1 > k2), the coefficient may appear in the constraints corresponding to the horizontal (or vertical)

l-edges of the levels less than k2 (or k1). If k1 = k2 or k2 ± 1, this situation does not occur.

In the first two cases, the involved l-edges are called the naturally appearing l-edges of the coefficient. In the third case, the
involved l-edges are called the unnaturally appearing l-edges of the coefficient. For simplicity, a constraint corresponding to a
horizontal/vertical l-edge of level k is simply called the horizontal/vertical constraint of level k. For two given interior l-edges
ℓ1 and ℓ2, the corresponding constraints are c1 and c2, respectively. If ℓ1 <1 ℓ2, then we also define c1 <1 c2.

5.5. A dimension theorem for crossing-vertex-connected hierarchical T-meshes

With this preparation, we now state and prove the dimension theorem of biquadratic spline spaces over crossing-vertex-
connected hierarchical T-meshes.

Theorem 5.13. Over a crossing-vertex-connected hierarchical T-mesh T , it follows that

dim S(2, 2, 1, 1, T ) = V c
− E + 1.

Proof. First, certain facts must be restated. For any g ∈ S(1, 1, 0, 0, T ), to ensure that I(g) ∈ S(2, 2, 1, 1, T ), the
constraints corresponding to every interior horizontal l-edge (defined in Eq. (5.6)) and vertical l-edge should be satisfied.
Here, we apply the hierarchical basis functions B of S(1, 1, 0, 0, T ). These constraints can be represented by linear
combinations of the coefficients of g under the basis functions B. The coefficients appear in these constraints as stated
in Propositions 5.11 and 5.12.

Suppose that the l-edges of level k inT form some connected branch θk,i, i = 1, 2, . . . , Tk and that the entering l-edges for
all of the branches θk,i have been selected and denoted as ℓk,i. Specifically, the interior l-edges of level zero form a connected
branch. The entering l-edge of this branch is selected to any one interior l-edge of level zero. Then, we can introduce a partial
ordering <1 on the interior l-edges and the corresponding constraints, as stated in Section 5.1.2.

At the beginning, all of the constraints are linearly dependent because Eq. (4.10) shows a linear combination of these
constraints with a result of zero. In this linear combination, each coefficient of level zero is nonzero. Therefore, the rank of
the constraints remains unchanged after deleting any level zero constraint. Without loss of generality, we assume that the
deleted constraint corresponds to the entering l-edge ℓ0,1 of θ0,1. Then, we focus on the remaining constraints and show
that they are linearly independent.

Sort the remaining constraints into a non-decreasing series C1, C2, . . . , CT according to the ordering<1, where T = E−1,
and sort the coefficients {αi} in Eq. (5.7) into a seriesβ1, β2, . . . , βV c such thatβi is a characteristic vertex of the l-edgewhose
corresponding constraint is Ci, i = 1, . . . , T . The remaining variables βT+1, . . . , βV c are arranged randomly. Then, we can
write these constraints into the following matrix form:

(C1, C2, . . . , CT )
T

= M (β1, β2, . . . , βV c )T ,

where M = (mij). Because the characteristic vertex of an l-edge ℓ of level k is of level (k, j) or (j, k), where j 6 k, it
follows according to Propositions 5.11 and 5.12 that the coefficient βi does not appear in the constraints Ci+1, . . . , CT ,
where i = 1, . . . , T − 1. Therefore, mij = 0, i > j. However, the matrix M shows mii ≠ 0, i = 1, . . . , T . This result
indicates that matrix M is of full row rank, i.e., rank M = T . Therefore, the dimension of the spline space S(2, 2, 1, 1, T ) is
V c

− T = V c
− E + 1, which completes the proof of the theorem. �

5.6. A general dimension theorem

In this subsection, we consider the dimension formula of S(2, 2, 1, 1, T ), where T is a general hierarchical T-mesh.

Lemma 5.14. Suppose the hierarchical T-mesh T and its disjoint union of Vi, i = 0, 1, . . . , C are defined as stated in
Section 5.1.4. It follows that

S(2, 2, 1, 1, T ) =

C
i=0

S(2, 2, 1, 1, Vi). (5.8)

Proof. First, we prove that the intersection of any two different subspaces among S(2, 2, 1, 1, Vi), i = 0, 1, . . . , C is {0}.
Therefore, we can define the direct sum of these subspaces. Suppose we select the submeshes Vi0 and Vi1 , where i0 ≠ i1. The
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submeshes Ui0 and Ui1 are defined as before. If any submesh of Ui0 and Ui1 is not a submesh of the other, then the regions
occupied by the two are disjoint, and it follows that the intersection of the subspaces over Vi0 and Vi1 is simply {0}. Otherwise,
we assume without loss of generality that Ui0 is a submesh of Ui1 . In this case, the region occupied by Ui0 is inside a cell
of Ui1 . Denote the cell as c. In Vi1 , the zero function is a unique function whose function values and two first-order partial
derivatives are zero along the boundary of c . It follows that the intersection of the subspaces over Vi0 and Vi1 is also {0}.

It is obvious that

S(2, 2, 1, 1, T ) ⊃

C
i=0

S(2, 2, 1, 1, Vi). (5.9)

However, for any f ∈ S(2, 2, 1, 1, T ), we can construct its component in each subspace as follows. For any j = 0, 1, . . . , C ,
we can arrange all the meshes {Ui}

C
i=1, each of which takes Uj as a submesh in an ascending chain as follows:

Uj = Uij ⊂ Uij−1 ⊂ · · · ⊂ Ui0 = U0.

Because V0 is obtained fromU0 = T by deleting the subdivisions in certain isolated subdivided cells, we can define a new
function P0f that meets f with order one along all the edges in V0. Then, f − P0f vanishes out of those isolated subdivided
cells of U0. We define recursively that Pjf is a function in S(2, 2, 1, 1, Vj) that meets the function f −

ij−1
k=i0

Pkf with order

one along all the edges in Vj. Then, f −
ij

k=i0
Pkf vanishes in Vj except in the isolated subdivided cells of Uj.

According to the definition ofPk, it follows that f −


Pkf vanishes everywhere inT . Therefore, f ∈
C

i=0 S(2, 2, 1, 1, Vi),
which indicates that

S(2, 2, 1, 1, T ) ⊂

C
i=0

S(2, 2, 1, 1, Vi). (5.10)

Combining Eqs. (5.9) and (5.10), we have Eq. (5.8). �

With this lemma, we have the following theorem concerning the dimension formula of spline spaces over general
hierarchical T-meshes.

Theorem 5.15. Suppose T is a hierarchical T-mesh with δ − 1 isolated subdivided cells. Then,

dim S(2, 2, 1, 1, T ) = V c
− E + δ.

Proof. Suppose Uj and Vj, j = 0, 1, . . . , C are defined as in the proof of Lemma 5.14. It follows that C = δ−1 and, according
to Lemma 5.14,

dim S(2, 2, 1, 1, T ) =

C
i=0

dim S(2, 2, 1, 1, Vi).

Assume that in Vi there are V+

i crossing vertices and Ei interior l-edges. Then,

dim S(2, 2, 1, 1, T ) =

C
i=0

(V+

i − Ei + 1).

Because any two different meshes among Vi do not share any common crossing vertices or interior l-edges, it follows that

C
i=0

(V+

i − Ei + 1) = V c
− E + C + 1 = V c

− E + δ.

Therefore, we have

dim S(2, 2, 1, 1, T ) = V c
− E + δ. �

Corollary 5.16. Suppose T is a hierarchical T-mesh with δ′
− 1 non-boundary isolated subdivided cells. Then,

dim S(2, 2, 1, 1, T ) = 2V b
+ V c

− E + δ′.

Proof. Let T ε be an extension of T associated with the spline space S(2, 2, 1, 1, T ). Then, according to the construction
rule of an extended T-mesh, a crossing vertex of T is a crossing vertex of T ε; a boundary vertex (but not a corner vertex)
of T results in two crossing vertices of T ε; and a corner vertex of T results in four crossing vertices of T ε . Therefore, there
are V c

+2(V b
−4)+16 = 2V b

+V c
+8 crossing vertices in T ε . However, it is obvious that there are (E +8) l-edges in T ε .
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Fig. 14. Two examples of CVR graphs.

Anon-boundary isolated subdivided cell ofT is an isolated subdivided cell ofT ε , and inT ε , we cannot find other isolated
subdivided cells.

According to Theorems 2.3 and 5.15, we have

dim S(2, 2, 1, 1, T ) = dim S(2, 2, 1, 1, T ε)

= (2V b
+ V c

+ 8) − (E + 8) + δ′

= 2V b
+ V c

− E + δ′. �

For example, we consider the hierarchical T-mesh in Fig. 6(c), which has 22 boundary vertices, 28 crossing vertices, and
22 interior l-edges. T has only one isolated subdivided cell, which appears in the left-lower corner cell of level 1. Therefore,
this cell is not a non-boundary isolated subdivided cell, and δ = 2, δ′

= 1. Then we have

dim S(2, 2, 1, 1, T ) = 28 − 22 + 2 = 8,
dim S(2, 2, 1, 1, T ) = 2 × 22 + 28 − 22 + 1 = 51.

5.7. Notes on construction of basis functions

After obtaining the dimension formulae of biquadratic spline spaces over hierarchical T-meshes, we naturally consider
how to construct their basis functions with desirable properties, as stated for the bilinear basis functions presented in
Section 3.4.

For this purpose, we first must clarify the topological meaning of V c
− E + δ.

Definition 5.17. Given a hierarchical T-mesh T , we can construct a graph G by retaining the crossing vertices and the line
segments with two end points that are crossing vertices and removing the other vertices and the edges in T . G is called the
crossing-vertex-relationship graph (CVR graph for short) of T .

See Fig. 14 for two examples of hierarchical T-meshes and their corresponding CVR graphs.
According to graph theory [13], a CVR graph is a plane graph that partitions the plane into some bounded regions and an

unbounded region. Here, we call a bounded region a cell of the CVR graph. The unbounded region is not included within the
cells of the CVR graph.
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Given a plane graph G , we consider one of its connected components (a connected component is a maximal connected
subgraph). The Euler formula states that FC − EC + VC = 1, where FC , EC , and VC are the numbers of cells, edges, and
vertices in the current connected part, respectively. After considering all of the connected components in G , we then have
FG −EG +VG = δ, where FG , EG , and VG are the numbers of cells, edges, and vertices in G , and δ is the number of connected
parts in G . The Euler formula holds for a CVR graph.

According to the definition of a CVR graph, if a hierarchical T-mesh T has δ − 1 isolated subdivided cells, then its CVR
graph G has δ connected components (see the examples in Fig. 14). T1 has an isolated subdivided cell at its top-right corner.
Therefore, δ = 2. The CVR graph of T1 has two disconnected components. T2 is an extended T-mesh of T1 associated with
the spline space S(2, 2, 1, 1, T1). T2 does not have any isolated subdivided cells. The corresponding CVR graph is connected.

For a hierarchical T-mesh T and its CVR graph G , the following theorem states that V c
− E + δ in T is exactly the cell

number FG in G .

Theorem 5.18. Given a hierarchical T-mesh T with V c crossing vertices, E interior l-edges and δ − 1 isolated subdivided cells,
suppose there are FG cells in its CVR graph G . It follows that

V c
− E + δ = FG . (5.11)

Proof. Suppose G has EG edges and FG cells. According to the definition of a CVR graph, G has V c vertices and δ connected
components. Therefore, with the Euler formula, we have

FG − EG + V c
= δ.

To prove Eq. (5.11), we merely must show that 2V c
= E + EG . Consider any l-edge ℓi with V c

i crossing vertices. Then, ℓi
generates V c

i − 1 edges in G . On checking all the l-edges in T , we observe that each of the crossing vertices is met twice. It
follows that 2V c

= E + EG , which completes the proof of the theorem. �

Theorem 5.18 indicates the possibility that the basis functions of the biquadratic spline space over a hierarchical T-mesh
could be constructed around the cells in its CVR graph. Experiments based on this idea have been conducted, and the idea
will be more fully examined in the future.

We expect CVR graphs to play an important role in the dimensional analysis and basis function construction of higher
degree spline spaces over hierarchical T-meshes. This expectation includes the following conjecture:

Conjecture 1. Suppose T is a hierarchical T-mesh whose CVR graph is G . When m, n > 2, it follows that

dim S(m, n,m − 1, n − 1, T ) = dim S(m − 2, n − 2,m − 3, n − 3, G ),

where the spline space S(m, n, α, β, G ) is defined in a similar way as the spline space over a T-mesh.

Theorem 5.18 states that the conjecture holds for m = n = 2. For the case in which m = n = 3, we have tested many
examples, which also support this conjecture.

6. Conclusions

In this paper, the dimensions of bilinear and biquadratic spline spaces over T-meshes are discussed. The strategy used is
based on linear space embedding with an operator of the mixed partial derivative. We obtained the dimension formula of
bilinear spline spaces over general T-meshes and that of biquadratic spline spaces over hierarchical T-meshes. Only a lower
bound on the dimension was constructed for biquadratic spline spaces over general T-meshes.

In the future, the basis function construction of biquadratic spline spaces and the proposed conjecture will be examined.
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