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a b s t r a c t

We study the role of partial autocorrelations in the reparameterization and parsimonious
modeling of a covariance matrix. The work is motivated by and tries to mimic the
phenomenal success of the partial autocorrelations function (PACF) in model formulation,
removing the positive-definiteness constraint on the autocorrelation function of a
stationary time series and in reparameterizing the stationarity-invertibility domain of
ARMA models. It turns out that once an order is fixed among the variables of a general
random vector, then the above properties continue to hold and follow from establishing
a one-to-one correspondence between a correlation matrix and its associated matrix
of partial autocorrelations. Connections between the latter and the parameters of the
modified Cholesky decomposition of a covariance matrix are discussed. Graphical tools
similar to partial correlograms for model formulation and various priors based on the
partial autocorrelations are proposed. We develop frequentist/Bayesian procedures for
modelling correlation matrices, illustrate them using a real dataset, and explore their
properties via simulations.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Positive-definiteness and high-dimensionality are two major obstacles in modeling the p × p covariance matrix Σ of a
random vector Y = (Y1, . . . , Yp)′. These can partially be alleviated using various decompositions which, in increasing order
of effectiveness, are the variance–correlation [1], spectral [2] and Cholesky [3,4] decompositions. Only the latter has the
unique distinction of providing an unconstrained and statistically interpretable reparameterization of a covariance matrix,
but at the expense of imposing an order among the entries of Y . Three close competitors are, (i) the covariance selection
models [5,6] based on full partial correlations obtained fromΣ−1, which are statistically interpretable, but constrained, (ii)
the logarithm of eigenvalues and logit of Givens angles [7,2] and (iii) the matrix-logarithm models [8]. The latter two are
based on an unconstrained, but not necessarily interpretable reparameterization ofΣ .
We present yet another unconstrained and statistically interpretable reparameterization ofΣ using the notion of partial

autocorrelation from time series analysis [9,10, Chap. 7], which, like the Cholesky decomposition, also imposes an order
among the entries of Y ; this reparamaterization is also ideal for models that directly include correlation matrices, instead of
covariance matrices, including multivariate probit models [11] and copulas [12]. For covariance matrices, we start with the
decompositionΣ = DRD or the variance–correlation strategy [1] and reduce the problem to and focus on reparameterizing
a correlation matrix R = (ρij) in terms of a simpler symmetric matrix Π = (πij) where πii = 1 and for i < j, πij is the
partial autocorrelation between Yi and Yj adjusted for the intervening (not the remaining) variables. We note that unlike R
and the matrix of full partial correlations (ρ ij),Π has a simpler structure in that it is not required to be positive-definite
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and hence its entries are free to vary in the interval (−1, 1). Furthermore, using the Fisher z transform Π can be mapped
to the matrix Π̃ where the off-diagonal entries of the latter take values in the entire real line (−∞,+∞). The process of
going from a constrained R to a real symmetricmatrix Π̃ is reminiscent of finding a link function in the theory of generalized
linear models [13]. Therefore, the analogues of graphical and analytical machineries developed in the contexts of regression
and the Cholesky decomposition in Pourahmadi [3,14] and references therein, can be brought to the service of modeling
correlation matrices. In the sequel, to emphasize the roles, the properties and the need for (time-) order with a slight abuse
of language we refer toΠ as the partial autocorrelation function (PACF) of Y orΣ , just as in time series analysis.
Compared with the long history of the use of the PACF in time series analysis [15–20], research on establishing a one-to-

one correspondence between a general covariance matrix, its PACF and connecting the latter to the entries of the Cholesky
factor of the former has a rather short history. An early work in the Bayesian context is due to Eaves and Chang [21],
followed by Zimmerman [22] and Pourahmadi [3,10, p. 102] and Daniels and Pourahmadi [23] for longitudinal data, and
Dégerine and Lambert-Lacroix [24] for the time series setup. For a general random vector, Kurowicka and Cooke [25,26] and
Joe [27] have relied on graph-theoretical and standard multivariate techniques, respectively. The origins of a fundamental
determinantal identity involving the PACF, unearthed recently by these three groups of researchers, can be traced to a
notable and somewhat neglected paper of Yule [28, equ. 25] and in the literature of time series in connection with the
Levinson–Durbin type algorithms. It plays a central role in Joe’s [27] method of generating random correlation matrices
with distributions independent of the order of the indices, and we use it effectively in introducing priors for the Bayesian
analysis of correlation matrices. For a similar application in time series analysis, see [20].
Correlation matrices themselves are accompanied by additional challenges. The constraint of diagonal elements fixed

(at one) complicates both reparameterizations, decompositions and computations. Other than the partial autocorrelation
parameterization proposed here, there are no unconstrained parameterizations currently in the statistical literature for
a correlation matrix. In addition, recent advances in Bayesian computations for correlation matrices (i.e., sampling with
Markov chain Monte Carlo algorithms) rely on augmenting the correlation matrix with a diagonal scale matrix to create a
covariancematrix (i.e., parameter expansion algorithms). The strategy is to then sample the inverse of this covariancematrix
from aWishart distribution and then transform back to the correlationmatrix; see, e.g., [29,30]. However, these approaches
do not easily extend to structured correlation matrices (as we will discuss here).
The outline of the paper is as follows. In Section 2, we review the recent results in reparameterizing a correlation matrix

via PACF and the Cholesky decomposition. We use the latter to derive a remarkable identity expressing determinant of R
as a simple function of the partial autocorrelations. This identity obtained by Dégerine, Lambert-Lacroix [24], Joe [27] and
Kurowicka and Cooke [26], plays a fundamental role in introducing prior distributions for the correlation matrix Rwhich is
independent of the order of indices used in defining the PACF. The role of a generalized partial correlogram in formulating
parsimonious models for R is discussed and illustrated using Kenward’s [31] cattle data. In Section 3, we introduce new
priors for correlation matrices based on this parameterization, examine their properties and relation to other priors that
have appeared in the literature [1], present a simple approach to sample from the posterior distribution of a correlation
matrix, and do some simulations to examine the behavior of these new priors. Section 4 provides guidance on the use of
these models and tools in applications in behavior and social sciences. Section 5 summarizes the findings and provides
directions for future work.

2. Reparameterizations of a correlation matrix

Modeling correlation matrices and simulating random or ‘‘typical’’ correlation matrices are of central importance in
various areas of statistics [11,1,32,12], engineering and signal processing [33], social and behavior sciences [34], finance [35]
and numerical analysis [36]. An obstacle in dealing with a correlation matrix R is that all its diagonal entries are the same
and equal to one.
In this section, first we reparameterize correlation/covariance matrices of a general random vector Y = (Y1, . . . , Yp)′

in terms of the partial autocorrelations between Yj and Yj+k adjusted for the intervening variables. Then, using the concept
of regression which is implicit in introducing the partial autocorrelations and the Cholesky decomposition of matrices, we
point out the connections among the PACF, the generalized autoregressive parameters and the innovation variances of Y
introduced in Pourahmadi [3].

2.1. Reparameterization in terms of partial autocorrelations

The notion of PACF is known to be indispensable in the study of stationary processes and situations dealing with Toeplitz
matrices such as the Szegö’s orthogonal polynomials, trigonometricmoment problems, geophysics, digital signal processing
and filtering [37,10], identification of ARMA models, the maximum likelihood estimation of their parameters [19] and
simulating a random or ‘‘typical’’ ARMAmodel [20]. The one-to-one correspondence between the stationary autocorrelation
functions {ρk} and their PACF {πk} [17,18]makes it possible to remove the positive-definiteness constraint on {ρk}, andwork
with {πk}which are free to vary over the interval (−1, 1) independently of each other.
We parameterize a (non-Toeplitz) correlation matrix R = (ρij) in terms of the lag-1 correlations πi,i+1 = ρi,i+1, i =

1, . . . , p− 1 and the partial autocorrelations πij = ρij|i+1,...,j−1 for j− i ≥ 2, or the matrixΠ = (πij). This allows swapping
the constrained matrix R by the simpler matrixΠ with ones on the diagonal and where for i 6= j, the πij’s can vary freely in



2354 M.J. Daniels, M. Pourahmadi / Journal of Multivariate Analysis 100 (2009) 2352–2363

the interval (−1, 1). The key idea behind this reparameterization is the well-known recursion formula [44, p. 41] see also
(1) below, for computing partial correlations in terms of the marginal correlations (ρij). It also lies at the heart of Kurowicka
and Cooke [25,26] and Joe [27] approaches to constructing Π ; however the recursive Levinson–Durbin algorithm used by
Dégerine and Lambert-Lacroix [24] will be used in our presentation in Section 2.3.
Following Joe [27], for j = 1, . . . , p − k, k = 1, . . . , p − 1, let r ′1(j, k) = (ρj,j+1, . . . , ρj,j+k−1), r ′3(j, k) =

(ρj+k,j+1, . . . , ρj+k,j+k−1), and R2(j, k) be the correlationmatrix corresponding to the components (j+1, . . . , j+k−1). Then,
the partial autocorrelations between Yj and Yj+k adjusted for the intervening variables, denoted by πj,j+k ≡ ρj,j+k|j+1,...,j+k−1,
are computed using the expression

πj,j+k =
ρj,j+k − r ′1(j, k)R2(j, k)

−1r3(j, k)
[1− r ′1(j, k)R2(j, k)−1r1(j, k)]1/2[1− r

′

3(j, k)R2(j, k)−1r3(j, k)]1/2
. (1)

Inwhat follows and in analogywith R, it is convenient to arrange these partial autocorrelations in amatrixΠ with (j, j+k)th
entry πj,j+k. Note that the function g(·) in (1) that maps a correlation matrix R into the partial autocorrelation matrixΠ , is
indeed invertible, so that solving (1) for ρj,j+k, one obtains

ρj,j+k = r ′1(j, k)R2(j, k)
−1r3(j, k)+ Djkπj,j+k, (2)

where Djk is the denominator of the expression in (1). Then, the formulae (1) and (2) clearly establish a one-to-one
correspondence between the matrices R andΠ . In the sequel, with a slight abuse of language and following the tradition in
times series analysis we refer to the matrixΠ or πj,j+k viewed as a function of (j, k), as the partial autocorrelation function
(PACF) of Y .
Evidently, when R is a stationary (Toeplitz) correlationmatrix, thenπj,j+k depends only on the lag k, see (1). Consequently,

Π is a stationary (Toeplitz) matrix. Fortunately, the converse is also true and follows from (2). For ease of reference, we
summarize these observations in Lemma 1 in Section 2.3. A correlation matrix R is stationary (Toeplitz) if and only if its
associated PACFΠ is a stationary (Toeplitz) matrix.
Moreover, for a stationary correlation matrix, R reduces precisely to the celebrated Levinson–Durbin formula [10,

Theorem 7.3] for computing the PACF recursively.

2.2. An alternative reparameterization: Cholesky decomposition

Next, we present an alternative reparameterization of a covariance matrix via its Cholesky decomposition or the idea of
autoregression for the underlying random vector.
Consider a mean-zero random vector Y with the positive-definite covariance matrixΣ = (σst). For 1 ≤ t ≤ p, let Ŷt be

the linear least-squares predictor of Yt based on its predecessors Y1, . . . , Yt−1 and let εt = Yt − Ŷt be its prediction error
with variance σ 2t = Var(εt). Then there are unique scalars φtj so that Ŷt =

∑t−1
j=1 φtjYj or

Yt =
t−1∑
j=1

φtjYj + εt , t = 1, . . . , p. (3)

Let ε = (ε1, . . . , εp)′ be the vector of successive uncorrelated prediction errors with Cov(ε) = diag(σ 21 , . . . , σ
2
p ) = D. Then,

(3) rewritten in matrix form becomes ε = TY , where T is a unit lower triangular matrix with 1’s on the main diagonal and
−φtj in the (t, j)th position for 2 ≤ t ≤ p, j = 1, . . . , t−1. Note that σ 2t = Var(εt) is different from σtt = Var(Yt). However,
when the responses are independent, then φtj = 0 and σ 2t = σtt , so that the matrices T and D gauge the ‘‘dependence’’ and
‘‘heterogeneity’’ of Y , respectively.
Computing covariances using ε = TY , it follows that

TΣT ′ = D, |Σ | =
p∏
t=1

σ 2t . (4)

The first factorization in (4), called the modified Cholesky decomposition of Σ , makes it possible to swap the p(p + 1)/2
constrained parameters ofΣ with the unconstrained set of parameters φtj and log σ 2t of the same cardinality. In view of the
similarity of (3) to a sequence of varying order autoregressions, we refer to the parameters φtj and σ 2t as the generalized
autoregressive parameters (GARP) and innovation variances (IV) of Y or Σ [3]. A major advantage of (4) is its ability to
guarantee the positive-definiteness of the estimated covariance matrix given by T̂−1D̂T̂ ′−1 so long as the diagonal entries of
D̂ are positive.
It should be noted that imposing structures on Σ will certainly lead to constraints on T and D in (4). For example, a

correlation matrix Rwith 1’s as its diagonal entries is structured with possibly p(p− 1)/2 distinct parameters. In this case,
certain entries of T and D are either known, redundant or constrained. In fact, it is easy to see that the diagonal entries of the
matrix D for a correlation matrix are monotone decreasing with σ 21 = 1. For this reason and others, it seems more prudent
to rely on the ordered partial correlations when reparameterizing a correlation matrix R as in Section 2.1, than using its
Cholesky decomposition.
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2.3. A multiplicative determinantal identity: Partial autocorrelations

First, we study the role of partial autocorrelations inmeasuring the reduction in prediction error variancewhen a variable
is added to the set of predictors in a regression model. Using this and the second identity in (4) we obtain a fundamental
determinantal identity expressing |Σ | in terms of the partial autocorrelations and diagonal entries of Σ . Joe [27] and
Kurowicka and Cooke [26] had obtained this identity using determinantal recursions and graph-theoretical methods based
on (1), respectively. An earlier and a slightly more general determinantal identity for covariance matrices in the context of
nonstationary processes was given by Dégerine and Lambert-Lacroix [24, p. 54] using an analogue of the Levinson–Durbin
algorithm.
For u and v two distinct integers in {1, 2, . . . , p}, let L be a subset of {1, 2, . . . , p} \ {u, v} and πuv|L stand for the partial

correlation between Yu and Yv adjusted for Y`, `εL. We denote the linear least squares predictor of Yu based on Y`, `εL by
Ŷu|L, and for v an integer Lv stands for the union of the set L and the singleton {v}.

Lemma 1. Let Y = (Y1, . . . , Yp)′ be a mean-zero random vector with a positive-definite covariance matrix Σ . Then, with u, v
and L as above, we have

(a) Ŷu|Lv = Ŷu|L + αuv
(
Yv − Ŷv|L

)
, αuv = πuv|L

√√√√Var(Yu − Ŷu|L)
Var(Yv − Ŷv|L)

. (5)

(b) Var
(
Yu − Ŷu|Lv

)
=
(
1− π2uv|L

)
Var

(
Yu − Ŷu|L

)
. (6)

Proof. (a) Let sp{Yu; uεL} stand for the linear subspace generated by the indicated random variables. Since Yv − Ŷv|L is
orthogonal to sp{Yu; uεL} it follows that

sp{Yu; uεLv} = sp{Yu; uεL} ⊕ sp{Yv − Ŷv|L},

and from the linearity of the orthogonal projection we have

Ŷu|Lv = Ŷu|L + αuv(Yv − Ŷv|L),

where αuv , the regression coefficient of Yu on Yv − Ŷv|L is given by

αuv =
Cov(Yu, Yv − Ŷv|L)

Var(Yv − Ŷv|L)
.

Since Ŷu|Lε sp{Yi; iεL} is orthogonal to Yv − Ŷv|L, the numerator of the expression above can be replaced by Cov(Yu −
Ŷu|L, Yv − Ŷv|L), so that

αuv =
Cov(Yu − Ŷu|L, Yv − Ŷv|L)√
Var(Yu − Ŷu|L)Var(Yv − Ŷv|L)

.

√√√√Var(Yu − Ŷu|L)
Var(Yv − Ŷv|L)

= πuv|L

√√√√Var(Yu − Ŷu|L)
Var(Yv − Ŷv|L)

.

(b) From the first identity in (5), it is immediate that

Yu − Ŷu|Lv = Yu − Ŷu|L − αuv
(
Yv − Ŷv|L

)
,

or

Yu − Ŷu|Lv + αuv(Yv − Ŷv|L) = Yu − Ŷu|L. (7)

Computing variances of both sides of (7) and using the fact that Yu − Ŷu|Lv is orthogonal to Yv − Ŷv|L, it follows that

Var
(
Yu − Ŷu|Lv

)
= Var

(
Yu − Ŷu|L

)
− α2uvVar

(
Yv − Ŷv|L

)
.

Now, substituting for αuv from (a), the desired result follows. �
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Next, we use the recursion (6) to express the innovation variances or the diagonal entries of D in terms of the partial
correlations or the entries of π . Similar expressions for φtj’s, the entries of T , are not available. The next theorem sheds some
light on this problem. Though the expressions are recursive and ideal for computation (Levinson–Durbin algorithm), they
are not as explicit or revealing. The approach we use here is in the spirit of the Levinson–Durbin algorithm [10, Corollary
7.4] as extended by Dégerine and Lambert-Lacroix [24] to nonstationary processes.

Theorem 1. Let Y = (Y1, . . . , Yp) be a mean-zero random vector with a positive-definite covariance matrix Σ which can be
decomposed as in (4).
(a) Then, for t = 2, . . . , p; j = 1, . . . , t − 1, we have

σ 2t = σtt

t−1∏
j=1

(1− π2jt ),

(b) |Σ | =
(∏p

t=1 σtt
)∏p

t=2
∏t−1
j=1 (1− π

2
jt ).

(c) For t = 2, . . . , p; L = {2, . . . , t − 1}

φt1 = π1t

√√√√ Var(Yt − Ŷt|L)
Var(Y1 − Ŷ1|L)

.

(d) φtj = φtj|L − φt1φ1,t−j|L, for j = 2, . . . , t − 1,
where φtj|L and φ1,t−j|L are, respectively, the forward and backward predictor coefficients of Yt and Y1 based on {Yk; kεL},
defined by

Ŷt|L =
t−1∑
j=2

φtj|L Yj, Ŷ1|L =
t−1∑
j=2

φt,t−jYj.

Proof. (a) follows from the repeated use of (6) with u = t and v = j, j = 1, . . . , t − 1. (b) follows from (4) and (a). �

Part (c) proved first in [10, p.102] shows that only the entries of the first column of T are multiples of the partial
autocorrelations appearing in the first column of π . However, for j > 1, since φtj is a multiple of the partial correlation
between Yj and Yt adjusted for {Yi; i ∈ [1, t) \ {j}}, (see Lemma 1(a)), it is not of the form of the entries of π . Note that
these observations are true even when Y is stationary or Σ is Toeplitz [10, Lemma 7.8 and Theorem 7.3]. In the search for
a connection with the entries of π , it is instructive to note that the nonredundant entries of T−1 = (θtj) can be interpreted
as the generalized moving average parameters (GMAP) or the regression coefficient of εj when Yt is regressed on the
innovations εt , . . . , εj, . . . , ε1, see [10, p.103]. An alternative interpretation of θtj as the coefficient of Yj when Yt is regressed
on Yj, Yj−1, . . . , Y1 is presented in [38, Sec. 2.2]. Consequently, θtj is a multiple of the partial correlation between Yt and Yj
adjusted for {Y1, . . . , Yj−1}. We hope these connections and working with partial correlations will offer similar advantage
to working with the GARP in terms of the autoregression interpretation [10, Sections 3.5.3 and 3.5.4].

2.4. An attractive property of the PACF parameterization

Parsimonious modeling of the GARP of the modified Cholesky decomposition often relies on exploring for structure as a
function of lag; for example, fitting a polynomial to the GARP as a function of lag [3]. For such models, the GARP, in a sense,
have different interpretations within lag; i.e., the lag 1 coefficient from the regression of Y3 on (Y2, Y1) is the Y2 coefficient,
when another variable, Y1 is also in themodel; however, for the regression of Y2 on Y1, the lag 1 coefficient is the Y1 coefficient
with no other variable in the model. So, for a given lag k, the lag k coefficients all come from conditional regressions where
the number of variables conditioned on are different. However, by construction, the lag k partial autocorrelations are all
based on conditional regressions where the number of conditioning variables are the same, always conditioning on k − 1
intervening variables. This will facilitate building models for the partial autocorrelations as a function of lag. We discuss
such model building in the next section.

2.5. Parsimonious modeling of the PACF

In this section,we use the generalized partial correlogram, i.e. the plot of {πj,j+k; j = 1, . . . , p−k} versus k = 1, . . . , p−1,
as a graphical tool to formulate parsimonious models for the PACF in terms of the lags and other covariates. If necessary,
we transform its range to the entire real line using z transform. Such a modeling environment is much simpler and avoids
workingwith the complex constraints on the correlationmatrix R [1,39] or thematrix of full partial correlations constructed
fromΣ−1 [6]; note that the full partial correlations (ρ ij) are defined as the correlation between two components conditional
on all the other components.
Note that the partial autocorrelations πj,j+k between successive variables Yj and Yj+k are grouped by their lags k =

1, . . . , p − 1, and heuristically, πj,j+k gauges the conditional (in)dependence between variables k units apart conditional
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Table 1
Cattle Data. Sample correlations (below the main diagonal), sample PACF (above the main diagonal) and sample variances (along the main diagonal).

106 0.82 0.07 −0.24 0.03 0.01 0.16 −0.06 0.26 −0.22 0.19
0.82 155 0.91 0.03 0.02 −0.23 −0.17 0.01 −0.01 −0.07 −0.25
0.76 0.91 165 0.93 0.07 −0.04 −0.12 0.01 0.09 0.21 0.03
0.66 0.84 0.93 185 0.94 0.23 −0.18 −0.2 −0.22 0.02 0.27
0.64 0.80 0.88 0.94 243 0.94 −0.04 0.07 −0.23 −0.08 0.16
0.59 0.74 0.85 0.91 0.94 284 0.93 0.56 −0.3 −0.09 −0.24
0.52 0.63 0.75 0.82 0.87 0.93 306 0.93 0.35 −0.24 −0.18
0.53 0.67 0.77 0.84 0.89 0.94 0.93 341 0.97 0.15 −0.28
0.52 0.60 0.71 0.77 0.84 0.90 0.93 0.97 389 0.96 0.2
0.48 0.58 0.70 0.73 0.80 0.86 0.88 0.94 0.96 470 0.98
0.48 0.55 0.68 0.71 0.77 0.83 0.86 0.92 0.96 0.98 445

Table 2
Fitted PACF from the least-squares fit of a cubic polynomial to the sample PACF (first row) and the fitted Fisher’s z transform of PACF from the least-squares
fit of an exponential function of the lags (second-row).

Lags 1 2 3 4 5 6 7 8 9 10

Fitted PACF 0.89 0.24 −0.09 −0.19 −0.15 −0.02 0.11 0.16 0.07 −0.26
Fitted z transf. −1.64 −0.49 −0.07 .09 0.15 0.17 0.18 0.18 0.18 0.18

on the intervening variables, so one expects it to be smaller for larger k. In the Bayesian framework, this intuition suggests
putting shrinkage priors on the partial autocorrelations that shrink the matrixΠ toward certain simpler structures [40].

2.6. Data illustration

To illustrate the capabilities of the generalized correlograms in revealing patterns, we use the cattle data [31] which
consists of p = 11 bi-weeklymeasurements of theweights of n = 30 cows. Table 1, displays the sample (partial) correlations
for the cattle data in the lower (upper) triangular segment and the sample variances are along the main diagonal. It reveals
several interesting features of the dependence in the data that the commonly used profile plot of the data cannot discern.
For example, note that all the correlations are positive, they decrease monotonically within the columns (time-separation),
they are not constant (nonstationary) within each subdiagonal. In fact, they tend to increase over time (learning effect).
Furthermore, the partial autocorrelations of lags 2 or more are insignificant except for the entries 0.56 and 0.35.
Fig. 1 presents the generalized correlograms corresponding to the sample correlation matrix of the data, the full partial

correlations, the generalized partial correlogram and the Fisher’s z transform of the PACF. Note that the first two correlo-
grams suggest linear and quadratic patterns in the lag k, but in fitting such models one has to be mindful of the constraints
on the coefficients so that the corresponding fitted correlation matrices are positive definite. Details of fitting such models
and the ensuing numerical results can be found in [10]. The generalized partial correlogram in (c) reveals a cubic polynomial
in the lags, i.e. πj,j+k = γ0+γ1k+γ2k2+γ3k3; in fitting suchmodels the only constraint to observe is that the entries of the
matrixΠ are required to be in (−1, 1). However, the Fisher z transform of the entries ofΠ are unconstrained and Fig. 1(d)
suggests a pattern that can be approximated by an (exponential) function α + β exp(−k), k = 1, . . . , p − 1, with no con-
straints on (α, β) or another cubic polynomials in the lags. The least-squares fits of a cubic polynomial and an exponential
function to the correlograms in Fig. 1(c)–(d) are summarized in Table 2. Note that fitting suchmodels to the PACF amounts to
replacing the entries of the kth subdiagonal of thematrixΠ by a single number and hence R is approximated by a stationary
(Toeplitz) matrix, see Lemma 1 and Theorem 2 below. In addition, this parameterization also allows the marginal variances
to be similarly modelled parsimoniously (as a function of time) similar to the modelling of the prediction variances in [3].
The maximum likelihood estimation of the parameters and their asymptotic properties will be pursued in a future work.

3. Priors for R via the partial autocorrelations

In addition to the advantages for formulating parsimonious models, the unconstrainedness of the PACF suggests some
approaches for constructing priors for R using independent linearly transformed Beta priors on (−1, 1) for the PACF.

3.1. Independent priors on partial autocorrelations

Given that each partial autocorrelation is free to vary in the interval (−1, 1), we may construct priors for R derived
from independent priors on the PACF. A natural option would be a uniform distribution on the space of Π , i.e., a uniform
distribution on the p(p−1)/2-dimensional hypercube; we denote this prior as the independent uniform (IU) prior. This can
be shown to induce the following prior on the correlation matrix R:

p(R) ∝

[
p−1∏
k=1

p−k∏
j=1

(1− π2j,j+k)
p−1−k

]−1/2
. (8)
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Fig. 1. (a) Generalized sample correlogram for the cattle data, (b) Generalized inverse correlogram, (c) Generalized partial correlogram, (d) Plot of Fisher
z transform of the PACF.

One can express the prior in (8) in terms of the marginal correlations, ρj,j+k by plugging in for πj,j+k from (1). This prior
induces a particular behavior on the marginal correlations. Specifically, the priors on the (marginal) correlations ρj,j+k
become gradually more peaked at zero as the lag k grows. As an illustration of this behavior, Fig. 2 shows the histograms
based on 10,000 simulations from the uniform prior on the partial autocorrelations for p = 5. As the dimension p of the
correlation matrix grows, the priors become more peaked at zero for larger lags. This can also be seen by examining the
prior probability of being in some interval, say [−.5, .5], as a function of the lag. For p = 15, the (averaged) probabilities,
ordered from lag 1 to lag 14, are respectively, (.50, .59, .65, .70, .73, .76, .78, .80, .82, .83, .84, .85, .86, .87). This would appear
to be desirable behavior for longitudinal data which typically exhibits serial correlation decaying with increasing lags.
It is also evident from Fig. 2 that the priors for ρj,j+k with k fixed, appear to be the same (see the subdiagonals). We state

this observation more formally in the following theorem; see also Lemma 1.

Theorem 2. If the partial autocorrelations, πjk have independent stationary priors, i.e

p(πjk) = p(πil) if |j− k| = |i− l|, (9)

(or the priors are the same along the subdiagonals of Π), then the marginal priors on the correlations ρjk are also stationary, i.e.

p(ρjk) = p(ρil) if |j− k| = |i− l|. (10)

(or the priors are the same along the corresponding subdiagonal of R).

Theorem implies that independent ‘‘stationary’’ priors on Π induce ‘‘stationary’’ priors on the marginal correlations. Most
priors we introduce here satisfy this property.
More generally, independent linearly transformed Beta priors on the interval (−1, 1) for partial autocorrelations are

a convenient and flexible way to specify a prior for a correlation matrix R. These priors, denoted by Beta(α, γ ), have the
density

p(ρ) =
1

2β(α, γ )

(
1+ ρ
2

)α−1 (1− ρ
2

)γ−1
. (11)

Interestingly, the uniform prior on the correlation matrix [1] corresponds to the following stationary Beta priors on the
partial autocorrelations:

πi,i+k ∼ Beta(αk, αk), (12)

where αk = 1 + 1
2 (p − 1 − k); see [27]. We will refer to this prior as Barnard Beta (BB). As noted in [1], such a prior on R

results in the marginal priors for each of the marginal correlations being somewhat peaked around zero (same peakedness
for all ρjk). Also note that the priors become more peaked as p grows.
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Fig. 2. Marginal priors on ρjk from independent uniform priors on the partial correlations, πjk . The subplots are arranged as the matrix R.

In general, priors for the correlation matrix proportional powers of the determinant of the correlation matrix,

p(R) ∝ |R|αp−1 (13)
are constructed by setting αk = αp+ 1

2 (p− 1− k) in (12). Priors so constructed are proper, so improper priors like Jeffreys’
for a correlation matrix in a multivariate normal model, π(R) = |R|−(p+1)/2, are not special cases.

3.2. Shrinkage behavior of the BB and IU priors

The IU priors on the PACF induce desirable behavior for longitudinal (ordered data) by ’shrinking’ higher lag correlations
toward zero. The Beta priors in (12), which induce a uniform prior for R (BB priors) place a uniform (−1, 1) prior on the lag
p−1 partial autocorrelations and shrink the other partial autocorrelations toward zero with the amount of shrinkage being
inversely proportional to lag. This induces the desired behavior on the marginal correlations, making their marginal priors
equivalent, but it is counter-intuitive for ordered/longitudinal data with serial correlation; in addition, the shrinkage of the
lag one partial autocorrelations for the BB prior increaseswith p (recall the form in (12)). In such data,wewould expect lower
lag correlations to be less likely to be zero and higher lag correlations to be more likely to be zero. Thus, the independent
uniform priors are likely to be a good default choice for the partial autocorrelations in terms of inducing desirable behavior
on the marginal correlations and not counter-intuitively shrinking the partial autocorrelations. We explore this shrinkage
behavior further via some simulations in Section 3.5.
In addition, we expect many of the higher lag partial autocorrelations to be close to zero for longitudinal data with

serial correlation via conditional independence (see Table 1). To account for this, we could (aggressively) shrink the partial
autocorrelations toward zero (with the shrinkage increasing with lag) using shrinkage priors similar to those proposed
in [23,40] or by creating such priors based on the Beta distributions proposed here. We are currently exploring this.

3.3. Some other priors for a correlation matrix

Other priors for R have been proposed in the literature which cannot be derived based on independent priors on the
partial autocorrelations. For example, the prior on R that induces marginal uniform (−1, 1) priors on the ρij’s [1] has the
form:

p(R) = |R|p(p−1)/2−1
p∏
i=1

|R[−i,−i]|−(p+1)/2 (14)

where R[−i,−i] is the submatrix of Rwith the ith row and column removed and |R[−i,−i]| = [R]−1ii |R|. Such a prior might
not be a preferred one for longitudinal (ordered) data where the same marginal priors on all correlations (irrespective of
lag) may not be the best default choice.
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Eaves and Chang [21] derived some related reference priors for the set of partial correlations, π1,j for j = 2, . . . , p;
however, their priors are not natural for longitudinal data. Chib andGreenberg [11] specified a truncatedmultivariate normal
distribution on the marginal correlations. Liechty et al. [41] placed normal distributions on the marginal correlations with
the goal of grouping the marginal correlations into clusters. The latter two priors along with those in [6] for the full partial
correlations (ρ ij) are highly constrained given that they model the marginal (or full partial) correlations directly.

3.4. Bayesian computing

An additional issue with modeling the correlation matrix is computational. Our development here will focus on cases
without covariates in the correlation matrix (this will be left for future work) under the class of independent priors on the
PACF discussed in Section 3.1. The proposal here might be viewed as an alternative to the PX-RPMH algorithm in [30] that
explicitly exploits the fact that we are modeling the partial autocorrelations themselves (a computational comparison will
be left for future work). However, our approach will naturally allow structures in the partial autocorrelations which cannot
be done when using current versions of the PX-RPMH (or similar) algorithms; for example if the partial autocorrelations are
zero or constant within lag, as the correlation matrix is then highly constrained.
In the following, we assume the data, {Yi : i = 1, . . . , n} are independent, normally distributed p-vectors with mean

Xiβ and with covariance matrix Σ = R (a correlation matrix). A natural way to sample the partial autocorrelations is via a
Gibbs sampling algorithm in which we sample from the full conditional distributions of each of the partial autocorrelations.
Given that the full conditional distributions of the partial autocorrelations are not available in closed form there are several
options to sample them. We explore a simple one next.
We propose to use an auxiliary variable approach to sample each partial autocorrelation. Define the likelihood for the

partial autocorrelation πjk as L(Π) and the prior as p(πjk). As in [42], introduce a positive latent variable Ujk such that

L(Π)p(πjk) =
∫
∞

0
I{ujk < L(Π)}p(πjk)dujk. (15)

To sample πjk, we can proceed in two steps,
1. Sample Ujk ∼ Unif (0, L(Π)).
2. Sample p(πjk) constrained to the set {πjk : L(Π) > Ujk}.

Truncated versions of the priors proposed here, linearly transformed Beta distributions (of which the uniform is a special
case), can easily be sampled using the approach in [43]. The truncation region for step 2, given that the domain of πjk is
bounded, can typically be found quickly numerically. The likelihood evaluations needed to find the truncation interval can
be made simpler by using the determinant identity derived in Theorem 1.
In the following, we list several facts about the likelihood that are useful in computing the marginal posteriors of

individual πjk.

Fact 1. If we factor R−1 = CPC , where P is a correlation matrix and C is a diagonal matrix, the elements of P are the full
partial correlations, ρ ij [44, Chapter 15].

Fact 2. To isolate the likelihood contribution of πj,j+k, we can factor the entire multivariate normal distribution into
p(yj, . . . , yj+k)p(yl : l < j or l > j+ k | yj, . . . , yj+k). The (l, k) entry of inverse of the correlationmatrix, R[j : j+ k]
for the first factor is related to the partial autocorrelation of interest (recall Fact 1).

Fact 3. Using the determinantal identity in Theorem 1(b), the determinant of submatrices of R in terms of partial
autocorrelations can be written as a function of the partial autocorrelations,

|R[j : j+ k]| =
k∏
l=1

j+k−l∏
i=j

(1− π2i,i+l). (16)

Extensions of these computational procedures to modelling the correlation matrix when the matrix of interest is a
covariance matrix is straightforward (see, e.g., [30]).

3.5. Simulations

We now conduct some simulations in a longitudinal setting to
1. examine the mixing behavior of the auxiliary variable sampler here and
2. compare the risk of the IU prior to the BB prior, the standard default prior for a correlation matrix.

In terms of the mixing of the Markov chain, the auxiliary variable sampler on the partial autocorrelations works quite
well, with the lag correlation in the chain dissipating quickly. For example, for p = 5, n = 25, the lag correlations for each
partial autocorrelation was negligible by lag 10. Similar results were seen for other p/n combinations.
For our simulation, we consider three truematrices representing typical serial correlation, an AR(1)with lag 1 correlation

of .8 and one with lag correlation .6. Both these matrices have all partial autocorrelation beyond lag 1 equal to 0. We also



M.J. Daniels, M. Pourahmadi / Journal of Multivariate Analysis 100 (2009) 2352–2363 2361

Table 3
Results for p = 5. Each row corresponds to n = 10, 25, 50, 100. IU: independent uniform priors; BB: Barnard Beta priors. LL: log likelihood loss; SEL-P:
squared error loss on Fisher’s z-transformation of the partial autocorrelations; SEL-M: squared error loss on Fisher’s z-transformation of the marginal
correlations. Full: matrix with lag 1-3 partial autocorrelations equal to (.8, .4, .1) with the rest zero.

R LL SEL-P SEL-M
IU BB IU BB IU BB

AR(.8) 2.4 1.6 1.4 1.1 1.7 1.1
.69 .51 .48 .39 .55 .38
.27 .23 .20 .18 .22 .17
.11 .10 .09 .08 .09 .07

AR(.6) 1.1 .99 .89 .86 .98 .89
.48 .45 .41 .39 .46 .44
.23 .21 .19 .18 .19 .17
.11 .11 .10 .09 .10 .10

Full 2.7 1.9 1.8 1.3 2.8 1.8
.68 .50 .46 .35 .61 .38
.25 .20 .19 .16 .21 .15
.12 .11 .10 .09 .08 .07

Table 4
Results for p = 10. Each row corresponds to n = 20, 50, 100. IU: independent uniform priors; BB: Barnard Beta priors. LL: log likelihood loss; SEL-P:
squared error loss on Fisher’s z-transformation of the partial autocorrelations; SEL-M: squared error loss on Fisher’s z-transformation of the marginal
correlations. Full: matrix with lag 1–3 partial autocorrelations equal to (.8, .4, .1) with the rest zero.

R LL SEL-P SEL-M
IU BB IU BB IU BB

AR(.8) 5.0 2.8 3.3 2.3 5.2 2.7
1.6 1.1 1.2 .88 1.7 .97
.60 .48 .49 .42 .52 .36

AR(.6) 2.4 2.2 2.1 2.1 2.2 1.9
.97 .85 .86 .79 .88 .71
.49 .45 .45 .42 .42 .36

Full 6.4 3.5 4.3 2.7 11.0 4.8
1.8 1.1 1.4 .94 2.9 1.3
.69 .52 .55 .45 .90 .50

considered amatrix that hadmore non-zero partial autocorrelationswith lags 1, 2, 3, 4 equal to (.8, .4, .1, 0) respectively; this
corresponds to the lag 1-4 marginal correlations being equal to (.8, .78, .73, .68). We consider two size matrices/sample size
combinations, p = 5 with n = 10, 25, 50, 100 and p = 10 with sample sizes, n = 20, 50, 100. We also consider several loss
functions, log likelihood (LL) loss, tr(R̂R−1)− log |R̂R−1|−p, with Bayes estimator the inverse of the posterior expectation of
R−1 and squared error loss on Fisher’s z-transform of the partial autocorrelations, πjk (SEL-P) and the marginal correlations,
ρjk (SEL-M), with Bayes estimator the posterior mean (of the z-transformed correlations).
For p = 5, the risk reductions from the IU prior are clear from Table 3, with percentage reductions as large as 30% for

n = 10, 25% for n = 25 and 15% for n = 50. For p = 10, the risk reductions from the uniform prior are clear from Table 4,
with percentage reductions as large as 50%. The largest risk reductionswere for loss SEL-M (squared error loss on the Fisher’s
z-transform on the marginal correlations). The lower risk reductions for the first order autoregressive covariance matrices
are related to only the lag 1 partial autocorrelations being non-zero; so the shrinkage of the BB prior for all the other partial
autocorrelations is not unreasonable. Examination of squared error loss for the partial autocorrelations by lag indicates large
reductions for the lag 1 partial autocorrelations and smaller increases for the other lag partial autocorrelations.
In addition, the estimates of the first order lag correlation show large differences (not shown). For AR (.8) with p = 10

and n = 50, the means were .75 under the IU prior and about .70 under the BB prior with larger discrepancies for p = 5.
Some of the risk reductions from using the IU priors on the partial autocorrelations are small. However, they come at

no computational cost (unlike some priors for covariance matrices proposed in the literature) and are consistent with prior
beliefs about partial autocorrelations representing serial correlation. The BB prior is not a good default choice due to its
dampening effects on the important lower order partial autocorrelations. Further risk improvement might be expected
through the use of more targeted shrinkage [23].

4. Partial correlations in the behavior and social sciences

The models and priors for partial correlations are extremely important for many applications involving longitudinal and
functional data in the behavior and social sciences. In particular, modeling longitudinal data using structural equation and
factor analytic models (i.e., latent variable models in general) typically require careful modeling of correlation matrices see
e.g., [39] as do multivariate probit models [11,45,34]. The tools here provide both a general class of methods for using the
partial autocorrelations that allow parsimonious modeling of correlations via regression modeling and sensible priors on



2362 M.J. Daniels, M. Pourahmadi / Journal of Multivariate Analysis 100 (2009) 2352–2363

correlations within such models which is often essential in small to medium sized datasets. Such modeling takes on even
more importance in the presence of incomplete data [46]. In addition, the uniform priors on the partial autocorrelations
recommended in Section 3 provide no additional computational challenges over standard priors for a correlation matrix.
Future work will illustrate these methods more fully in applications.

5. Discussion

Using the variance–correlation separation strategy, modeling a covariance matrix is reduced to that of its correlation
matrix R which has the additional constraint that all its diagonal entries must be equal to one. Though the Cholesky
decomposition can handle the positive-definiteness, it cannot be applied directly when there are additional constraints
such as stationarity or constancy along diagonals [3, Sec. 2.6], zero entries [47] and separable covariance structures [48].
The reparameterization in terms of partial autocorrelations is shown to work well in the face of an additional constraint. It
requires ordering the variables which is not a problem for longitudinal and functional data, but might be difficult to justify
for other situations. Related work on trying to ‘order’ data that does not have a natural ordering can be found in [49,50].
The long history and successful use of the PACF in the time series literature provide valuable graphical and analytical tools
which can be generalized to the nonstationary setup.
Given the conditioning structure of the partial autocorrelations, we expect many of them to be zero (see Table 1). Thus,

it would be natural to adapt the approach in [6] to zero out the partial autocorrelations. We might expect computational
simplifications given that the PACF are free to vary independently in [−1, 1] unlike the full partial correlations. In addition,
when constructing priors for the probability of a partial autocorrelation being zero, the lack of exchangeability of the partial
autocorrelations (vs. the full partial correlations) given that they condition on different numbers of variables (i.e., only the
intervening variables) must be taken into account; such issues have been addressed in [34] in a related setting.
We will explore the computational efficiency of other proposals for Bayesian computing in future work, including

sampling all the partial autocorrelations together. In addition, we will derive strategies for Bayesian inference when
modeling Fisher’s z transform of the partial autocorrelations as a function of covariates.
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