
a

ct

ndition

or, died

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
J. Math. Anal. Appl. 282 (2003) 846–851

www.elsevier.com/locate/jma

Note

A note on univalent functions starlike with respe
to a boundary point

A. Leckoa and A. Lyzzaikb,∗

a Department of Mathematics, Technical University of Rzeszów, Rzeszów, Poland
b Department of Mathematics and Computer Science, American University of Beirut, Beirut, Lebanon

Received 23 April 2002

Submitted by K.-T. Kim

Dedicated to the memory of Professor Walter Hengartner1

Abstract

The object of this paper is to prove the sufficiency of a recently established necessary co
for a univalent function to be starlike with respect to a boundary point.
 2003 Elsevier Inc. All rights reserved.

1. Introduction and statement of Main theorem

Let C be the complex plane and letD be the open unit disc{z: |z| < 1}. A complex
regionΩ with 0∈ ∂Ω is calledstarlike with respect to the origin if for every pointw ∈ Ω

the line segment(0,w] = {tw: 0< t � 1} lies in Ω . Also, we call a univalent functionf
of D ontoΩ starlike with respect to the (boundary point at the) origin. Denote byS∗

0 the
class of all such functions.

Let f be an analytic function ofD and letζ ∈ ∂D. We say thatf has theasymptotic
value a ∈ C∪{∞} atζ if there exists a Jordan arcΓ that ends atζ and lies inD except for
ζ such that

f (z) → a asz ∈ Γ, z → ζ.

Also, we say thatf has theangular limit a ∈ C ∪ {∞} at ζ if
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f (z) → a asz ∈ A, z → ζ,

for every Stolz angleA at ζ , A = {z ∈ D: |arg(1 − ζ̄ z)| < π/2 − δ}, where 0< δ < π/2.
For these notions see [4, p. 267].

Since the origin is an accessible point inΩ, there exist infinitely many functionsf ∈ S∗
0

whose angular limits at 1 is zero [5, Corollary 2.17].
Univalent functions starlike with respect to a boundary point were first introduc

1981 by Robertson [6]. In his paper, the following two classes of univalent functions
introduced:

(i) The classG of univalent functionsf of D that satisfyf (0) = 1 and


{

2z
f ′(z)
f (z)

+ 1+ z

1− z

}
> 0 (z ∈ D);

(ii) The classG∗ of univalent functionsf of D that satisfyf (0) = 1, limr→1− f (r) = 0,
f (D) is starlike with respect to the origin, and{eiαf (z)} > 0 for some realα and all
z ∈ D.

Further, Robertson proved thatG ⊂ G∗ and conjectured thatG∗ ⊂ G. The conjecture wa
resolved positively by Lyzzaik in [3] where a short proof of the former set-inclusion
also given.

It is immediate thatf 2 ∈ S∗
0 if f ∈ G; conversely iff (0) = 1, limr→1− f (r) = 0, and

f 2 ∈ S∗
0 , thenf ∈ G. However, iff 2 ∈ S∗

0 , andf (0) �= 1 or limr→1− f (r) �= 0, then there
exists a realβ such that limt→1− f (teiβ ) = 0 and, consequently,f (eiβz)/f (0) ∈ G. This
gives at once a complete analytic definition of the functionsf ∈ S∗

0 .
Let B be the class of all analytic functions fromD to itself. Forα > 0, letB(α) be the

subclass ofB consisting of all functionsω whose angular limits of(1−ω(z))/(1− z) at 1
is α.

In order to establish another analytic definition of the functionsf ∈ S∗
0 , Lecko proved

recently the following result [2, Theorem 3.2].

Theorem 1. Let f be an analytic function of D with angular limit zero at 1. If f ∈ S∗
0 , then

there exists ω ∈ B(α), α ∈ (0,1], such that

−(1− z)2
f ′(z)
f (z)

= 4
1− ω(z)

1+ ω(z)
, z ∈ D. (1)

In an attempt to prove the converse of this theorem, Lecko also proved the follo
result [2, Theorem 3.3].

Theorem 2. Let f be an analytic function of D with angular limit zero at 1. If there exist
ω ∈ B and α ∈ (0,1] such that limz→1ω(z) = 1, limz→1(1 − ω(z))/(1 − z) = α, and (1)
holds, then f ∈ S∗

0 .

The object of this note is to prove the converse of Theorem 1 stated as follows.
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Main theorem. Let f be an analytic function of D with asymptotic value zero at 1. If there
exists ω ∈ B(α), α ∈ (0,1], such that (1) holds, then f ∈ S∗

0 .

Observe that this is a stronger converse of Theorem 1 in view of the weaker cond
on bothf and its associated functionω.

2. Proof of Main theorem

Let g = f 1/2α . For 0< x < 1, (1 − ω(x))/(1 − x) → α asx → 1. Then there exists
sequence(xn), 0< xn < 1, such thatxn → 1, ω(xn) → 1, and(1 − |ω(xn)|)/(1 − xn) →
A � α. Then, by the theorem of Carathéodory–Landau–Valiron [1, Theorem 1.5, p. 9

|1−ω(z)|2
1− |ω(z)|2 � A

|1− z|2
1− |z|2 , z ∈ D.

ThusA> 0 and

sup
z∈D

|1− ω(z)|2
1− |ω(z)|2

1− |z|2
|1− z|2 � α. (2)

Using (1) and (2), we obtain

(
1− |z|2) |g′(z)|

1+ |g(z)|2 � 2

α

|g(z)|
1+ |g(z)|2

|1−ω(z)|2
1− |ω(z)|2

1− |z|2
|1− z|2 � 1. (3)

Thusg is a normal function. Sinceg, like f , assumes zero as an asymptotic value at
has the angular limit zero at 1 [4, Theorem 9.3].

For k > 0, let γk(θ) = (1 + keiθ )/(1 + k), θ ∈ [0,2π]; this is the positively-oriente
circle centered at 1/(1+k) and tangent to the unit circle at 1. By virtue of (1), we conclu

d

dθ
argg ◦ γk(θ) = d

dθ
�[

logg ◦ γk(θ)
]

= 1

4α


[
−(

1− γk(θ)
)2f

′ ◦ γk(θ)

f ◦ γk(θ)

]/
(

1− γk(θ)
)
> 0

for 0< θ < 2π and argg ◦ γk(θ) is strictly increasing in(0,2π); see [2].
Fix z0 ∈ D. Note that there exists a uniquek > 0 such thatz0 ∈ γk. Denote byOk the

horocycle ofγk ; this is the finite open disc bounded byγk . Let w0 = g(z0) and let[0,w0]
be the line segment from 0 tow0. Sinceg′ is nonvanishing inD and argg ◦ γk(θ) is strictly
increasing, there exists a unique arcσ0 from z0 to z1 ∈ γk lying in Ok except for the
endpoints such thatg mapsσ0 \ {z1} homeomorphically onto an open–closed line segm
(w1,w0] ⊂ [0,w0]. We contend thatσ0 is a cross-cut ofOk. Becauseg′ is nonvanishing
σ0 admits no self intersections. Furthermore, ifz0 = z1, then in this case one would obta
w0 = g(z0) = g(z1) = w1, which would yield a contradiction. This proves our contenti

Supposez1 �= 1. Let δk , 1 /∈ δk , be the subarc ofγk ending inz0 andz1, and letG be
the Jordan domain bounded byδk andσ0. Directσ0 so that∂G is the arc-productσ0δk. In
this case the winding numbern(∂G,z), z ∈ G, is one. This yieldsn(g(∂G),0) > 0 which,
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by the argument principle, implies thatg vanishes at some points inD. Thus we have a
contradiction andz1 = 1.

Sinceg has the angular limit zero at 1, again by [4, Theorem 9.3],w1 = 0 andg :σ0 →
[0,w0] is a homeomorphism. It follows that, sincef = g2α , f belongs toS∗

0 if it is shown
to be univalent inD.

There exists a single-valued analytic branch of logg in D. We claim that logg is a uni-
valent function inD. Suppose thatz0 andz1 are two points inD with logg(z0) = logg(z1).
Theng(z0) = g(z1). There existsk, r > 0 such thatz0 ∈ γk andz1 ∈ γr . We may assum
thatk � r > 0; thenz1 ∈ Ōk \ {1}. If z1 ∈ γk, then letλ, 1 /∈ λ, be the subarc ofγk from z0
to z1. Sinceg(z0) = g(z1) and argg ◦γk(θ) is strictly increasing,n(g ◦λ,0) = m, wherem
is a nonzero integer. Thus logg(z1)− logg(z0) = 2mπi and logg(z0) �= logg(z1). Hence
z1 ∈ Ok. In this case, as shown above, we can find a directed cross-cutσ1 of Or from 1
to z1 such thatg :σ1 → [0, g(z1)] is a homeomorphism. Sinceg′ is nonvanishing inD, σ1
continues throughz1 to a Jordan arcσ in D that terminates at a pointζ ∈ ∂D and maps
underg homeomorphically to a line-segment[0,w1], with w1 possibly infinity, containing
g(z1) as an interior point. Sinceg is a normal function,ζ �= 1 or elsew1 = 0 as zero is the
only asymptotic value ofg at 1; once again by [4, Theorem 9.3]. Henceσ intersectsγk at
some point,ξ . In this case, letλ be the arc-product of the subarc ofγk from z0 to ξ that
avoids 1 with the subarc ofσ−1 from ξ to z1. This impliesn(g ◦ λ,0) = m, wherem is a
nonzero integer, logg(z1)− logg(z0) = 2mπi and logg(z0) �= logg(z1). Hence the abov
claim holds.

Recall that for everyz ∈ D there exists a Jordan arcσ from 1 toz with σ \ {1} ⊂ D such
thatg :σ → [0, g(z)] is a homeomorphism. This means that logg is convex is the direction
of the real axis in the sense, referred to henceforth by therestricted horizontal convexity,
that every horizontal line meets logg(D), if at all, in an intervals + it0, s < s0 for somes0.

Observe thatg satisfies the Visser–Ostrowski condition at 1 [5, p. 81]; namely,

(z − 1)
g′(z)
g(z)

= 1

2α
(z − 1)

f ′(z)
f (z)

= 4

2α

1− ω(z)

1− z

1

1+ ω(z)
→ 1 (4)

asz → 1 in every Stolz angle of 1. This gives

(r − 1)
∂

∂r
log

∣∣g(r)∣∣ → 1

asr → 1−; hence log|g(r)| is strictly decreasing in some interval[ρ,1), 0< ρ < 1.
Through every point logg(r), ρ � r < 1, there exists a unique maximal vertical inter

log|g(r)| + it , ar � t � br , which lies in logg(D) except for its endpoints;ar or br could
possibly be−∞ or ∞, respectively. We claim thatar andbr are monotone decreasing a
increasing functions ofr in ρ � r < 1, respectively. Forρ � r < 1, consider the horizonta
semi-strip

Sr = {
s + it : s < log

∣∣g(r)∣∣, ar < t < br
}
.

The restricted horizontal convexity of logg(D) yieldsSr ⊂ logg(D). Fix r1, ρ � r1 < 1.
There existsr ′

1, r1 < r ′
1 < 1, such that for everyr1 < r < r ′

1, logg(r) ∈ Sr1 and, conse
quently,ar � ar1 andbr � br1. By appealing to the same argument for anyr, r1 < r < r ′

1,
instead ofr1, we infer thatar andbr are monotone decreasing and increasing funct
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of r in (r1, r
′
1), respectively. This together with the uniform continuity of logg(r) on any

compact subinterval[r1, r2] of [ρ,1) yield ar2 � ar1 andbr1 � br2 which proves our claim
For 0< r < 1, let

gr(z) = g

(
z + r

1+ rz

)/
g(r). (5)

Then loggr , with log1= 0, is a univalent function inD. With s = (z + r)/(1 + rz), and
once again by (4), we have,

d

dz
log

{
1+ z

1− z
gr(z)

}
= 2

1− z2
+ 1+ r

(1+ rz)(1− z)
(1− s)

g′(s)
g(s)

→ 0

asr → 1− locally uniformly in D; hence, likewise is the convergence

loggr → log

{
1− z

1+ z

}
.

Let Gr = loggr(D), ρ � r < 1. By the Carathéodory kernel theorem, we conclude
Gr converges to the horizontal stripS = {s + it : |t| < π/2} with respect to the origin
in the sense of the Carathéodory kernel convergence [5, p. 14]. Fix 0< ε < 1. It follows
that there exist a sequence{rn}, rn → 1− asn → ∞, and pointsτn, τ ′

n ∈ ∂ loggrn(D) such
that |τn − (−1 + iπ/2)| < ε/2 and|τ ′

n − (−1 − iπ/2)| < ε/2. Observe that, by (5), eac
loggrn(D) contains the translate ofSrn by − logg(rn); namely, the horizontal semi-str
{u + iv: u < 0, arn − argg(rn) < v < brn − argg(rn)}, wherearn < argg(rn) < brn . We
infer that eachbrn − arn < π + ε, or else either|τn − (−1+ iπ/2)| � ε/2 or |τ ′

n − (−1−
iπ/2)| � ε/2 and we have a contradiction.

It follows that forρ � r < 1,br − ar � π + ε, and consequently limr→1−(br − ar) � π

sinceε is arbitrary. Leta = limr→1ar andb = limr→1br ; thena andb exist and satisfy
b − a � π . With T = {u + iv: −∞ < u < ∞, a < v < b}, we show that logg(D) ⊂ T .
Obviously, logg(D) ∩ T �= ∅. Supposeτ, τ ′ ∈ logg(D), say�τ < �τ ′, τ ∈ T andτ ′ /∈ T ;
T is the closure ofT . Then there exists a Jordan arc in logg(D) connectingτ and τ ′.
Using the restricted horizontal convexity of logg(D) once again, we can find a horizon
semi-strip{s + it : s < s0, �τ < t < �τ ′} for somes0, that lies in logg(D). This yields a
contradiction and logg(D) ⊂ T .

Therefore,g is a univalent function with(eiβg) > 0 for some realβ . Since 0< α � 1
andf = g2α , the functionf is univalent inD.

Thereforef ∈ S∗
0. This completes the proof of Main theorem.✷

We combine Main theorem and Theorem 1 [2, Theorem 3.2] as follows.

Theorem 3. Let f be an analytic function of D with angular limit zero at 1. Then f ∈ S∗
0

if and only if there exists ω ∈ B(α), α ∈ (0,1], such that (1) holds.
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