

Note

A note on univalent functions starlike with respect to a boundary point

A. Lecko ${ }^{\text {a }}$ and A. Lyzzaik ${ }^{\text {b,* }}$
a Department of Mathematics, Technical University of Rzeszów, Rzeszów, Poland
${ }^{\mathrm{b}}$ Department of Mathematics and Computer Science, American University of Beirut, Beirut, Lebanon

Received 23 April 2002
Submitted by K.-T. Kim
Dedicated to the memory of Professor Walter Hengartner ${ }^{1}$

Abstract

The object of this paper is to prove the sufficiency of a recently established necessary condition for a univalent function to be starlike with respect to a boundary point. © 2003 Elsevier Inc. All rights reserved.

1. Introduction and statement of Main theorem

Let \mathbb{C} be the complex plane and let \mathbf{D} be the open unit disc $\{z:|z|<1\}$. A complex region Ω with $0 \in \partial \Omega$ is called starlike with respect to the origin if for every point $w \in \Omega$ the line segment $(0, w]=\{t w: 0<t \leqslant 1\}$ lies in Ω. Also, we call a univalent function f of \mathbf{D} onto Ω starlike with respect to the (boundary point at the) origin. Denote by \mathcal{S}_{0}^{*} the class of all such functions.

Let f be an analytic function of \mathbf{D} and let $\zeta \in \partial \mathbf{D}$. We say that f has the asymptotic value $a \in \mathbb{C} \cup\{\infty\}$ at ζ if there exists a Jordan arc Γ that ends at ζ and lies in \mathbf{D} except for ζ such that

$$
f(z) \rightarrow a \quad \text { as } z \in \Gamma, z \rightarrow \zeta .
$$

Also, we say that f has the angular limit $a \in \mathbb{C} \cup\{\infty\}$ at ζ if

[^0]0022-247X/03/\$ - see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0022-247X(03)00258-0

$$
f(z) \rightarrow a \quad \text { as } z \in A, z \rightarrow \zeta
$$

for every Stolz angle A at $\zeta, A=\{z \in \mathbf{D}:|\arg (1-\bar{\zeta} z)|<\pi / 2-\delta\}$, where $0<\delta<\pi / 2$. For these notions see [4, p. 267].

Since the origin is an accessible point in Ω, there exist infinitely many functions $f \in \mathcal{S}_{0}^{*}$ whose angular limits at 1 is zero [5, Corollary 2.17].

Univalent functions starlike with respect to a boundary point were first introduced in 1981 by Robertson [6]. In his paper, the following two classes of univalent functions were introduced:
(i) The class \mathcal{G} of univalent functions f of \mathbf{D} that satisfy $f(0)=1$ and

$$
\mathfrak{R}\left\{2 z \frac{f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z}\right\}>0 \quad(z \in \mathbf{D})
$$

(ii) The class \mathcal{G}^{*} of univalent functions f of \mathbf{D} that satisfy $f(0)=1, \lim _{r \rightarrow 1^{-}} f(r)=0$, $f(\mathbf{D})$ is starlike with respect to the origin, and $\mathfrak{R}\left\{e^{i \alpha} f(z)\right\}>0$ for some real α and all $z \in \mathbf{D}$.

Further, Robertson proved that $\mathcal{G} \subset \mathcal{G}^{*}$ and conjectured that $\mathcal{G}^{*} \subset \mathcal{G}$. The conjecture was resolved positively by Lyzzaik in [3] where a short proof of the former set-inclusion was also given.

It is immediate that $f^{2} \in \mathcal{S}_{0}^{*}$ if $f \in \mathcal{G}$; conversely if $f(0)=1, \lim _{r \rightarrow 1^{-}} f(r)=0$, and $f^{2} \in \mathcal{S}_{0}^{*}$, then $f \in \mathcal{G}$. However, if $f^{2} \in \mathcal{S}_{0}^{*}$, and $f(0) \neq 1$ or $\lim _{r \rightarrow 1^{-}} f(r) \neq 0$, then there exists a real β such that $\lim _{t \rightarrow 1^{-}} f\left(t e^{i \beta}\right)=0$ and, consequently, $f\left(e^{i \beta} z\right) / f(0) \in \mathcal{G}$. This gives at once a complete analytic definition of the functions $f \in \mathcal{S}_{0}^{*}$.

Let \mathcal{B} be the class of all analytic functions from \mathbf{D} to itself. For $\alpha>0$, let $\mathcal{B}(\alpha)$ be the subclass of \mathcal{B} consisting of all functions ω whose angular limits of $(1-\omega(z)) /(1-z)$ at 1 is α.

In order to establish another analytic definition of the functions $f \in \mathcal{S}_{0}^{*}$, Lecko proved recently the following result [2, Theorem 3.2].

Theorem 1. Let f be an analytic function of \mathbf{D} with angular limit zero at 1 . If $f \in \mathcal{S}_{0}^{*}$, then there exists $\omega \in \mathcal{B}(\alpha), \alpha \in(0,1]$, such that

$$
\begin{equation*}
-(1-z)^{2} \frac{f^{\prime}(z)}{f(z)}=4 \frac{1-\omega(z)}{1+\omega(z)}, \quad z \in \mathbf{D} . \tag{1}
\end{equation*}
$$

In an attempt to prove the converse of this theorem, Lecko also proved the following result [2, Theorem 3.3].

Theorem 2. Let f be an analytic function of \mathbf{D} with angular limit zero at 1 . If there exist $\omega \in \mathcal{B}$ and $\alpha \in(0,1]$ such that $\lim _{z \rightarrow 1} \omega(z)=1, \lim _{z \rightarrow 1}(1-\omega(z)) /(1-z)=\alpha$, and (1) holds, then $f \in \mathcal{S}_{0}^{*}$.

The object of this note is to prove the converse of Theorem 1 stated as follows.

Main theorem. Let f be an analytic function of \mathbf{D} with asymptotic value zero at 1 . If there exists $\omega \in \mathcal{B}(\alpha), \alpha \in(0,1]$, such that (1) holds, then $f \in S_{0}^{*}$.

Observe that this is a stronger converse of Theorem 1 in view of the weaker conditions on both f and its associated function ω.

2. Proof of Main theorem

Let $g=f^{1 / 2 \alpha}$. For $0<x<1,(1-\omega(x)) /(1-x) \rightarrow \alpha$ as $x \rightarrow 1$. Then there exists a sequence $\left(x_{n}\right), 0<x_{n}<1$, such that $x_{n} \rightarrow 1, \omega\left(x_{n}\right) \rightarrow 1$, and $\left(1-\left|\omega\left(x_{n}\right)\right|\right) /\left(1-x_{n}\right) \rightarrow$ $A \leqslant \alpha$. Then, by the theorem of Carathéodory-Landau-Valiron [1, Theorem 1.5, p. 9],

$$
\frac{|1-\omega(z)|^{2}}{1-|\omega(z)|^{2}} \leqslant A \frac{|1-z|^{2}}{1-|z|^{2}}, \quad z \in \mathbf{D} .
$$

Thus $A>0$ and

$$
\begin{equation*}
\sup _{z \in \mathbf{D}} \frac{|1-\omega(z)|^{2}}{1-|\omega(z)|^{2}} \frac{1-|z|^{2}}{|1-z|^{2}} \leqslant \alpha \tag{2}
\end{equation*}
$$

Using (1) and (2), we obtain

$$
\begin{equation*}
\left(1-|z|^{2}\right) \frac{\left|g^{\prime}(z)\right|}{1+|g(z)|^{2}} \leqslant \frac{2}{\alpha} \frac{|g(z)|}{1+|g(z)|^{2}} \frac{|1-\omega(z)|^{2}}{1-|\omega(z)|^{2}} \frac{1-|z|^{2}}{|1-z|^{2}} \leqslant 1 . \tag{3}
\end{equation*}
$$

Thus g is a normal function. Since g, like f, assumes zero as an asymptotic value at 1 , it has the angular limit zero at 1 [4, Theorem 9.3].

For $k>0$, let $\gamma_{k}(\theta)=\left(1+k e^{i \theta}\right) /(1+k), \theta \in[0,2 \pi]$; this is the positively-oriented circle centered at $1 /(1+k)$ and tangent to the unit circle at 1 . By virtue of (1), we conclude

$$
\begin{aligned}
\frac{d}{d \theta} \arg g \circ \gamma_{k}(\theta) & =\frac{d}{d \theta} \Im\left[\log g \circ \gamma_{k}(\theta)\right] \\
& =\frac{1}{4 \alpha} \Re\left[-\left(1-\gamma_{k}(\theta)\right)^{2} \frac{f^{\prime} \circ \gamma_{k}(\theta)}{f \circ \gamma_{k}(\theta)}\right] / \Re\left(1-\gamma_{k}(\theta)\right)>0
\end{aligned}
$$

for $0<\theta<2 \pi$ and $\arg g \circ \gamma_{k}(\theta)$ is strictly increasing in $(0,2 \pi)$; see [2].
Fix $z_{0} \in \mathbf{D}$. Note that there exists a unique $k>0$ such that $z_{0} \in \gamma_{k}$. Denote by O_{k} the horocycle of γ_{k}; this is the finite open disc bounded by γ_{k}. Let $w_{0}=g\left(z_{0}\right)$ and let $\left[0, w_{0}\right]$ be the line segment from 0 to w_{0}. Since g^{\prime} is nonvanishing in \mathbf{D} and $\arg g \circ \gamma_{k}(\theta)$ is strictly increasing, there exists a unique arc σ_{0} from z_{0} to $z_{1} \in \gamma_{k}$ lying in O_{k} except for the endpoints such that g maps $\sigma_{0} \backslash\left\{z_{1}\right\}$ homeomorphically onto an open-closed line segment $\left(w_{1}, w_{0}\right] \subset\left[0, w_{0}\right]$. We contend that σ_{0} is a cross-cut of O_{k}. Because g^{\prime} is nonvanishing, σ_{0} admits no self intersections. Furthermore, if $z_{0}=z_{1}$, then in this case one would obtain $w_{0}=g\left(z_{0}\right)=g\left(z_{1}\right)=w_{1}$, which would yield a contradiction. This proves our contention.

Suppose $z_{1} \neq 1$. Let $\delta_{k}, 1 \notin \delta_{k}$, be the subarc of γ_{k} ending in z_{0} and z_{1}, and let G be the Jordan domain bounded by δ_{k} and σ_{0}. Direct σ_{0} so that ∂G is the arc-product $\sigma_{0} \delta_{k}$. In this case the winding number $n(\partial G, z), z \in G$, is one. This yields $n(g(\partial G), 0)>0$ which,
by the argument principle, implies that g vanishes at some points in \mathbf{D}. Thus we have a contradiction and $z_{1}=1$.

Since g has the angular limit zero at 1 , again by [4, Theorem 9.3], $w_{1}=0$ and $g: \sigma_{0} \rightarrow$ $\left[0, w_{0}\right]$ is a homeomorphism. It follows that, since $f=g^{2 \alpha}, f$ belongs to \mathcal{S}_{0}^{*} if it is shown to be univalent in \mathbf{D}.

There exists a single-valued analytic branch of $\log g$ in \mathbf{D}. We claim that $\log g$ is a univalent function in \mathbf{D}. Suppose that z_{0} and z_{1} are two points in \mathbf{D} with $\log g\left(z_{0}\right)=\log g\left(z_{1}\right)$. Then $g\left(z_{0}\right)=g\left(z_{1}\right)$. There exists $k, r>0$ such that $z_{0} \in \gamma_{k}$ and $z_{1} \in \gamma_{r}$. We may assume that $k \geqslant r>0$; then $z_{1} \in \bar{O}_{k} \backslash\{1\}$. If $z_{1} \in \gamma_{k}$, then let $\lambda, 1 \notin \lambda$, be the subarc of γ_{k} from z_{0} to z_{1}. Since $g\left(z_{0}\right)=g\left(z_{1}\right)$ and $\arg g \circ \gamma_{k}(\theta)$ is strictly increasing, $n(g \circ \lambda, 0)=m$, where m is a nonzero integer. Thus $\log g\left(z_{1}\right)-\log g\left(z_{0}\right)=2 m \pi i$ and $\log g\left(z_{0}\right) \neq \log g\left(z_{1}\right)$. Hence $z_{1} \in O_{k}$. In this case, as shown above, we can find a directed cross-cut σ_{1} of O_{r} from 1 to z_{1} such that $g: \sigma_{1} \rightarrow\left[0, g\left(z_{1}\right)\right]$ is a homeomorphism. Since g^{\prime} is nonvanishing in \mathbf{D}, σ_{1} continues through z_{1} to a Jordan $\operatorname{arc} \sigma$ in \mathbf{D} that terminates at a point $\zeta \in \partial \mathbf{D}$ and maps under g homeomorphically to a line-segment $\left[0, w_{1}\right]$, with w_{1} possibly infinity, containing $g\left(z_{1}\right)$ as an interior point. Since g is a normal function, $\zeta \neq 1$ or else $w_{1}=0$ as zero is the only asymptotic value of g at 1 ; once again by [4, Theorem 9.3]. Hence σ intersects γ_{k} at some point, ξ. In this case, let λ be the arc-product of the subarc of γ_{k} from z_{0} to ξ that avoids 1 with the subarc of σ^{-1} from ξ to z_{1}. This implies $n(g \circ \lambda, 0)=m$, where m is a nonzero integer, $\log g\left(z_{1}\right)-\log g\left(z_{0}\right)=2 m \pi i$ and $\log g\left(z_{0}\right) \neq \log g\left(z_{1}\right)$. Hence the above claim holds.

Recall that for every $z \in \mathbf{D}$ there exists a Jordan arc σ from 1 to z with $\sigma \backslash\{1\} \subset \mathbf{D}$ such that $g: \sigma \rightarrow[0, g(z)]$ is a homeomorphism. This means that $\log g$ is convex is the direction of the real axis in the sense, referred to henceforth by the restricted horizontal convexity, that every horizontal line meets $\log g(\mathbf{D})$, if at all, in an interval $s+i t_{0}, s<s_{0}$ for some s_{0}.

Observe that g satisfies the Visser-Ostrowski condition at 1 [5, p. 81]; namely,

$$
\begin{equation*}
(z-1) \frac{g^{\prime}(z)}{g(z)}=\frac{1}{2 \alpha}(z-1) \frac{f^{\prime}(z)}{f(z)}=\frac{4}{2 \alpha} \frac{1-\omega(z)}{1-z} \frac{1}{1+\omega(z)} \rightarrow 1 \tag{4}
\end{equation*}
$$

as $z \rightarrow 1$ in every Stolz angle of 1 . This gives

$$
(r-1) \frac{\partial}{\partial r} \log |g(r)| \rightarrow 1
$$

as $r \rightarrow 1^{-}$; hence $\log |g(r)|$ is strictly decreasing in some interval $[\rho, 1), 0<\rho<1$.
Through every point $\log g(r), \rho \leqslant r<1$, there exists a unique maximal vertical interval $\log |g(r)|+i t, a_{r} \leqslant t \leqslant b_{r}$, which lies in $\log g(\mathbf{D})$ except for its endpoints; a_{r} or b_{r} could possibly be $-\infty$ or ∞, respectively. We claim that a_{r} and b_{r} are monotone decreasing and increasing functions of r in $\rho \leqslant r<1$, respectively. For $\rho \leqslant r<1$, consider the horizontal semi-strip

$$
S_{r}=\left\{s+i t: s<\log |g(r)|, a_{r}<t<b_{r}\right\} .
$$

The restricted horizontal convexity of $\log g(\mathbf{D})$ yields $S_{r} \subset \log g(\mathbf{D})$. Fix $r_{1}, \rho \leqslant r_{1}<1$. There exists $r_{1}^{\prime}, r_{1}<r_{1}^{\prime}<1$, such that for every $r_{1}<r<r_{1}^{\prime}, \log g(r) \in S_{r_{1}}$ and, consequently, $a_{r} \leqslant a_{r_{1}}$ and $b_{r} \geqslant b_{r_{1}}$. By appealing to the same argument for any $r, r_{1}<r<r_{1}^{\prime}$, instead of r_{1}, we infer that a_{r} and b_{r} are monotone decreasing and increasing functions
of r in $\left(r_{1}, r_{1}^{\prime}\right)$, respectively. This together with the uniform continuity of $\log g(r)$ on any compact subinterval $\left[r_{1}, r_{2}\right]$ of $[\rho, 1)$ yield $a_{r_{2}} \leqslant a_{r_{1}}$ and $b_{r_{1}} \leqslant b_{r_{2}}$ which proves our claim.

For $0<r<1$, let

$$
\begin{equation*}
g_{r}(z)=g\left(\frac{z+r}{1+r z}\right) / g(r) \tag{5}
\end{equation*}
$$

Then $\log g_{r}$, with $\log 1=0$, is a univalent function in \mathbf{D}. With $s=(z+r) /(1+r z)$, and once again by (4), we have,

$$
\frac{d}{d z} \log \left\{\frac{1+z}{1-z} g_{r}(z)\right\}=\frac{2}{1-z^{2}}+\frac{1+r}{(1+r z)(1-z)}(1-s) \frac{g^{\prime}(s)}{g(s)} \rightarrow 0
$$

as $r \rightarrow 1^{-}$locally uniformly in \mathbf{D}; hence, likewise is the convergence

$$
\log g_{r} \rightarrow \log \left\{\frac{1-z}{1+z}\right\}
$$

Let $G_{r}=\log g_{r}(\mathbf{D}), \rho \leqslant r<1$. By the Carathéodory kernel theorem, we conclude that G_{r} converges to the horizontal strip $S=\{s+i t:|t|<\pi / 2\}$ with respect to the origin in the sense of the Carathéodory kernel convergence [5, p. 14]. Fix $0<\epsilon<1$. It follows that there exist a sequence $\left\{r_{n}\right\}, r_{n} \rightarrow 1^{-}$as $n \rightarrow \infty$, and points $\tau_{n}, \tau_{n}^{\prime} \in \partial \log g_{r_{n}}(\mathbf{D})$ such that $\left|\tau_{n}-(-1+i \pi / 2)\right|<\epsilon / 2$ and $\left|\tau_{n}^{\prime}-(-1-i \pi / 2)\right|<\epsilon / 2$. Observe that, by (5), each $\log g_{r_{n}}(\mathbf{D})$ contains the translate of $S_{r_{n}}$ by $-\log g\left(r_{n}\right)$; namely, the horizontal semi-strip $\left\{u+i v: u<0, a_{r_{n}}-\arg g\left(r_{n}\right)<v<b_{r_{n}}-\arg g\left(r_{n}\right)\right\}$, where $a_{r_{n}}<\arg g\left(r_{n}\right)<b_{r_{n}}$. We infer that each $b_{r_{n}}-a_{r_{n}}<\pi+\epsilon$, or else either $\left|\tau_{n}-(-1+i \pi / 2)\right| \geqslant \epsilon / 2$ or $\mid \tau_{n}^{\prime}-(-1-$ $i \pi / 2) \mid \geqslant \epsilon / 2$ and we have a contradiction.

It follows that for $\rho \leqslant r<1, b_{r}-a_{r} \leqslant \pi+\epsilon$, and consequently $\lim _{r \rightarrow 1^{-}}\left(b_{r}-a_{r}\right) \leqslant \pi$ since ϵ is arbitrary. Let $a=\lim _{r \rightarrow 1} a_{r}$ and $b=\lim _{r \rightarrow 1} b_{r}$; then a and b exist and satisfy $b-a \leqslant \pi$. With $T=\{u+i v:-\infty<u<\infty, a<v<b\}$, we show that $\log g(\mathbf{D}) \subset T$. Obviously, $\log g(\mathbf{D}) \cap T \neq \emptyset$. Suppose $\tau, \tau^{\prime} \in \log g(\mathbf{D})$, say $\mathfrak{\Im} \tau<\Im \tau^{\prime}, \tau \in T$ and $\tau^{\prime} \notin \bar{T}$; \bar{T} is the closure of T. Then there exists a Jordan arc in $\log g(\mathbf{D})$ connecting τ and τ^{\prime}. Using the restricted horizontal convexity of $\log g(\mathbf{D})$ once again, we can find a horizontal semi-strip $\left\{s+i t: s<s_{0}, \mathfrak{I} \tau<t<\mathfrak{I} \tau^{\prime}\right\}$ for some s_{0}, that lies in $\log g(\mathbf{D})$. This yields a contradiction and $\log g(\mathbf{D}) \subset T$.

Therefore, g is a univalent function with $\mathfrak{R}\left(e^{i \beta} g\right)>0$ for some real β. Since $0<\alpha \leqslant 1$ and $f=g^{2 \alpha}$, the function f is univalent in \mathbf{D}.

Therefore $f \in S_{0}^{*}$. This completes the proof of Main theorem.
We combine Main theorem and Theorem 1 [2, Theorem 3.2] as follows.
Theorem 3. Let f be an analytic function of \mathbf{D} with angular limit zero at 1 . Then $f \in \mathcal{S}_{0}^{*}$ if and only if there exists $\omega \in \mathcal{B}(\alpha), \alpha \in(0,1]$, such that (1) holds.

Acknowledgment

The authors would like to thank the referee for his useful remarks in revising the paper; particularly in pointing out an error in the original proof of Main theorem.

References

[1] L.V. Ahlfors, Conformal Invariants, McGraw-Hill, 1973.
[2] A. Lecko, On the class of functions starlike with respect to a boundary point, J. Math. Anal. Appl. 261 (2001) 649-664.
[3] A. Lyzzaik, On a conjecture of M.S. Robertson, Proc. Amer. Math. Soc. 91 (1984) 108-110.
[4] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[5] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.
[6] M.S. Robertson, Univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl. 81 (1981) 327-345.

[^0]: * Corresponding author.

 E-mail addresses: alecko@ prz.rzeszow.pl (A. Lecko), lyzzaik@aub.edu.lb (A. Lyzzaik).
 ${ }^{1}$ Professor Hengartner, a leader in the mathematical community and a very close friend and co-author, died on April 30, 2003.

