

WWW.MATHEMATICSWEB.ORG

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

Note

J. Math. Anal. Appl. 282 (2003) 846-851

A note on univalent functions starlike with respect to a boundary point

A. Lecko^a and A. Lyzzaik^{b,*}

^a Department of Mathematics, Technical University of Rzeszów, Rzeszów, Poland ^b Department of Mathematics and Computer Science, American University of Beirut, Beirut, Lebanon

Received 23 April 2002

Submitted by K.-T. Kim

Dedicated to the memory of Professor Walter Hengartner¹

Abstract

The object of this paper is to prove the sufficiency of a recently established necessary condition for a univalent function to be starlike with respect to a boundary point. © 2003 Elsevier Inc. All rights reserved.

1. Introduction and statement of Main theorem

Let \mathbb{C} be the complex plane and let **D** be the open unit disc $\{z: |z| < 1\}$. A complex region Ω with $0 \in \partial \Omega$ is called *starlike with respect to the origin* if for every point $w \in \Omega$ the line segment $(0, w] = \{tw: 0 < t \leq 1\}$ lies in Ω . Also, we call a univalent function f of **D** onto Ω starlike with respect to the (boundary point at the) origin. Denote by \mathcal{S}_0^* the class of all such functions.

Let *f* be an analytic function of **D** and let $\zeta \in \partial \mathbf{D}$. We say that *f* has the *asymptotic* value $a \in \mathbb{C} \cup \{\infty\}$ at ζ if there exists a Jordan arc Γ that ends at ζ and lies in **D** except for ζ such that

 $f(z) \to a$ as $z \in \Gamma$, $z \to \zeta$.

Also, we say that *f* has the *angular limit* $a \in \mathbb{C} \cup \{\infty\}$ at ζ if

^{*} Corresponding author.

E-mail addresses: alecko@prz.rzeszow.pl (A. Lecko), lyzzaik@aub.edu.lb (A. Lyzzaik).

¹ Professor Hengartner, a leader in the mathematical community and a very close friend and co-author, died on April 30, 2003.

⁰⁰²²⁻²⁴⁷X/03/\$ – see front matter © 2003 Elsevier Inc. All rights reserved. doi:10.1016/S0022-247X(03)00258-0

$$f(z) \to a \quad \text{as } z \in A, \ z \to \zeta,$$

for every Stolz angle A at ζ , $A = \{z \in \mathbf{D}: |\arg(1 - \overline{\zeta}z)| < \pi/2 - \delta\}$, where $0 < \delta < \pi/2$. For these notions see [4, p. 267].

Since the origin is an accessible point in Ω , there exist infinitely many functions $f \in S_0^*$ whose angular limits at 1 is zero [5, Corollary 2.17].

Univalent functions starlike with respect to a boundary point were first introduced in 1981 by Robertson [6]. In his paper, the following two classes of univalent functions were introduced:

(i) The class \mathcal{G} of univalent functions f of **D** that satisfy f(0) = 1 and

$$\Re\left\{2z\frac{f'(z)}{f(z)} + \frac{1+z}{1-z}\right\} > 0 \quad (z \in \mathbf{D});$$

(ii) The class \mathcal{G}^* of univalent functions f of **D** that satisfy f(0) = 1, $\lim_{r \to 1^-} f(r) = 0$, $f(\mathbf{D})$ is starlike with respect to the origin, and $\Re\{e^{i\alpha}f(z)\} > 0$ for some real α and all $z \in \mathbf{D}$.

Further, Robertson proved that $\mathcal{G} \subset \mathcal{G}^*$ and conjectured that $\mathcal{G}^* \subset \mathcal{G}$. The conjecture was resolved positively by Lyzzaik in [3] where a short proof of the former set-inclusion was also given.

It is immediate that $f^2 \in S_0^*$ if $f \in \mathcal{G}$; conversely if f(0) = 1, $\lim_{r \to 1^-} f(r) = 0$, and $f^2 \in S_0^*$, then $f \in \mathcal{G}$. However, if $f^2 \in S_0^*$, and $f(0) \neq 1$ or $\lim_{r \to 1^-} f(r) \neq 0$, then there exists a real β such that $\lim_{t \to 1^-} f(te^{i\beta}) = 0$ and, consequently, $f(e^{i\beta}z)/f(0) \in \mathcal{G}$. This gives at once a complete analytic definition of the functions $f \in S_0^*$.

Let \mathcal{B} be the class of all analytic functions from **D** to itself. For $\alpha > 0$, let $\mathcal{B}(\alpha)$ be the subclass of \mathcal{B} consisting of all functions ω whose angular limits of $(1 - \omega(z))/(1 - z)$ at 1 is α .

In order to establish another analytic definition of the functions $f \in S_0^*$, Lecko proved recently the following result [2, Theorem 3.2].

Theorem 1. Let f be an analytic function of **D** with angular limit zero at 1. If $f \in S_0^*$, then there exists $\omega \in \mathcal{B}(\alpha)$, $\alpha \in (0, 1]$, such that

$$-(1-z)^2 \frac{f'(z)}{f(z)} = 4 \frac{1-\omega(z)}{1+\omega(z)}, \quad z \in \mathbf{D}.$$
 (1)

In an attempt to prove the converse of this theorem, Lecko also proved the following result [2, Theorem 3.3].

Theorem 2. Let f be an analytic function of \mathbf{D} with angular limit zero at 1. If there exist $\omega \in \mathcal{B}$ and $\alpha \in (0, 1]$ such that $\lim_{z \to 1} \omega(z) = 1$, $\lim_{z \to 1} (1 - \omega(z))/(1 - z) = \alpha$, and (1) holds, then $f \in \mathcal{S}_0^*$.

The object of this note is to prove the converse of Theorem 1 stated as follows.

Main theorem. Let f be an analytic function of **D** with asymptotic value zero at 1. If there exists $\omega \in \mathcal{B}(\alpha)$, $\alpha \in (0, 1]$, such that (1) holds, then $f \in S_0^*$.

Observe that this is a stronger converse of Theorem 1 in view of the weaker conditions on both f and its associated function ω .

2. Proof of Main theorem

Let $g = f^{1/2\alpha}$. For 0 < x < 1, $(1 - \omega(x))/(1 - x) \rightarrow \alpha$ as $x \rightarrow 1$. Then there exists a sequence (x_n) , $0 < x_n < 1$, such that $x_n \rightarrow 1$, $\omega(x_n) \rightarrow 1$, and $(1 - |\omega(x_n)|)/(1 - x_n) \rightarrow A \leq \alpha$. Then, by the theorem of Carathéodory–Landau–Valiron [1, Theorem 1.5, p. 9],

$$\frac{|1-\omega(z)|^2}{1-|\omega(z)|^2}\leqslant A\frac{|1-z|^2}{1-|z|^2},\quad z\in \mathbf{D}.$$

Thus A > 0 and

$$\sup_{z \in \mathbf{D}} \frac{|1 - \omega(z)|^2}{1 - |\omega(z)|^2} \frac{1 - |z|^2}{|1 - z|^2} \leqslant \alpha.$$
⁽²⁾

Using (1) and (2), we obtain

$$\left(1-|z|^2\right)\frac{|g'(z)|}{1+|g(z)|^2} \leqslant \frac{2}{\alpha}\frac{|g(z)|}{1+|g(z)|^2}\frac{|1-\omega(z)|^2}{1-|\omega(z)|^2}\frac{1-|z|^2}{|1-z|^2} \leqslant 1.$$
(3)

Thus g is a normal function. Since g, like f, assumes zero as an asymptotic value at 1, it has the angular limit zero at 1 [4, Theorem 9.3].

For k > 0, let $\gamma_k(\theta) = (1 + ke^{i\theta})/(1 + k)$, $\theta \in [0, 2\pi]$; this is the positively-oriented circle centered at 1/(1 + k) and tangent to the unit circle at 1. By virtue of (1), we conclude

$$\frac{d}{d\theta} \arg g \circ \gamma_k(\theta) = \frac{d}{d\theta} \Im \left[\log g \circ \gamma_k(\theta) \right]$$
$$= \frac{1}{4\alpha} \Re \left[-\left(1 - \gamma_k(\theta)\right)^2 \frac{f' \circ \gamma_k(\theta)}{f \circ \gamma_k(\theta)} \right] / \Re \left(1 - \gamma_k(\theta)\right) > 0$$

for $0 < \theta < 2\pi$ and $\arg g \circ \gamma_k(\theta)$ is strictly increasing in $(0, 2\pi)$; see [2].

Fix $z_0 \in \mathbf{D}$. Note that there exists a unique k > 0 such that $z_0 \in \gamma_k$. Denote by O_k the horocycle of γ_k ; this is the finite open disc bounded by γ_k . Let $w_0 = g(z_0)$ and let $[0, w_0]$ be the line segment from 0 to w_0 . Since g' is nonvanishing in **D** and $\arg g \circ \gamma_k(\theta)$ is strictly increasing, there exists a unique arc σ_0 from z_0 to $z_1 \in \gamma_k$ lying in O_k except for the endpoints such that $g \max \sigma_0 \setminus \{z_1\}$ homeomorphically onto an open–closed line segment $(w_1, w_0] \subset [0, w_0]$. We contend that σ_0 is a cross-cut of O_k . Because g' is nonvanishing, σ_0 admits no self intersections. Furthermore, if $z_0 = z_1$, then in this case one would obtain $w_0 = g(z_0) = g(z_1) = w_1$, which would yield a contradiction. This proves our contention.

Suppose $z_1 \neq 1$. Let δ_k , $1 \notin \delta_k$, be the subarc of γ_k ending in z_0 and z_1 , and let *G* be the Jordan domain bounded by δ_k and σ_0 . Direct σ_0 so that ∂G is the arc-product $\sigma_0 \delta_k$. In this case the winding number $n(\partial G, z), z \in G$, is one. This yields $n(g(\partial G), 0) > 0$ which,

848

by the argument principle, implies that g vanishes at some points in **D**. Thus we have a contradiction and $z_1 = 1$.

Since g has the angular limit zero at 1, again by [4, Theorem 9.3], $w_1 = 0$ and $g: \sigma_0 \rightarrow [0, w_0]$ is a homeomorphism. It follows that, since $f = g^{2\alpha}$, f belongs to S_0^* if it is shown to be univalent in **D**.

There exists a single-valued analytic branch of $\log g$ in **D**. We claim that $\log g$ is a univalent function in **D**. Suppose that z_0 and z_1 are two points in **D** with $\log g(z_0) = \log g(z_1)$. Then $g(z_0) = g(z_1)$. There exists k, r > 0 such that $z_0 \in \gamma_k$ and $z_1 \in \gamma_r$. We may assume that $k \ge r > 0$; then $z_1 \in O_k \setminus \{1\}$. If $z_1 \in \gamma_k$, then let λ , $1 \notin \lambda$, be the subarc of γ_k from z_0 to z_1 . Since $g(z_0) = g(z_1)$ and $\arg g \circ \gamma_k(\theta)$ is strictly increasing, $n(g \circ \lambda, 0) = m$, where m is a nonzero integer. Thus $\log g(z_1) - \log g(z_0) = 2m\pi i$ and $\log g(z_0) \neq \log g(z_1)$. Hence $z_1 \in O_k$. In this case, as shown above, we can find a directed cross-cut σ_1 of O_r from 1 to z_1 such that $g: \sigma_1 \to [0, g(z_1)]$ is a homeomorphism. Since g' is nonvanishing in **D**, σ_1 continues through z_1 to a Jordan arc σ in **D** that terminates at a point $\zeta \in \partial \mathbf{D}$ and maps under g homeomorphically to a line-segment $[0, w_1]$, with w_1 possibly infinity, containing $g(z_1)$ as an interior point. Since g is a normal function, $\zeta \neq 1$ or else $w_1 = 0$ as zero is the only asymptotic value of g at 1; once again by [4, Theorem 9.3]. Hence σ intersects γ_k at some point, ξ . In this case, let λ be the arc-product of the subarc of γ_k from z_0 to ξ that avoids 1 with the subarc of σ^{-1} from ξ to z_1 . This implies $n(g \circ \lambda, 0) = m$, where m is a nonzero integer, $\log g(z_1) - \log g(z_0) = 2m\pi i$ and $\log g(z_0) \neq \log g(z_1)$. Hence the above claim holds.

Recall that for every $z \in \mathbf{D}$ there exists a Jordan arc σ from 1 to z with $\sigma \setminus \{1\} \subset \mathbf{D}$ such that $g: \sigma \to [0, g(z)]$ is a homeomorphism. This means that $\log g$ is convex is the direction of the real axis in the sense, referred to henceforth by the *restricted horizontal convexity*, that every horizontal line meets $\log g(\mathbf{D})$, if at all, in an interval $s + it_0$, $s < s_0$ for some s_0 . Observe that g satisfies the Visser–Ostrowski condition at 1 [5, p. 81]; namely,

f(z) = 1 f(z) = 1 f(z) = 1

$$(z-1)\frac{g(z)}{g(z)} = \frac{1}{2\alpha}(z-1)\frac{f'(z)}{f(z)} = \frac{4}{2\alpha}\frac{1-\omega(z)}{1-z}\frac{1}{1+\omega(z)} \to 1$$
(4)

as $z \to 1$ in every Stolz angle of 1. This gives

$$(r-1)\frac{\partial}{\partial r}\log|g(r)| \to 1$$

as $r \to 1^-$; hence $\log |g(r)|$ is strictly decreasing in some interval $[\rho, 1), 0 < \rho < 1$.

Through every point $\log g(r)$, $\rho \leq r < 1$, there exists a unique maximal vertical interval $\log |g(r)| + it$, $a_r \leq t \leq b_r$, which lies in $\log g(\mathbf{D})$ except for its endpoints; a_r or b_r could possibly be $-\infty$ or ∞ , respectively. We claim that a_r and b_r are monotone decreasing and increasing functions of r in $\rho \leq r < 1$, respectively. For $\rho \leq r < 1$, consider the horizontal semi-strip

$$S_r = \{s + it: s < \log |g(r)|, a_r < t < b_r\}.$$

The restricted horizontal convexity of $\log g(\mathbf{D})$ yields $S_r \subset \log g(\mathbf{D})$. Fix r_1 , $\rho \leq r_1 < 1$. There exists r'_1 , $r_1 < r'_1 < 1$, such that for every $r_1 < r < r'_1$, $\log g(r) \in S_{r_1}$ and, consequently, $a_r \leq a_{r_1}$ and $b_r \geq b_{r_1}$. By appealing to the same argument for any r, $r_1 < r < r'_1$, instead of r_1 , we infer that a_r and b_r are monotone decreasing and increasing functions of *r* in (r_1, r'_1) , respectively. This together with the uniform continuity of $\log g(r)$ on any compact subinterval $[r_1, r_2]$ of $[\rho, 1)$ yield $a_{r_2} \leq a_{r_1}$ and $b_{r_1} \leq b_{r_2}$ which proves our claim. For 0 < r < 1, let

$$g_r(z) = g\left(\frac{z+r}{1+rz}\right) / g(r).$$
⁽⁵⁾

Then $\log g_r$, with $\log 1 = 0$, is a univalent function in **D**. With s = (z + r)/(1 + rz), and once again by (4), we have,

$$\frac{d}{dz}\log\left\{\frac{1+z}{1-z}g_r(z)\right\} = \frac{2}{1-z^2} + \frac{1+r}{(1+rz)(1-z)}(1-s)\frac{g'(s)}{g(s)} \to 0$$

as $r \to 1^-$ locally uniformly in **D**; hence, likewise is the convergence

$$\log g_r \to \log \left\{ \frac{1-z}{1+z} \right\}.$$

Let $G_r = \log g_r(\mathbf{D})$, $\rho \leq r < 1$. By the Carathéodory kernel theorem, we conclude that G_r converges to the horizontal strip $S = \{s + it: |t| < \pi/2\}$ with respect to the origin in the sense of the Carathéodory kernel convergence [5, p. 14]. Fix $0 < \epsilon < 1$. It follows that there exist a sequence $\{r_n\}$, $r_n \to 1^-$ as $n \to \infty$, and points τ_n , $\tau'_n \in \partial \log g_{r_n}(\mathbf{D})$ such that $|\tau_n - (-1 + i\pi/2)| < \epsilon/2$ and $|\tau'_n - (-1 - i\pi/2)| < \epsilon/2$. Observe that, by (5), each $\log g_{r_n}(\mathbf{D})$ contains the translate of S_{r_n} by $-\log g(r_n)$; namely, the horizontal semi-strip $\{u + iv: u < 0, a_{r_n} - \arg g(r_n) < v < b_{r_n} - \arg g(r_n)\}$, where $a_{r_n} < \arg g(r_n) < b_{r_n}$. We infer that each $b_{r_n} - a_{r_n} < \pi + \epsilon$, or else either $|\tau_n - (-1 + i\pi/2)| \ge \epsilon/2$ or $|\tau'_n - (-1 - i\pi/2)| \ge \epsilon/2$ and we have a contradiction.

It follows that for $\rho \leq r < 1$, $b_r - a_r \leq \pi + \epsilon$, and consequently $\lim_{r \to 1^-} (b_r - a_r) \leq \pi$ since ϵ is arbitrary. Let $a = \lim_{r \to 1} a_r$ and $b = \lim_{r \to 1} b_r$; then a and b exist and satisfy $b - a \leq \pi$. With $T = \{u + iv: -\infty < u < \infty, a < v < b\}$, we show that $\log g(\mathbf{D}) \subset T$. Obviously, $\log g(\mathbf{D}) \cap T \neq \emptyset$. Suppose $\tau, \tau' \in \log g(\mathbf{D})$, say $\Im \tau < \Im \tau', \tau \in T$ and $\tau' \notin \overline{T}$; \overline{T} is the closure of T. Then there exists a Jordan arc in $\log g(\mathbf{D})$ connecting τ and τ' . Using the restricted horizontal convexity of $\log g(\mathbf{D})$ once again, we can find a horizontal semi-strip $\{s + it: s < s_0, \Im \tau < t < \Im \tau'\}$ for some s_0 , that lies in $\log g(\mathbf{D})$. This yields a contradiction and $\log g(\mathbf{D}) \subset T$.

Therefore, g is a univalent function with $\Re(e^{i\beta}g) > 0$ for some real β . Since $0 < \alpha \leq 1$ and $f = g^{2\alpha}$, the function f is univalent in **D**.

Therefore $f \in S_0^*$. This completes the proof of Main theorem. \Box

We combine Main theorem and Theorem 1 [2, Theorem 3.2] as follows.

Theorem 3. Let f be an analytic function of **D** with angular limit zero at 1. Then $f \in S_0^*$ if and only if there exists $\omega \in \mathcal{B}(\alpha)$, $\alpha \in (0, 1]$, such that (1) holds.

Acknowledgment

The authors would like to thank the referee for his useful remarks in revising the paper; particularly in pointing out an error in the original proof of Main theorem.

850

References

- [1] L.V. Ahlfors, Conformal Invariants, McGraw-Hill, 1973.
- [2] A. Lecko, On the class of functions starlike with respect to a boundary point, J. Math. Anal. Appl. 261 (2001) 649–664.
- [3] A. Lyzzaik, On a conjecture of M.S. Robertson, Proc. Amer. Math. Soc. 91 (1984) 108–110.
- [4] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
- [5] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.
- [6] M.S. Robertson, Univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl. 81 (1981) 327–345.