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In a recent article (Liang and Lan, (2011)), we showed that the trajectories predicted by general-relativ-
istic and Newtonian mechanics from the same parameters and initial conditions for a low-speed weak-
gravity bouncing ball system will rapidly disagree completely if the trajectories are chaotic. Here, we
determine how accurate the parameters and initial conditions of the system must be known so that
the two different calculated chaotic trajectories are sufficiently accurate for an empirical test.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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Introduction

The standard practice [1,2] in the field of nonlinear dynamics and
chaos in physics and engineering is to use Newtonian mechanics,
instead of general-relativistic mechanics, to study the trajectory of
a low-speed weak-gravity dynamical system (low-speed means
that the speed of the system is much less than the speed of light,
and weak-gravity means that the gravitational potential is much
less than the square of the speed of light). This is because it is
conventionally believed [3–5] that, in general, if the speed of the
dynamical system is low and gravity plays a role in the dynamics
but is weak, the trajectory predicted by general-relativistic mechan-
ics is well approximated by the trajectory predicted by Newtonian
mechanics for the same parameters and initial conditions.

However, it was recently shown [6,7] numerically for a bounc-
ing ball system that, although the speed of the ball is low and the
gravitational field is weak, the Newtonian trajectory rapidly dis-
agrees completely with the general-relativistic trajectory if the tra-
jectories are chaotic. This result raises a very interesting and
crucial fundamental question: When the two theories, Newtonian
and general-relativistic mechanics, predict completely different
chaotic trajectories for a low-speed weak-gravity dynamical sys-
tem, which trajectory prediction is empirically correct?

The chaotic bouncing ball, which we studied numerically in
[6,7], is realizable [8] in the laboratory to test the different predic-
tions of the two theories. In this paper, we address the important
pragmatic question of precisely how accurate we need to know
the parameters and initial conditions of a low-speed weak-gravity
bouncing ball system so that sufficiently accurate Newtonian and
general-relativistic chaotic trajectories can be calculated for
comparison with the measured trajectory. Details of the bouncing
ball system are given next, followed by the presentation and dis-
cussion of our finding.
Bouncing ball

In the bouncing ball system [7,8], a vertically-bouncing ball
undergoes repeated impacts with a table which oscillates vertically
in a sinusoidal fashion with amplitude A and angular frequency x.
The impact between the ball and the table is instantaneous and
inelastic, where the coefficient of restitution a (0 6 a < 1) measures
the energy lost of the ball at each impact. The table is not affected by
the impact because the table’s mass is much larger than the ball’s
mass. In between impacts, the ball moves vertically in a uniform
gravitational field since the distance traveled is much less than
the Earth’s radius. We will use the ball’s velocity v and position y just
after each impact to describe the motion of the bouncing ball.

In the Newtonian framework, the dynamics of the bouncing ball
is exactly described by the following map [7,8]:
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where vk and hk are, respectively, the ball’s velocity and the table’s
phase just after the kth impact, g = GM/R2, M and R are, respectively,
the mass and radius of the earth, and G is the gravitational constant.

In the general-relativistic framework, the dynamics of the
bouncing ball is exactly described by the following map [7]:
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General relativistic 0.02194403767634832106298573952785 7.86744686246560234743196250478
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where the constant RTLP is the distance between the table’s lowest
position and the center of the earth, c is the speed of light, bk = vk/
c, uk+1 = Ax cos(hk+1) is the table’s velocity just after the (k + 1)th
impact, and
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is the ball’s velocity just before the (k + 1)th impact.
The ball’s vertical position (which is also the table’s position) just

after each impact can be calculated using the table’s phase just after
each impact via the simple relationship y = A[sin(h) + 1]. The impact
phase maps, Eqs. (1) and (3), which are implicit algebraic equations
for hk+1, must be solved numerically by finding the zero of the func-
tion on the left side of the equation, given hk and vk. We used Brent’s
method for this purpose. Numerical accuracy of the solutions was
carefully checked by varying the tolerances used in finding the zer-
oes. For a given set of parameters and initial conditions, the trajec-
tory (Newtonian or general relativistic) is calculated twice with the
maps, first in quadruple precision (35 significant figures) with a tol-
erance of 10�30 for the zeroes, then in quadruple precision with a
smaller tolerance of 10�32 for the zeroes, to determine its accuracy.
The accurate digits of the trajectory are the common digits of the
10�30-tolerance trajectory and the 10�32-tolerance trajectory. For
example, if the position is 0.1234. . . in the 10�30-tolerance calcula-
tion and 0.1239. . . in the 10�32-tolerance calculation, the position is
accurate to three significant figures, i.e., 0.123.

Results and discussion

We will now compare and discuss the results for two cases. For
both cases, we used g = 981 cm/s2, c = 3 � 1010 cm/s, and
RTLP = 6.4 � 108 cm (mean radius of the Earth).

In Case 1, for parameters x = (2p) � 60 Hz, A = 0.012 cm and
a = 0.5, initial conditions y0 = 0.02022 cm and v0 = 8.17001 cm/s,
both the Newtonian and general-relativistic trajectories are
chaotic. The magnitude of the difference between the two trajecto-
ries, which is exactly zero initially, grows exponentially with time
(measured by impacts) causing the two trajectories to disagree
completely after 55 impacts [7]. The Newtonian and general-rela-
tivistic trajectories after 55 impacts are:
Position (cm)

Newtonian 0.0217084386637068869712
General relativistic 0.0219472840845825046725
Only the common digits of the 10�30-tolerance and the 10�32-tol-
erance calculations are shown above for each quantity in each theory.

In Case 2, all the parameters and initial conditions differ from
those in Case 1 by 10�13. In this case, the Newtonian and gen-
eral-relativistic trajectories are also chaotic. The trajectories after
55 impacts are:
Only the common digits of the 10�30-tolerance and the 10�32-
tolerance calculations are shown above for each quantity in each
theory.

Let us assume that the parameters and initial conditions in Case
1 are the actual ones, and the parameters and initial conditions in
Case 2 are the measured ones. In other words, the measurement
error is 10�13 for all the parameters and initial conditions. Compar-
ison of the trajectories in Case 2 with the trajectories in Case 1
shows that the trajectories calculated using the measured param-
eters and initial conditions in Case 2 are only accurate to four
and three significant figures, respectively, for the position and
velocity after 55 impacts:
43
43
Velocity (c

0 8.0353677
40152550 7.8650447
Position (cm)
m/s)

94108586684123
286064452986054392
Velocity (cm/s)
Newtonian
 0.02170
 8.03

General relativistic
 0.02194
 7.86
However, if the measurement uncertainty is greater than 10�13
(e.g., 10�12, 10�11, . . .) for all the parameters and initial conditions,
the trajectories calculated using the measured parameters and ini-
tial conditions bear no resemblance to the trajectories calculated
using the actual parameters and initial conditions in Case 1 after
55 impacts.

Conclusion

The example in the previous section shows that the parameters
and the initial position and velocity of a low-speed weak-gravity
bouncing ball system must be known to very high accuracies –
measurement uncertainties are at most 10�13 – so that sufficiently
accurate Newtonian and general-relativistic chaotic trajectories
can be calculated in order to test which of the two trajectories is
empirically correct when they disagree. Whether such accuracies
can be achieved experimentally remains to be studied.
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