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Abstract In this paper, an attempt was made to develop a quantitative structure–activity relation-

ship (2D and 3D QSAR) and molecular docking studies on a series of quinazoline derivatives acting

as protein tyrosine kinases (EGFR) inhibitors. 2D QSAR was performed using multiple linear

regression (MLR), principal component regression (PCR) and partial least squares regression

(PLS) methods. Among these three methods, multiple linear regression (MLR) method has come

out with a very promising result as compared to other two methods. According to Model-1 by

MLR anticancer activity of quinazoline derivatives were influenced by individual (H-donor count,

and XlogP) and alignment independent descriptor (T_C_Br_1, T_2_O_1 and T_2_N_7) help in

understanding the effect of substituent at different position of quinazolines. The contribution plot

of steric and electrostatic field interactions generated by 3D-QSAR shows interesting results in

terms of internal and external predictability. Molecular field analysis was applied for the generation

of steric and electrostatic descriptors based on aligned structures. Steric and electrostatic field

effects are discussed in the light of contribution plot generated. Finally, molecular docking analysis

was carried out to better understand the interactions between EGFR target and inhibitors in this

series. Hydrophobic and hydrogen bond interactions lead to identification of active binding sites
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of EGFR protein in the docked complex. The present study is more versatile than the earlier

reported methods. Hence the model proposed in this work can be employed to design new deriva-

tives of quinazoline with specific tyrosine kinase (EGFR) inhibitory activity.

ª 2011 Production and hosting by Elsevier B.V. on behalf of King Saud University.

Open access under CC BY-NC-ND license.
1. Introduction

A considerable amount of experimental studies have been car-
ried out with 4-anilinoquinazoline derivatives which are potent

and highly selective inhibitors of epidermal growth factor
(EGFR) phosphorylation at the ATP binding site. These com-
pounds cause inhibition of EGFR produced by abnormal sig-

nal transduction via hyperactivation of tyrosine protein
kinases due to overexpression or mutation, thus leading to anti-
cancer activities against human lung cancer, breast cancer,
squamous head, and neck carcinomas (Herbst et al., 2004). A

number of 5-substituted 4-anilinoquinazoline derivatives were
synthesized by Ballard et al. (2005) and these compounds were
evaluated in erbB2 and EGFR kinase assays measuring inhibi-

tion of phosphorylation at the ATP binding site. Rewcastle et
al. (1995) prepared two series of 4-(phenylmethyl) amino and 4-
(3-bromophenyl) amino quinazoline compounds and evaluated

their inhibitory activities against EGFR tyrosine kinases that
ultimately led to structure–activity relationships of these com-
pounds. Structure–activity relationships of a series of quinazo-

line derivatives studied by Gibson et al. (1997) identified 4-(4-
isoquinolylamino) quinazoline and 4-(trans-2-phenyl cyclopro-
pyl amino) quinazoline as potent EGFR inhibitors against a tu-
mour xenograft model (A431 vulval carcinoma in nude mice).

In order to study the structure–activity relationships, Henne-
quin et al. (2006) synthesized a number of 4-anilinoquinazoline
compounds, and it was shown that anilinoquinazolines possess-

ing C-6 aminomethyl side-chains act as potent and selective
inhibitors of EGFR kinase. Structure–activity relationships
for 4-anilinoquinazolines and modelling of the binding of these

compounds to EGFR have also been studied by Denny (2001).
Bridges et al. (1996) synthesized numerous 4-anilinoquinazo-
line derivatives acting as EGFR-mediated potential tyrosine ki-
nase inhibitors, and the anticancer activities of these

compounds against human A431 carcinoma cell vesicles have
been reported. The development of tyrosine kinase inhibitors
has therefore become an active area of research in pharmaceu-

tical science. One could not, however, confirm that the com-
pounds synthesized would always possess good inhibitory
activity to Tyrosine kinase, while experimental assessments of

inhibitory activity of these compounds are time-consuming
and expensive. Consequently, it is of interest to develop a pre-
diction method for biological activities before the synthesis.

Quantitative structure–activity relationship (QSAR) searches
information relating chemical structure to biological and other
activities by developing a QSAR model. Using such an ap-
proach one could predict the activities of newly designed com-

pounds before a decision is being made whether these
compounds should be really synthesized and tested.

With the above facts and in continuation of our research

for newer anticancer agent (Noolvi and Patel, 2011a,b,c;
Noolvi et al., 2011a,b; Noolvi et al., 2010; Manjula et al.,
2009; Badiger et al., 2006) in the present study, we reported

2D, 3D-QSAR and molecular docking studies on a series
of EGFR inhibitors to provide further insight into the key
structural features required to design potential drug candi-
dates of this class.

2. Materials and methods

2.1. 2D-QSAR methodology

2.1.1. Data set

Forty-five molecules belonging to 4-anilino quinazoline deriv-
atives as EGFR tyrosine kinase inhibitors were taken from the
literature and used for QSAR analysis (Bridges et al., 1996).

The above reported series of quinazoline derivatives showed
wide variations in their structures and potency profiles. Vari-
ous 2D-QSAR models were generated for this series using mul-

tiple linear regression (MLR), principal component regression
(PCR) and partial least squares (PLS) regression methods and
those which come out with promising results are discussed

here. QSAR models were generated by a training set of 34
(MLR), 33 (PCR) and 30 (PLS) molecules. Predictive power
of the resulting models was evaluated by a test set of 11
(MLR), 12 (PCR) and 15 (PLS) molecules with uniformly dis-

tributed biological activities. The test set was selected based on
the criteria given by Oprea et al. (1994). The structures of all
the compounds along with their actual and predicted biologi-

cal activities are presented in Table 1.

2.1.2. Biological activities

The biological activities were converted into the corresponding

pIC50 values, where IC50 value represents the drug in molar
concentration that causes 50% inhibition of phospholipase
Cc1 phosphorylation by EGFR. All the IC50 values had been

obtained using the same assay method (Fry et al., 1994). The
IC50 values of reference compounds were checked to ensure
that no difference occurred between different groups. The

pIC50 values of the molecules under study spanned a wide range
from 5 to 11. Since some compound exhibited insignificant/no
inhibition, such compounds were excluded from the present
study.

2.1.3. Computational data

The data set used for the QSAR analyses contains 45 mole-

cules belonging to quinazoline derivatives as tyrosine kinase
(EGFR) inhibitors. All the structures of the compounds were
drawn in 2D-APPL mode of software and exported to 3D
model. The modelling analyses, calculations, and visualiza-

tions for 2D QSAR were performed using the V-Life Molecu-
lar Design Suite 3.0 (Vlife MDS). The compounds were then
subjected to conformational analysis and energy minimization

using Montocarlo conformational search with RMS gradient
of 0.001 kcal/mol using a MMFF force field. Montocarlo con-
formational search method is similar to the RIPS method that

generates a new molecular conformation by randomly perturb-

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 Structure, experimental and predicted activity of quinazolines used in training and test set using MLR analysis.

S. No. R1 R2 R3 R4 pIC50
a Residual

Exp. Pred.

1 H H H H 6.46 6.68 �0.22
2 CH3 H H H 6.04 5.89 0.15

3 Cl H H H 7.63 7.85 �0.22
4 Br H H H 7.56 7.34 0.22

5 I H H H 7.09 6.81 0.28

6T CF3 H H H 6.23 6.45 �0.22
7T Br H NO2 H 6.04 5.87 0.17

8 Br H OCH3 H 6.45 6.23 0.22

9T Br H H NO2 6.00 6.45 �0.45
10 Br H H OCH3 8.00 7.65 0.35

11T Br H OH OH 9.76 9.12 0.64

12T Br H NH2 NH2 9.92 9.68 0.24

13 F H H H 7.25 7.75 �0.5
14 H H OCH3 H 7.24 7.48 �0.24
15 H H NH2 H 6.11 5.76 0.35

16T CF3 H NH2 H 6.24 6.04 0.2

17 H H OCH3 H 6.92 6.86 0.06

18 H H H NH2 7.00 7.56 �0.56
19 CF3 H H NH2 8.48 8.38 0.1

20 F H H NO2 5.21 5.36 �0.15
21 Cl H H NO2 6.09 6.45 �0.36
22 I H H NO2 6.26 6.12 0.14

23 H H OCH3 OCH3 7.53 7.65 �0.12
24 F H OCH3 OCH3 8.42 8.23 0.19

25 Cl H OCH3 OCH3 9.50 9.56 �0.06
26 I H OCH3 OCH3 9.05 8.76 0.29

27T CF3 H OCH3 OCH3 9.61 9.89 �0.28
28T Br H NHCH3 H 8.39 8.12 0.27

29 Br H N(CH3)2 H 7.07 7.56 �0.49
30 Br H NHCOOCH3 H 7.92 7.86 0.06

31 Br H H OH 8.32 8.12 0.2

32T Br H H OH 7.39 7.86 �0.47
33 Br H H NHCOCH3 8.15 8.54 �0.39
34 Br H H NHCH3 7.92 7.68 0.24

35T Br H H NHC2H5 7.95 7.46 0.49

36T Br H H N(CH3)2 9.16 9.45 �0.29
37 Br H NH2 NHCH3 6.79 6.54 0.25

38 Br H NH2 N(CH3)2 7.95 8.68 �0.73
39 Br H NH2 OCH3 8.18 7.56 0.62

40 Br H NH2 Cl 7.16 6.87 0.29

41 Br H NO2 NHCH3 7.82 7.57 0.25

42 Br H NO2 OCH3 7.60 6.87 0.73

43 Br H OC2H5 OC2H5 11.22 11.65 �0.43
44 Br O(CH2CH2CH3) O(CH2CH2CH3) 9.76 9.56 0.20

45 H Br OCH3 OCH3 9.01 8.56 0.45

Expt. = experimental activity, Pred. = Predicted activity, T = test set.
a �Log (IC50

* 10�6).
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ing the position of each coordinate of each atom in molecule.
Most stable structure for each compound was generated after

energy minimization and used for calculating various physico-
chemical descriptors.
2.1.4. Molecular descriptors

The various descriptors selected for 2D QSAR were vdW
Surface Area (van der Waals surface area of the molecule),
�ve Potential Surface Area (total van der Waals surface area
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with negative electrostatic potential of the molecule), +ve
Potential Surface Area (total van der Waals surface area with
positive electrostatic potential of the molecule) dipole mo-

ment, Y compDipole (y component of the dipole moment),
element count, slogP, path count, cluster, distance based
topological indices, connectivity index, hydrophobic and

hydrophilic areas like SA most hydrophilic (most hydrophilic
value on the vdW surface by Audry Method using Slogp), SA
most hydrophobic–hydrophilic distance (distance between

most hydrophobic and hydrophilic point on the vdW surface
by Audry method using Slogp), SA hydrophilic area (vdW
surface descriptor showing hydrophilic surface area by Audry
Method using SlogP) and SK most hydrophilic (most hydro-

philic value on the vdW surface by Kellog method using
Slogp), radius of gyration, Wiener’s index, moment of inertia,
semi-empirical descriptors, HOMO (Highest occupied molec-

ular orbital), LUMO (lowest unoccupied molecular orbital),
heat of formation and ionization potential. The list of
descriptors along with their description is given in Table 2.

Besides these all, alignment independent descriptors were also
calculated.
2.1.5. Selection of training and test set

In order to obtain a validated QSAR model for the purpose of
meaningful prediction, an available dataset should be divided
into the training and test sets. For the prediction statistics to

be reliable, the test set must include at least five compounds
(Golbraikh and Tropsha, 2002). Ideally, the division into the
training and test set must satisfy the following three condi-

tions: (i) all representative compound-points of the test set in
the multidimensional descriptor space must be close to those
of the training set. (ii) All representative points of the training
set must be close to those of the test set. (iii) The representative

points of the training set must be distributed within the whole
area occupied by the entire dataset (Golbraikh and Tropsha,
2002).

The dataset of 45 molecules was divided into training and
test set by sphere exclusion (SE) method (Shen et al., 2002)
for MLR, PCR and PLS model with dissimilarity value of

2.4, 2.8 and 3.0, respectively, using pIC50 activity field as
dependent variable and various 2D descriptors as indepen-
dent variables. In classical sphere exclusion algorithm the
molecules are selected whose similarities with each of the

other selected molecules are not higher than a defined thresh-
old (Shen et al., 2002). Each selected molecule generates a hy-
per-sphere around itself, so that any molecule inside the

sphere is excluded from the selection in the train set and dri-
ven towards the test set. The number of compounds selected
and the diversity among them can be determined by adjusting

the radius of the sphere (R). The different statistical models
were developed using multiple linear regression (MLR), prin-
cipal component regression (PCR) and partial least squares

(PLS) regression methods. The equations were found to de-
rive 2D-QSAR equation from different model building meth-
od (multiple regression, principle component regression and
partial least squares regression) coupled with stepwise for-

ward–backward variable selection method for assuming the
biological activity with the help of physico-chemical descrip-
tor values. Only those equations are discussed in Section 3

which come out with promising results from three methods
(MLR, PCR and PLS).
2.1.6. Statistical parameters

Statistical measures used for the evaluation of models were the

number of compounds in regression n, the regression coefficient
r2, the F-test (Fischer’s value) for statistical significance F, the
cross-validated correlation coefficient q2 and the standard error

of estimation r2 and q2. The regression coefficient r2 is a relative
measure of fit by the regression equation. It represents the part
of the variation in the observed data that is explained by the

regression. The correlation coefficient values closer to 1.0 rep-
resent the better fit of the regression. The F-test reflects the ratio
of the variance explained by the model and the variance due to
the error in the regression. High values of the F-test indicate

that the model is statistically significant. Validation parameter,
predictive r2 (r2_pred) was calculated for evaluating the predic-
tive capacity of the model. A value of r2_pred greater than 0.5

indicates the good predictive capacity of the QSAR model.

2.1.7. Model validation

This is done to test the internal stability and predictive ability

of the QSAR models. Developed QSAR models were validated
by the following procedure.

2.1.7.1. Internal validation. Internal validation was carried out
using leave-one-out (q2, LOO) method. For calculating q2,
each molecule in the training set was eliminated once and the

activity of the eliminated molecule was predicted by using
the model developed by the remaining molecules. The q2 was
calculated using the equation which describes the internal sta-

bility of a model.

q2 ¼ 1�
P
ðyi � ŷiÞ2P
ðyi � ymeanÞ

2
ð1Þ

where yi and ŷi are the actual and predicted activity of the ith
molecule in the training set, respectively, and ymean is the aver-

age activity of all molecules in the training set.

2.1.7.2. External validation. The predictive ability of the se-

lected model was also confirmed by external validation of test
set compounds which is also denoted with pred_r2. The
pred_r2 value is calculated as follows:

pred r2 ¼ 1�
P
ðyi � ŷiÞ2P
ðyi � ymeanÞ

2
ð2Þ

where yi and ŷi are the actual and predicted activity of the ith
molecule in the training set, respectively, and ymean is the aver-
age activity of all molecules in the training set.

2.1.7.3. Randomization test. To evaluate the statistical signifi-
cance of the QSAR model for an actual dataset, one-tail
hypothesis testing was used (Golbraikh and Tropsha, 2003;

Gilbert, 1976).The robustness of the models for training sets
was examined by comparing these models to those derived
for random datasets. Random sets were generated by rearrang-

ing the activities of the molecules in the training set. The
statistical model was derived using various randomly rear-
ranged activities (random sets) with the selected descriptors

and the corresponding q2 were calculated. The significance of
the models hence obtained was derived based on a calculated
Z score (Gilbert, 1976; Cramer et al., 1988). A Z score value
is calculated by the following formula:



Table 2 List of 2D descriptors with their corresponding classification.

Descriptor classes Descriptors name/Id

Constitutional descriptors Mol. Wt. H-Acceptor Count, Rotatable bond count, No. halogen atoms, No. ester groups, No. rigid bonds, No.

Aromatic rings, No. double bonds, No. total atoms, No. single bonds

Physico-chemical

descriptors

Volume, slogp, smr, polarizability AHC, polarizability AHP, SKlogP value, water solubility, buffer solubility,

SK_MP, AMR value, SKlogS value, SKlogPvp, SKlog S_buffer, SK_BP, AlogP98 value, solvation Free Energy,

AlogP98 002 C, AlogP98 024 C, AlogP98 026 C, AlogP98 040 C, AlogP98 47 H, AlogP98 051 H, AlogP98 001 C,

AlogP98 005 C, AlogP98 025 C, AlogP98 029 C, AlogP98 046 H, AlogP98 060 O, AlogP98 089 Cl

Electrostatic descriptors Max. positive charge, max. positive hydrogen charge, local dipole index, relative negative charge, PPSA2,

PNSA1, PNSA3, DPSA2, FPSA1, FPSA3, FNSA2, WPSA1, WPSA3, WNSA2, hydrophobic SA – MPEOE,

negative charged polar SA – MPEOE, SAAA1, SAAA3, CHAA2, SCAA1, SCAA3, HRNCS, HRNCG, max

negative charge, total positive charge, charge polarization, polarity parameter, relative positive charge, PPSA1,

PPSA3, PNSA2, DPSA1, DPSA3, FPSA2, FNSA1, FNSA3, WPSA2, WNSA1, WNSA3, RNCS, positive

charged polar SA – MPEOE, SAAA2, CHAA1, CHAA3, SCAA2, +ve potential surface area, �ve potential

surface area, most +ve potential, most �ve potential, average potential, average +ve potential, average �ve
potential, most +ve & �ve potential distance

Topological descriptors chi1, chi4, chi5, chiV0, chiV1, chiV2, chiV3, chiV4, chiV5, 0PathCount, 3PathCount, 4PathCount, 5PathCount,

chi6chain, chiV6chain, chi3Cluster, chiV3Cluster, 3ClusterCount, chi4pathCluster, chiV4pathCluster,

4pathClusterCount, kappa3, k1alpha, k2alpha, k3alpha, total structure connectivity index, Chi 3 path, Chi 4

path/cluster, VChi 0, VChi 2, VChi 3 cluster , VChi 4 cluster, VChi 5 path, Kier shape 2, Kier alpha 1, Kier alpha

3, Kier symmetry index, Chi 0, Chi 2, Chi 3 cluster, Chi 5 path, VChi 1, VChi 3 path, VChi 4 path, VChi 4 path/

cluster, Kier shape 1, Kier shape 3, Kier alpha 2, Kier flexibility, Kier steric descriptor, Delta Chi 0, Delta Chi 2,

Delta Chi 3 cluster, Delta Chi 5 path, difference chi 1, difference chi 3, difference chi 5, Delta Chi 1, Delta Chi 3

path, Delta Chi 4 path, Delta Chi 4 path/cluster, difference chi 0, difference chi 2, difference chi 4, IC, CIC, IAC

total, I_adj_mag, I_dist_mag, I_edge_adj_mag, I_edge_adj_deg_mag, I_edge_dist_mag, BIC, SIC, I_adj_equ,

I_adj_deg_equ, I_dist_equr, I_edge_adj_equ, I_edge_adj_deg_equ, I_edge_dist_equ, charge index 1, charge index

3, charge index 5, charge index 7, charge index 9, valence charge index 2, valence charge index 4, valence charge

index 6, valence charge index 8, valence charge index 10, bound charge index 2, bound charge index 4, bound

charge index 6, bound charge index 8, bound charge index 10, valence bound charge index 1, valence bound

charge index 3, valence bound charge index 5, valence bound charge index 7, valence bound charge index 9,

charge index 0, charge index 2, charge index 4, charge index 6, charge index 8, charge index 10, valence charge

index 1, valence charge index 3, valence charge index 5, valence charge index 7, valence charge index 9, global

topological charge index, bound charge index 1, bound charge index 3, bound charge index 5, bound charge index

7, bound charge index 9, valence bound charge index 0, valence bound charge index 2, valence bound charge

index 4, valence bound charge index 6, valence bound charge index 8, valence bound charge index 10, Wiener

index, Harary index, 2-MTI prime, Graph diameter, Graph Petitjean, Eccentric adjacency index, Odd–even

index, ring degree-distance index, Balaban index JY, superpendentic index, Centralization_distance_matrix,

Dispersion_distance_matrix, SC-3 cluster, SC-4 cluster, SC-5 path, SC-7 path, SC-9 path, solvation chi 0,

solvation chi 2, solvation chi 3 cluster, solvation chi 4 cluster, solvation chi 5 path, VS-3, VS-5, molecular walk

count 3, molecular walk count 5, Path/walk 3, Narumi HTI, Pogliani index, degree complexity, graph distance

complexity, mean square distance index, edge Wiener index, edge MTI, edge connectivity index, hyper Wiener

index, 1st Zagreb, quadratic index, 2-MTI, Gutman MTI, graph radius, eccentric connectivity index, Platt

number, vertex degree-distance index, Balaban index JX, Xu, Unipolarity_distance_matrix, SC-3 path, SC-4 path

SC-4 path/cluster, SC-6 path, SC-8 path, SC-10 path, solvation chi 1, solvation chi 3 path, solvation chi 4 path,

solvation chi 4 path/cluster, VS-2, VS-4, molecular walk count 2, molecular walk count 4, Path/walk 2, Narumi

ATI, Narumi GTI, ramification index, graph vertex complexity, graph distance index, mean distance deviation,

Edge Hyper Wiener index, Edge Gutman MTI, DistTopo, connectivity index, radius of gyration, MomInertia X,

MomInertia Y, MomInertia Z, Balaban index J, Hosoya index, Id, Id Average, Idw, SsCH3count, SssCH2count,

SaaCHcount, SaasCcount, SssssCcount, SdOcount, SsCH3E-index, SaaCHE-index, SdssCE-index, SaasCE-

index, SaasN(Noxide)E-index, SdOE-index, SssOE-index, SssSE-index, SddssS(sulfate)E-index, SsClEindex,

SsFE-index, E-state SsCH3, E-state SaasC, E-state S_hydrophobic, E-state S_hydrophobic_unsat, E-state

S_polar, E-state S_negative_charged_group, E-state SHCsatu, E-state SH_hydrophobic, E-state SaaCH, E-state

SdssC, E-state SaaaC, E-state SaasN, E-state SssO, E-state SsCl, E-state S_hydrophobic_sat, E-state S_none, E-

state S_hbond_acceptor, E-state SHaaCH, E-state SHCsats

Semi-empirical descriptors Heat of formation, HOMO energy, LUMO energy, sum of absolute charges, X compDipole, Y compDipole, Z

compDipole, dipole moment, quadrupole 1, quadrupole 2, quadrupole 3, QM dipole X, QM dipole Y, QM dipole

Z, QM dipole magnitude, XX polarizability, YY polarizability, ZZ polarizability, XY polarizability, XZ

polarizability, YZ polarizability, average polarizability, XA most hydrophobic, XA average hydrophobicity, XA

most hydrophobic hydrophilic distance, XK hydrophobic area, XK most hydrophobic, XK most hydrophilic,

XK average, XK most hydrophobic hydrophilic distance, SA hydrophobic area, SA hydrophilic area, SA most

hydrophobic, SA most hydrophilic, SA average, SA average hydrophobicity, SA average hydrophilicity, SA most

hydrophobic hydrophilic distance, SK hydrophobic area, SK hydrophilic area, SK most hydrophobic, SK most

hydrophilic, SK average, SK average hydrophobicity, SK average hydrophilicity, SK most hydrophobic

hydrophilic distance, polar surface area excluding P and S, polar surface area including P and S

A comparative QSAR analysis and molecular docking studies of quinazoline derivatives 365
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Z score ¼ ðh� lÞ
r

ð3Þ
where h is the q2 value calculated for the actual dataset, l the

average q2, and r is its standard deviation calculated for vari-
ous iterations using models built by different random datasets.

2.2. 3D QSAR methodology

Like many 3D QSAR methods (Cramer et al., 1988; Sharaf
et al., 1986) k-nearest neighbour molecular field analysis
(kNN-MFA) requires suitable alignment of given set of mole-

cules. This is followed by generation of a common rectangular
grid around the molecules. The steric and electrostatic interac-
tion energies are computed at the lattice points of the grid

using a methyl probe of charge +1. These interaction energy
values are considered for relationship generation and utilized
as descriptors to decide nearness between molecules. The term

descriptor is utilized in the following discussion to indicate
field values at the lattice points. The optimal training and test
sets were generated using the sphere exclusion algorithm. This
algorithm allows the construction of training sets covering

descriptor space occupied by representative points. Once the
training and test sets were generated, kNN methodology was
applied to the descriptors generated over the grid.

2.2.1. k-Nearest neighbour (kNN) method

The kNN methodology relies on a simple distance learning ap-
proach whereby an unknown member is classified according to

the majority of its k-nearest neighbours in the training set. The
nearness is measured by an appropriate distance metric (e.g., a
molecular similarity measure calculated using field interactions

of molecular structures). The standard kNN method is imple-
mented simply as follows (Sharaf et al., 1986): (1) calculate dis-
tances between an unknown object (u) and all the objects in the

training set. (2) Select k objects from the training set most
similar to object u, according to the calculated distances. (3)
Classify object u with the group to which the majority of the

k objects belongs. An optimal k value is selected by optimiza-
tion through the classification of a test set of samples or by
leave-one out cross-validation. The variables and optimal k
values were chosen using different variable selection methods

as described below.

2.2.1.1. kNN-MFA with simulated annealing. Simulated anneal-

ing (SA) is the simulation of a physical process, ‘annealing’,
which involves heating the system to a high temperature and
then gradually cooling it down to a preset temperature (e.g.,

room temperature). During this process, the system samples
possible configurations distributed according to the Boltzmann
distribution so that at equilibrium, low energy states are the
most populated. The SA kNN-MFA method employs the

kNN classification principle combined with the SA variable
selection procedure. For each predefined number of variables
(Vn) it seeks to optimize the following using stochastic sam-

pling and simulated annealing as an optimization tool; (i) the
number of nearest neighbours (k) used to estimate the activity
of each molecule and (ii) the selection of variables from the ori-

ginal pool of all molecular descriptors that are used to calcu-
late similarities between molecules (i.e., distances in Vn-
dimensional descriptor space). The SA kNN-MFA reported
here is similar to that described by Zheng and Tropsham
(2000) and can be summarized as follows:

(1) Generate a trial solution to the underlying optimization

problem; i.e., a kNN-MFA model is built based on a random
selection of descriptors. (2) Calculate the value of the fitness
function, which characterizes the quality of the trial solution

to the underlying problem, i.e., the q2 value for a kNN-MFA
model. (3) Perturb the trial solution to obtain a new solution;
i.e., change a fraction of the current trial solution descriptors

to other randomly selected descriptors and build a new
kNN-MFA model for the new trial solution. (4) Calculate
the value of the fitness function (q2new) for the new trial solu-
tion. (5) Apply the optimization criteria: if q2curr 6 q2new the

new solution is accepted and used to replace the current trial
solution; if q2curr > q2new, the new solution is accepted only if
the Metropolis criterion is satisfied; i.e.

rnd < e�ðq
2
curr�q2newÞ=T ð4Þ

where rnd is a random number uniformly distributed between
0 and 1 and T is a parameter analogous to the temperature in

the Boltzmann distribution. (6) Steps 3–5 are repeated until the
termination condition is satisfied. The temperature-lowering
scheme and the termination condition used in this work have

been adapted from Sun et al. (1994).
Thus, when a new solution is accepted or when a preset

number of successive steps of generating trial solutions (20
steps) do not lead to a better result, the temperature is lowered

by 10% (the default initial temperature is 1000 K). The calcu-
lations are terminated, when either the current temperature of
simulations reaches 10�6 K or the ratio between the current

temperature and the temperature corresponding to the best
solution found equals 10�6.

2.2.1.2. kNN-MFA with stepwise (SW) variable selection. This
method employs a stepwise variable selection procedure com-
bined with kNN to optimize (i) the number of nearest neigh-

bours (k) and (ii) the selection of variables from the original
pool as described in simulated annealing. The step by-step
search procedure begins by developing a trial model with a sin-
gle independent variable and adds independent variables, one

step at a time, examining the fit of the model at each step.
The method continues until there are no more significant vari-
ables remaining outside the model.

2.2.1.3. kNN-MFA with genetic algorithm. Genetic algorithms
(GA) first described by Holland (1975) mimic natural evolution

and selection. In biological systems, genetic information that
determines the individuality of an organism is stored in
chromosomes. Chromosomes are replicated and passed onto
the next generation with selection criteria depending on fitness.

Genetic information can however be altered through genetic
operations such as mutation and crossover. In GAs, each
‘‘chromosome’’ is a set of genes, which constitutes a candidate

solution to the discrimination problem. A population of ‘‘chro-
mosomes’’ is used. The passage of each ‘‘chromosome’’ to the
next generation is determined by its relative fitness, i.e., the

closeness of its properties to those desired. Random combina-
tions and/or changes of the transmitted ‘‘chromosomes’’ pro-
duce variations in the next generation of ‘‘offspring’’. Better

the fitness (correspondence with desired properties), greater is
the chance of that chromosome being selected for transmission.
Optimal or near optimal solutions are obtained through evolu-
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tion over many generations. There are four major components
of GA: chromosome generation, fitness assessment, selection,
and mutation.

This method employs a stochastic variable selection proce-
dure, combined with kNN, to optimize (i) the number of nearest
neighbours (k) and (ii) the selection of variables from the origi-

nal pool as described in simulated annealing. The implementa-
tion of GA based kNN-MFA involved the following steps:

(1) Generate the initial population of chromosomes (candi-

date solutions) by randomly selecting genes (descriptors) from
the pool of available genes. (2) Calculate pairwise Euclidean
distances for all pair of molecules with respect to each chromo-
some. (3) Calculate the fitness of each chromosome using a

weighted kNN cross-validation procedure. (4) Select chromo-
somes for mating pool by roulette wheel selection. (5) Apply
uniform crossover and mutation operations on the mating

pool chromosomes to create a new population of offspring.
(6) Calculate fitness of each offspring using a weighted kNN
cross-validation procedure. (7) Replace the least fit chromo-

somes in an initial population with the best offspring. (8) Re-
peat steps 2–7 until the convergence criteria or the maximum
number of generations is reached.

2.3. Biological activity data

Forty-five 4-anilino quinazoline derivatives having anticancer
activities by EGFR kinase inhibition were considered in the

present study and used for kNN-MFA analysis (Bridges et
al., 1996). kNN-MFA (3DQSAR) models were generated for
these derivatives using stepwise variable selection method.

The dataset of 45 molecules was divided into the training (32
molecules) and test set (13 molecules) by sphere exclusion
method. The experimental biological activities, in the form of

IC50 were converted into pIC50 (�log IC50), where IC50 repre-
sents the concentration of these compounds that produce 50%
kinase inhibition. Our aim is to utilize these activity data for

the development of a valid 3D-QSAR model based on steric
and electrostatic fields that gives a deep insight into structure
property–activity correlations.

2.3.1. Geometry optimization

Three-dimensional quantitative structure–activity relationship
studies of 4-anilinoquinazoline derivatives were carried out
by using Molecular Design Suite software version 3.5 (Molec-

ular Design Suit 3.5, Vlife Science). Three-dimensional struc-
tures of all compounds have been constructed using MDS
3.5 and their geometries were subsequently optimized to make

the conformations having least potential energy. Energy mini-
mizations were performed using Merck molecular force field
(MMFF) and MMFF charge (Halgren, 1996) followed by con-

sidering distance-dependent dielectric constant of 1.0 and con-
vergence criterion of 0.01 kcal/mol. The total energy of a
conformation can be calculated using MMFF by the relation.

Etotal ¼ EB þ EA þ EBA þ EOOP þ ET þ Evdw þ Eelec ð5Þ

where,

EB = energy of bond stretching;
EA = energy of angle bending;

EBA = energy of bond stretching and angle bending;
EOOP = out-of-plane bending energy;
ET = torsion energy term;

Evdw = van der Waals energy;
Eelec = electrostatic energy.

2.3.2. Alignment of molecules

Molecular alignment is a crucial step in 3D-QSAR study to ob-

tain meaningful results. This method is based on moving of
molecules in 3D space, which is related to the conformational
flexibility of molecules. The goal is to obtain optimal alignment
between the molecular structures necessary for ligand–receptor

interactions (Cramer et al., 1988). All molecules in the data set
were aligned by template-based method using 4-anilinoquinaz-
oline as template, where a template is built by considering com-

mon substructures in the series. A highly bioactive energetically
stable conformation in this class of compounds is chosen as a
reference molecule on which other molecules in the data set

are aligned, considering template as a basis for the alignment.

2.3.3. Computation of steric and electrostatic fields

The aligned biologically active conformations of 4-anilinoqui-

nazolines are used for the calculation ofmolecular fields.Molec-
ular fields are the steric and electrostatic interaction energies
which are used to formulate a relationship between steric and

electrostatic properties together with the biological activities
of compounds. Each conformation is taken in turn, and the
molecular fields around it are calculated. This is done by gener-

ating three-dimensional rectangular grids around the molecule
and calculating the interaction energy between the molecule
and probe group placed at each grid point. Steric and electro-
static fields are computed at each grid point consideringMMFF

charges (Halgren, 1996). Methyl probe of charge +1 with
10.0 kcal/mole electrostatic and 30.0 kcal/mole steric cutoff
were used for fields generation. A value of 1.0 is assigned to

the distance-dependent dielectric constant. Steric and electro-
static field descriptors were calculated using Lennard–Jones
and Coulomb potentials (Cramer et al., 1988; Hoskuldsson,

1995). In the present study,molecular field analysis coupledwith
stepwise forward–backward variable was applied to obtain a
3D-QSAR model based on steric and electrostatic descriptors.
The calculated steric and electrostatic field descriptors were used

as independent variables and pIC50 values were used as depen-
dent variables in the present study (Hoskuldsson, 1995) to derive
the 3D-QSAR models using MDS software.

2.3.4. Cross-validation using weighted k-nearest neighbour

The standard leave-one-out procedure was implemented as
described by Zheng and Tropsham (2000) and can be summa-

rized as follows. (1) A molecule in the training set was elimi-
nated, and its biological activity was predicted as the
weighted average activity of the k most similar molecules (Eq.

(6)). The similarities were evaluated as the inverse of Euclidean
distances between molecules (Eq. (7)) using only the subset of
descriptors corresponding to the current trial solution.

Wi ¼
exp�djP

k-nearest neighbours expð�djÞ
ŷi ¼

X
wiyi ð6Þ

dij ¼
XVn

k¼1
ðXi;k � Xj;kÞ2

" #1=2
ð7Þ



Figure 1 Graph of actual vs. predicted activities for training and

test set molecules by multiple linear regression model (MLR).
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(2) Step 1 was repeated until every molecule in the training set

has been eliminated and its activity predicted once. (3) The
cross-validated r2 (q2) value was calculated using Eq. (8),
where yi and ŷi are the actual and predicted activities of the

ith molecule, respectively, and y mean is the average activity
of all molecules in the training set. Both summations are over
all molecules in the training set. Since the calculation of the
pair wise molecular similarities, and hence the predictions,

were based upon the current trial solution, the q2 obtained is
indicative of the predictive power of the current kNN-MFA
model

q2 ¼ 1�
P
ðyi � ŷiÞ2P
ðyi � ymeanÞ

2
ð8Þ

(4) Steps 1–3 were repeated for k 2, 3, 4, etc. Formally, the
upper limit of k is the total number of molecules in the data
set. However, the best value has been empirically found to

lie between 1 and 5. The k value that led to the highest q2 value
was chosen for the current kNN-MFA model.

Since the final equations are not very useful to represent

efficiently the kNN-MFA models, 3D master grid maps of
the best models are displayed. They represent area in space
where steric and electrostatic field interactions are responsible

for the observed variation of the biological activity.

2.3.4.1. External validation. The following procedure was
applied for external validation. (1) Predict the biological activ-

ity of a molecule in the test set as the weighted average activity
of the kmost similar molecules in the training set (Eq. (6)). The
similarities were evaluated as the inverse of Euclidean dis-

tances between molecules (Eq. (7)) as calculated using the
descriptors determined by the current model. (2) Step 1 was re-
peated for every molecule in the test set. (3) The predicted r2
(pred_r2) value was calculated using Eq. (9), where yi and ŷi
are the actual and predicted activities of the ith molecule in test
set, respectively, and ymean is the average activity of all mole-

cules in the training set. Both summations are over all mole-
cules in the test set. The pred_r2 value is indicative of the
predictive power of the current kNN-MFA model for external
test set.

pred r2 ¼ 1�
P
ðyi � ŷiÞ2P
ðyi � ymeanÞ

2
ð9Þ
Figure 2 Graph of actual vs. predicted activities for training and

test set molecules by principal component regression model
2.3.4.2. Randomization test. To evaluate the statistical signifi-

cance of the QSAR model for an actual data set, we have em-
ployed a one-tail hypothesis testing (Golbraikh and Tropsha,
2003; Gilbert, 1976). The robustness of the QSAR models for
experimental training sets was examined by comparing these

models to those derived for random data sets. Random sets
were generated by rearranging biological activities of the train-
ing set molecules. The significance of the models hence ob-

tained was derived based on calculated Z score (Golbraikh
and Tropsha, 2003; Gilbert, 1976).

2.3.5. Statistical parameters for 3D QSAR models

The QSAR models were evaluated using following statistical
measures: n, number of observations (molecules); Vn, number
of descriptors; k, number of nearest neighbours; q2, cross-val-

idated r2 (by the leave-one-out method); pred_r2, predicted r2
for the external test set; Z score, the Z score calculated by q2

in the randomization test; best_ran_q2, the highest q2 value
in the randomization test.

2.4. Molecular docking studies

Piecewise linear pairwise potential (PLP)-based molecular

docking of 4-anilino quinazoline has been performed using
the docking module of Molecular Design Software, (Gehlhar
et al., 1995; Verkhivker et al., 2000) which involves the use

of the PLP function summed over energy interactions between
all pairs of protein and ligand atoms.

Molecular docking energy evaluations are usually carried

out with the help of scoring function. There are several scoring
functions such as dock score, PLP score, potential of mean
(PCR).



Figure 3 Graph of actual vs. predicted activities for training and

test set molecules by partial least square regression model (PLS).

Table 4 Statistical parameters of MLR, PCR and PLS by 2D

QSAR.

Parameters MLR PCR PLS

N 34 33 30

Df 28 27 25

r2 0.9212 0.7837 0.7622

q2 0.8290 0.6905 0.6833

F test 52.1234 30.4505 40.0549

r2 se 0.6879 0.6726 0.6091

q2 se 0.7198 0.8045 0.7029

pred_r2 0.6170 0.5623 0.5736

best_ran_r2 0.62099 0.47789 0.4523

best_ran_q2 0.32287 0.22874 0.2576

Z score_ran_r2 6.66361 8.40938 8.18328

Z score_ran_q2 6.32934 7.66924 6.90778

a_ran_r2 0.00000 0.00000 0.00000

a_ran_q2 0.00000 0.00000 0.00000

MLR=multiple linear regression, PCR= principal component

regression, PLS = partial least squares, N = number of molecules

of training set, Df = degree of freedom, r2 = coefficient of deter-

mination, q2 = cross-validated r2, pred_r2 = r2 for external test set,

Z score = the Z score calculated by q2 in the randomization test,

best_ran_q2 = the highest q2 value in the randomization test and

a_ran_q2 = the statistical significance parameter obtained by the

randomization test.
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force (PMF) score, steric and electrostatic score, etc. For our
interest, the energy of interactions between ligand and protein

was calculated in terms of PLP score, which depends upon the
following different atom type parameter: hydrogen-bond do-
nors, and hydrogen bond acceptors, both donors and accep-

tors, and non polar atoms such as carbon.
The PLP function is incorporated by the MDS Vlife Science

software in the GRIP docking method which calculates the li-
gand-receptor binding affinity in terms of the PLP score. The

PLP score is designed to enable flexible docking of ligands to
perform a full conformational and positional search within a
rigid binding site. All the optimized conformers were docked

into active binding site of EGFR target protein that can be ob-
tained in co-crystallized state with erlotinib (protein data bank,
PDB entry 1M17), which was considered as the reference to

define the active binding site in the present investigation (Sta-
mos et al., 2002). Water molecules and HET ATOM-like
bound ligand data were removed from the PDB file of EGFR
Table 3 Molecular descriptors contributing in the present study.

Descriptor Descr

Individual

H-donor count This

XlogP This d

and g

Rotatable bond count This

Molecular weight This

Alignment independent descriptors

T_C_Br_1 This

atom

T_2_N_7 This

nitrog

T_2_O_1 This

oxyge

T_C_N_1 This

atom

T_C_O_1 This

atom
protein during docking study. The crystal structure was refined
using Vlife Science’s MDS 3.0 software (Vlife MDS 3.0,
2007a). The refinement of the crude PDB structure of receptor
was done by completing the incomplete residues. The co-crys-

tallized ligand lying within the receptor was modified by
assigning missing bond order and hybridization states. The
side chain hydrogens were then added to the crystal structure

and their positions were optimized up to the rms gradient 1
by aggregating the other part of the receptor. The optimized
receptor was then saved as mol file and used for docking sim-

ulation. The 2D structure of the compounds were built and
then converted into the 3D with the help of Vlife MDS 3.0
software (Vlife MDS 3.0, 2007b). The 3D structures were then
iption

descriptor signifies number of hydrogen bond donor atoms

escriptor signifies ratio of solute concentration in octanol & water

enerally termed as octanol water partition coefficient

descriptor signifies number of rotatable bonds

descriptor signifies the molecular weight of the compound

is the count of number of carbon atoms separated from bromine

s by one bond distance

is the count of number of double bonded atoms separated from

en atoms by seven bond distance

is the count of number of double bonded atoms separated from

n atoms by one bond distance

is the count of number of carbon atoms separated from nitrogen

s by one bond distance

is the count of number of carbon atoms separated from oxygen

s by one bond distance



Figure 4 Plot of percentage contribution of each descriptor in developed MLR model explaining variation in the activity.

Figure 5 Plot of percentage contribution of each descriptor in developed PCR model explaining variation in the activity.
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energetically minimized up to the rms gradient of 0.01 using
Merck Molecular Force Field (MMFF) (Vlife MDS 3.0,

2007c). Conformers of compounds were then generated by
Monte Carlo method. In doing so, all rotatable bonds of the
ligand were selected and number of seeds used for searching

the conformational space was set 5. All the conformers were
then energetically minimized up to the rms gradient of 0.01
and then saved in separate folder (Vlife MDS 3.0, 2007d).
The active site selection was done by choosing the cavity hav-

ing maximum hydrophobic surface area. The docking simula-
tion was done using GRIP batch docking. In this, all generated
conformers of one ligand were put as one batch in GRIP dock-

ing wizard. Likewise, the batches for all other ligands were put.
All the confirmers were virtually docked at the defined cavity
of the receptor. The parameters fixed for docking simulation

was like this-number of placement: 50, rotation angle of: 10�,
exhaustive method, scoring function: dock score. By rotation
angle, ligand would be rotated inside the receptor cavity to

generate different ligand poses inside the receptor cavity. By
placements, the method will check all the 50 possible place-
ments into the active site pocket and will result out few best

placements out of 50. For each ligand, all the conformers with
their best placements and their dock score will be saved in out-
put folder. The method also highlights the best placements of

best conformer of one particular ligand which is having best
(minimum) dock score. The ligand forming most stable drug-
receptor complex is the one which is having minimum dock
score. After docking simulation, the best docked conformer

of each ligand and receptor were merged and their complex
was then energetically optimized by defining radius of 10 Å
measured from the docked ligand. Stepwise energy optimiza-

tion was done by first hydrogens; second side chains and finally
the backbone of receptor (Vlife MDS 3.0, 2007e). The opti-
mized complexes were then checked for various interaction

of ligand with receptor like hydrogen bonding, hydrophobic
bonding and van der Waal’s interaction. The binding affinity
was evaluated by the binding free energy (DGb, kcal/mol),

hydrogen bonding interaction, hydrophobic interaction and



Figure 6 Plot of percentage contribution of each descriptor in developed PLS model explaining variation in the activity.
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Figure 7 4-Anilinoquinazoline (template).
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RMSD values. Docking interaction of synthesized compounds
is discussed in Section 3.

3. Result and discussion

3.1. 2D QSAR modelling and its validation

With regard to QSAR modelling, our first goal was to establish
a predictive model with a reasonable number of input features
to ensure good generalization performance. While correlating

various descriptors with biological activity is the most impor-
tant means to study structure–activity relationships, the inter-
est lies in deciding when to stop adding a new descriptor to the

model. Thus, the optimal model should use the minimum num-
ber of descriptors to obtain the best fit. To achieve this, a well
accepted method is to find out the saturation point, a point be-

yond which there is no considerable improvement in the
regression coefficient (r2 and q2) values even if a new descriptor
is added. MLR, PCR and PLS techniques were used in the

present study for selecting a significant set of descriptors in or-
der to build the significant models. In this section, the predic-
tion performances of the method proposed by three different
models (MLR, PCR and PLS) were evaluated.
The MLR, PCR and PLS models predicted the training

data with a r2 of 0.9212, 0.7837 and 0.7622 together with q2

estimating to 0.8290, 0.6905 and 0.6833, respectively. The plots
of calculated versus observed values of are shown in Figs. 1–3
in the case of all three models. Eq. (10) appears to be the best

QSAR model obtained by the multiple linear regression
(MLR) analysis. In this study we have limited the number of
presented equations to this of the best regression model of

the whole set. The model is given as follows together with
the statistical and validation parameters.

pIC50 ¼ 0:2354ðT C Br 1Þ þ 1:0187ðH-donor countÞ
þ 0:1785ðT 2 O 1Þ � 0:4166ðT 2 N 7Þ
þ 0:6829ðXlogPÞ � 3:5517: ð10Þ

N= 34, Df = 28, r2 = 0.9212, q2 = 0.8290, F = 52.1234,
pred_r2 = 0.6170, a_ran_r2 = 0.00000, a_ran_q2 = 0.00000,
best_ran_r2 = 0.62099, best_ran_q2 = 0.32287, Z score_r-

an_r2 = 6.66361 and Z score_ran_q2 = 6.32934.
Eq. (10) shows the positive contribution of T_C_Br_1

(18.44%) (This is the count of number of carbon atom sepa-

rated from bromine atom by one bond distance) and XlogP
(14.47%) (This descriptor signifies ratio of solute concentra-
tion in octanol and water and generally termed as Octanol–
Water partition coefficient) indicating the importance of elec-

tron withdrawing group at 4-anilino portion of quinazoline
ring (compounds 7–12 and similar analogues).

The other alignment independent descriptor, i.e., T_2_N_7

(�28.81%) is inversely proportional, which indicates that the in-
crease in the number of bonds between NH2, NH-, NHCO-
OCH3, NHCH3, NHC2H5 groups and quinazoline ring at C-6

(R3) and C-7 (R4) diminish the activity. This diminishing influ-
ence is augmented by minimizing chain length between NHCO-
OCH3, NHCH3, NHC2H5 groups and quinazoline ring at C-6
(R3) and C-7 (R4) (compounds 28–30 and similar analogues).

The direct relationship of hydrogen donor count descriptor
(23.36%) reveals the importance of hydrogen bonding for
selective potent molecule design.



Figure 8 3D view of aligned molecules.
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The positive contribution of next important alignment inde-
pendent descriptor T_2_O_1 (14.92%), which represents num-
ber of double bonded atoms separated from oxygen atom by

one bond distance is directly proportional to the activity. It re-
veals that presence of alkoxy group such as OCH3, OC2H5 at
C-6 (R3) and C-7 (R4) position of quinazoline is favourable for
the activity (compounds 23–27 and similar analogues).

The models obtained by PCR methodology also give a
good prediction in terms of the r2 value and is denoted by
Eq. (11).

pIC50 ¼ 0:3544ðRotatable bond countÞ
þ 0:7857ðH-donor countÞ
þ 0:0120ðmolecular weightÞ
� 0:3263ðT C N 1Þ þ 7:7591: ð11Þ

N= 33, Df = 27, r2 = 0.7837, q2 = 0.6905, F= 30.4505,
pred_r2 = 0.5623, a_ran_r2 = 0.00000, a_ran_q2 = 0.00000,

best_ran_r2 = 0.47789, best_ran_q2 = 0.22874, Z score_r-
an_r2 = 8.40938 and Z score_ran_q2 = 7.66924.

In the above equation, Rotatable bond count (22.04%) and
molecular weight (23.23%) descriptors have a positive influ-

ence on the EGFR inhibitory activity values of the
compounds.
The next important alignment independent descriptor is
T_C_N_1 (�10.88%), which can be defined as the count of
number of carbon atom separated from other nitrogen atom

by one bond distance in a molecule. It reveals that NH2,
NH–, NHCOOCH3, NHCH3, NHC2H5 groups should not
be directly attached with quinazoline ring at C-6 (R3) and C-
7 (R4).

The models obtained on the same 4-anilino quinazolines by
PLS regression analysis is given below as Eq. (12) along with
the corresponding statistical parameters.

pIC50 ¼ 0:8304ðH-donor countÞ
þ 0:0114ðmolecular weightÞ
þ 0:2403ðT C O 1Þ � 0:4861ðT 2 N 7Þ
þ 4:0271: ð12Þ

N= 30, Df = 25, r2 = 0.7622, q2 = 0.6833, F= 40.0549,
pred_r2 = 0.5736, a_ran_r2 = 0.00000, a_ran_q2 = 0.00000,

best_ran_r2 = 0.4523, best_ran_q2 = 0.2576, Z score_r-
an_r2 = 8.18328 and Z score_ran_q2 = 6.90778.

Alignment independent descriptor T_2_N_7 is common be-
tween MLR and PLS while as molecular weight descriptor is

common between PCR and PLS; only differs from each other
in their percentage of contribution. The definition of the



Table 5 Structure, experimental and predicted activity of quinazolines used in training and test set using kNN-MFA 3D QSAR

model.

S. No. R1 r2 R3 R4 pIC50
a Residual

Exp. Pred.

1 H H H H 6.46 6.78 �0.32
2 CH3 H H H 6.04 6.23 �0.19
3 Cl H H H 7.63 6.88 0.75

4 Br H H H 7.56 7.34 0.22

5T I H H H 7.09 7.24 0.66

6 CF3 H H H 6.23 6.56 �0.33
7 Br H NO2 H 6.04 6.21 �0.17
8 Br H OCH3 H 6.45 6.31 0.14

9 Br H H NO2 6.00 5.78 0.22

10T Br H H OCH3 8.00 7.76 0.24

11 Br H OH OH 9.76 9.64 0.12

12T Br H NH2 NH2 9.92 9.45 0.47

13 F H H H 7.25 7.45 �0.2
14 H H OCH3 H 7.24 7.01 0.23

15 H H NH2 H 6.11 6.45 �0.34
16T CF3 H NH2 H 6.24 6.58 �0.34
17 H H OCH3 H 6.92 6.71 0.21

18 H H H NH2 7.00 6.62 0.38

19T CF3 H H NH2 8.48 8.89 �0.41
20 F H H NO2 5.21 5.68 �0.47
21 Cl H H NO2 6.09 6.14 �0.05
22 I H H NO2 6.26 6.43 �0.17
23 H H OCH3 OCH3 7.53 7.68 �0.15
24 F H OCH3 OCH3 8.42 8.78 �0.36
25T Cl H OCH3 OCH3 9.50 9.21 �9.71
26T I H OCH3 OCH3 9.05 9.25 �0.2
27 CF3 H OCH3 OCH3 9.61 9.21 0.4

28 Br H NHCH3 H 8.39 8.21 0.18

29 Br H N(CH3)2 H 7.07 7.12 �0.05
30T Br H NHCOOCH3 H 7.92 7.38 0.54

31 Br H H OH 8.32 7.89 0.43

32 Br H H OH 7.39 7.89 �0.5
33T Br H H NHCOCH3 8.15 7.67 0.48

34 Br H H NHCH3 7.92 7.12 0.8

35 Br H H NHC2H5 7.95 7.45 0.5

36T Br H H N(CH3)2 9.16 9.89 �0.73
37T Br H NH2 NHCH3 6.79 5.34 1.45

38 Br H NH2 N(CH3)2 7.95 7.34 0.61

39T Br H NH2 OCH3 8.18 8.67 �0.49
40 Br H NH2 Cl 7.16 6.85 0.31

41 Br H NO2 NHCH3 7.82 7.36 0.46

42 Br H NO2 OCH3 7.60 6.86 0.74

43 Br H OC2H5 OC2H5 11.22 11.56 �0.34
44T Br O(CH2CH2CH3) O(CH2CH2CH3) 9.76 8.45 1.31

45 H Br OCH3 OCH3 9.01 8.34 0.67

Expt. = experimental activity, Pred. = predicted activity, T = test set.
a �Log (IC50

* 10�6).
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remaining descriptor that was found to be dominating in the
developed QSAR models is given below.
The positive contribution of next alignment independent
descriptor T_C_O_1 (17.94%), which represents number of



Table 6 Stastical results of kNN-MFA method.

Parameters kNN-MFA model

N 33

k 2

q2 0.8123

pred_r2 0.7243

pred_r2se 0.7912

Z score 8.3245

best_ran_q2 0.51099

a_ran_q2 0.00000

Descriptors E_151 (0.6423, 2.1154)

E_159 (3.7094, 4.0670)

E_188 (�1.1273, �1.1411)
S_192 (30.0000, 30.0000)

E_288 (10.0000, 10.0000)

Vn 5

N, number of molecules in training set; Vn, number of descriptors;

k, number of nearest neighbours; q2, cross-validated r2 (by the

leave-one out method); pred_r2, predicted r2 for the external test

set; Z score, the Z score calculated by q2 in the randomization test;

best_ran_q2, the highest q2 value in the randomization test and

a_ran_q2, the statistical significance parameter obtained by the

randomization test.

Figure 9 Graph of actual vs. predicted activities for training and

test set molecules by kNN-MFA model.

374 M.N. Noolvi, H.M. Patel
carbon atom separated from oxygen atom by one bond dis-
tance is directly proportional to the activity. It reveals that
presence of alkoxy group such as OCH3, OC2H5 at C-6 (R3)

and C-7 (R4) position of quinazoline is favourable for the
activity (compounds 23–27 and similar analogues).

Also it can be observed that all the developed QSAR mod-

els share one descriptor in common, i.e. H-donor count,
showing the importance of this descriptor in governing the
activity.

Among these three models, multiple linear regression
(MLR) has come out with a very promising result as compared
to other two methods. The observed and predicted pIC50 along
with residual values are shown in Table 1, list of 2D descriptor

in Table 2, list of descriptor contributing in the present study
Table 3 and statistical data is shown in Table 4. The descrip-
tors which contribute to the activity by MLR, PLS and PCR

are shown in Figs. 4–6 respectively.

3.2. 3D QSAR modelling and its validation

In the present study, kNN-MFA model is developed coupled
with stepwise variable selection method to develop 3D-QSAR
models of 4-anilinoquinazoline derivatives based on steric and

electrostatic fields. The structure of 4-anilinoquinazoline tem-
plate is shown in Fig. 7. A highly bioactive energetically stable
conformation in this class of compounds is chosen as a refer-
ence molecule on which other molecules in the data set are

aligned, considering template as a basis for the alignment.
The aligned view of 4-anilinoquinazolines is presented in
Fig. 8. The total data set was divided into training and test sets

using the sphere exclusion algorithm for diversity of the sam-
pling procedure. Compounds marked with (T) in Table 5 were
selected as test set molecules. The quality of the model was as-

sessed by cross-validated q2 in the training set and external val-
idation was performed by calculating predictive r2 (Pred_r2)
from the test-set compounds.

During the kNN-MFA investigation, dissimilarity value for
the selection of training and test by spherical exclusion method
of 3.0000–5.3000 were investigated. For each dissimilarity va-
lue, kNN-MFA model was built. The dissimilarity value of

3.600 produced a significant result as compared to the other.
In this study we have limited the number of presented equa-
tions to this of the best regression model of the whole set.

The kNN-MFA model showed significant correlation coeffi-
cient q2 (r2) of 0.8123, , coefficient of correlation of predicted
data set (pred_r2se) of 0.7912, r2 for external test set (pred_r2)

0.6243, degree of freedom 25 and k-nearest neighbour of 2
proved a good conventional statistical correlation which have
been obtained.

S_192, E_188, E_151, E_288 and E_159 are the steric and

electrostatic field energy of interactions between probe (CH3)
and compounds at their corresponding spatial grid points of
192, 188, 151, 288 and 159. The above model is validated by

predicting the biological activities of the test molecules, as indi-
cated in Table 5.

The plot of observed versus predicted activities for the test

compounds is represented in Fig. 9. From Table 5 it is evident
that the predicted activities of all the compounds in the test set
are in good agreement with their corresponding experimental

activities and optimal fit is obtained. The external predictabil-
ity of the above 3D-QSAR model using the test set was deter-
mined by Pred_r2, which is 0.7243. So the above results
indicate that 3D-QSARmodel for EGFR generates 72.43%
external model prediction (Table 6).

3.2.1. Steric and electrostatic contribution plot

The plot of contributions of steric and electrostatic field inter-
actions (Fig. 10) indicates relative regions of the local fields

(steric and electrostatic) around the aligned molecules (Abra-
ham et al., 1993). Green and blue balls represent steric and
electrostatic field effects, respectively. In the QSAR model, ste-

ric descriptors with positive coefficients represent regions of
high steric tolerance; bulky substituent is favourable in this
region. Steric descriptors with negative coefficients indicate



Figure 10 Contribution plot steric and electrostatic field of interactions by kNN-MFA models.
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regions where bulky substituent is disfavoured. Electrostatic
field descriptors with positive coefficients represent regions
where electropositive (electron-donating) groups are favorable,

whereas negative coefficient indicates that electronegative
(electron-withdrawing) groups are favourable in this region
(Nandi and Bagchi, 2009).

From 3D-QSAR kNN-MFA model (Table 6) and Fig. 10 it

is observed that electrostatic field with negative coefficient
(E_188) on the anilino moiety, indicating that electronegative
groups are favourable on this site and presence of electroneg-

ative groups increase the activity of 4-anilinoquinazoline com-
pounds (compounds 7–12 and similar analogue). Electrostatic
descriptor with positive coefficient (E_151, E_159 and E_288)

around 6 and 7-position of the quinazoline ring corroborates
that electropositive (electron-donating) group is preferred at
7-position of quinazolines. These results are in close agreement

with the experimental observations that compounds 23–27
contain alkoxy group at 6- and 7-positions. These compounds
produce greater activity due to electropositive substituents on
the 6- and 7-positions of the quinazoline ring (Bridges et al.,

1996). A bulky aromatic anilino substituent is essential at 4-
position of the quinazoline ring for producing kinase inhibi-
tion, as indicated by the presence of steric field with positive

coefficient (S_192) in this region. It is inferred from the dock-
ing results that the 4-anilino moiety is located in a deep hydro-
phobic pocket formed by ASP 831, LYS 721, THR 830, VAL

702 and LEU 820. Thus, the contribution plot arising out of
3D-QSAR studies provide some useful insights for better
understanding of the structural features of these compounds
responsible for producing significant EGFR kinase inhibitory

activity, which conforms with the docking results.

3.3. Docking study

From the docking study, it is clear that the quinazoline ring is
surrounded by hydrophobic residues, as indicated in Table 7.
The anilino group substituted at the 4 position of quinazoline
ring and itself quinazoline ring of natural ligand Erlotinib

(AQ499A) is bounded by hydrophobic pockets consisting of
residue such as ASP 831, LYS 721,THR 830,VAL 702 and
MET 769, LEU 768, ALA 719, THR 766, LEU 820,GLY

772, PHE 771, respectively (Fig. 11A and B).
The docked models reveal that N-1 of the quinazoline

forms hydrogen bond with hydrogen atom of amino backbone

of MET-769. The hydrogen bonding distances for natural li-
gand (Erlotinib) and highly active compound 43 are 1.677 Å
and 2.339 Å respectively as shown in (Fig. 11C and D). The
hydrogen bonding distance for remaining compounds are

shown in Table 7. The quinazoline ring plays a crucial role
for producing biological activity by interacting with MET
769, an important active residue for binding affinity of the

inhibitor, which correlates with the results obtained from crys-
tallographic study of erlotinib–EGFR (Stamos et al., 2002).
These interactions underscore the importance of nitrogen



Figure 11 Docking interaction of natural ligand (Erlotinib) and highly active compound 43; where images [A (natural ligand (Erlotinib)]

and [B (highly active compound 43)] shows hydrophobic interaction of natural ligand (Erlotinib) and highly active compound 43 with the

active binding sites of EGFR, represented by molecular surface; the bound ligands (Erlotinib and highly active compound 43) are

represented as stick models (green colour). The residues within 5 Å of the inhibitor are displayed. In images [C (natural ligand (Erlotinib)]

and [D (highly active compound 43)], dotted line represents H-bonding between N-1 of quinazoline ring of Erlotinib (1.677 Å) and highly

active compound 43 (2.339 Å) with hydrogen atom of amino backbone of MET-769 (stick model).

376 M.N. Noolvi, H.M. Patel
atoms for binding and subsequent inhibitory capacity. The
minimum PLP score of �73.45 kcal/mol with root mean
square standard deviation (RMSD) and binding free energy

(DGb) of 3.21 Å and �15.05 kcal/mol, respectively, for com-
pound 43 indicates high binding affinity of the ligand towards
EGFR. For compound 43, the methylene carbons of ethoxy

group at 6 and 7 position of the quinazoline produce strong
hydrophobic interaction with GLY 695 and LEU 694. The
moderately active compound 24 produces good PLP score of

�68.26 kcal/mol with root mean square standard deviation
(RMSD) 5.73 Å, but it is less active than compound 43 since
the methoxy group at 6 and 7 position of quinazoline is asso-

ciated with hydrophobic interaction with GLY 695 having
lower hydropathy indice, which may decrease the activity of
the compound. Compound 20 shows poor affinity towards
EGFR, as denoted by PLP score of �51.23 kcal/mol and there
are no hydrophobic interactions at 6 and 7 positions due to
presence of –NO2 as deactivating group.
4. Concluding remarks

In the present 2D QSAR investigation, all proposed QSAR
models were statistically significant. However Model-1 by mul-
tiple linear regression analysis could be considered as best one in
terms of excellent internal and external predictive abilities.

According toModel-1 (MLR) anticancer activity of quinazoline
derivatives was influenced by individual (H-donor count, and
XlogP) and alignment independent descriptor (T_C_Br_1,

T_2_O_1 and T_2_N_7) help in understanding the effect of sub-



Table 7 Docking results based on hydrogen bonding, hydrophobic interaction, PLP dock score, binding free energy and root mean

square deviation (RMSD).

Compounds Hydrogen bonding

distance between

N-1 of quinazoline

and H atom of

amino acid

backbone of

MET 769 (Å)

Hydrophobic Interaction (within 5 Å) PLP dock

score

(kcal/mol)

DGb (binding

free energy

calculated by

docking study

(kcal/mol)

RMSD (root

mean square

standard

deviation)

(Å)

Anilino

moiety

Quinazoline

ring

Substituent

attached to 6

and 7-position

of quinazoline

Erlotinib (lead) 1.677 ASP 831 MET 769 GLY 695

LYS 721 LEU 694 LEU 694

THR 830 GLY 772 PHE 771 �88.32 �18.43 0.25

VAL 702 LEU 768 GLY 772

ALA 719

LEU 820

THR 766

VAL 702

Highly active

comp. 43

2.339 ASP 831 MET 769 GLY 695 �73.45 �15.05 3.21

LYS 721 LEU 694 LEU 694

THR 830 GLY 772

LEU 768

ALA 719

LEU 820

THR 766

VAL 702

PHE 771

Moderately

active comp. 24

2.562 ASP 831 MET 769 GLY 695 �68.26 �12.58 5.73

LYS 721 LEU 694

THR 830 GLY 772

LEU 768

ALA 719

LEU 820

THR 766

VAL 702

Low active

comp. 20

3.21 ASP 831 LEU 694 No hydrophobic

interaction due

to presence of

–NO2 as

deactivating

group

�51.23 �8.34 9.38

LYS 721 GLY 772

THR 830 LEU 768

ALA 719

LEU 820
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stituent at different position of quinazolines. The result ob-
tained from 2DQSAR study suggests that electron withdrawing

group on aniline portion of quinazoline ring enhances the lipo-
philicity of compounds and favors the EGFR inhibition. It also
suggests that long chain alkoxy group at 6 and 7 position of qui-

nazoline ring favours the activity. The contribution plot of steric
and electrostatic field interactions generated by 3D-QSAR
shows that electron withdrawing groups at aniline moiety are

favorable. This finding is in close agreement with the structures
of these compounds, where presence of electron withdrawing
groups is found in the anilino moiety. It also suggests that bulky
electron-donating groups are favourable at 6- and 7-position of

the template. This finding supports the experimental observa-
tions, where presence of bulky electronegative groups at 6 and
7-position signifies increase in activities of compounds. From

the molecular docking studies, it is evident that hydrophobic
groups substituted at 6- and 7-positions of the quinazoline ring
possessing strong hydrophobic interactions with nonpolar ac-
tive residues are likely to enhance EGFR kinase inhibition.
The quinazoline ring plays a crucial role for producing biologi-

cal activity by interacting with MET 769, an important active
residue for binding affinity of the inhibitor, which correlates
with the results obtained from crystallographic study of erloti-

nib–EGFR. These interactions underscore the importance of
nitrogen atoms for binding and subsequent inhibitory capacity.
The present study is more versatile than the earlier reported

methods. Hence the model proposed in this work can be em-
ployed to design new derivatives of quinazoline with specific
tyrosine kinase (EGFR) inhibitory activity.
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