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1. Introduction

In the paper, we consider the following system which describes the vibrating beam equation cou-
pled with a vibrating string equation

{utt+auxxxx+81ut+k(u_V)++fB(u):th in [0,L] x RT, (11)
Vit — By + 82ve —k(u —v)* + fs(v) =hs,  in[0,L] x RT '
with the simply supported boundary conditions at both ends
u(0,t) =u(L,t) =ux(0,t) =ux(L, t) =0, t=>0,
v(0,0)=v(L,t)=0, t>0, (12)
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and the initial-value conditions

u(x,0) = ug, ur(x,0) =uq,

v(x,0) = vy, ve(x,0)=vq, x€]0,L], (1.3)

where the first equation of (1.1) represents the vibration of the road bed in the vertical direction and
the second equation describes that of the main cable from which the road bed is suspended by the
tie cables (see [10]). k > O denotes the spring constant of the ties, @ > 0 and B > 0 are the flexural
rigidity of the structure and coefficient of tensile strength of the cable, respectively. 81,68, > 0 are
constants, hg, hs € L2(0, L).

We assume that the nonlinear functions fg € C3(R,R) and fs € C2(R, R) satisfy the following
conditions:

) liminf 2P 55 liminf 2

|T|—>00 T |T|—>00 T

(F2) |fe(].|fs(@|<Co(1+[TIP), Vp=1,

=8

for any 7 € R, where Cp, § are positive constants.

Just for the first equation in (1.1), it is originally in [1] introduced by Lazer and McKenna as the
new problems in fields of nonlinear analysis. Lately, similar models have been studied by many au-
thors, but most of them have only concentrated on the existence of solutions, see [9,10], while the
existence of the global attractors for the suspension bridge equations are most of our concern. In
[11], we firstly obtained the global attractors of the weak solutions for the suspension bridge equa-
tions. Recently, the existence of the strong solutions and the strong global attractors have also been
achieved in [2].

For the coupled suspension bridge equations, Ahmed and Harbi studied (1.1) in [10], and pointed
out that the system is conservative and asymptotically stable with respect to the rest state for k > 0,
and showed that the Cauchy problem of system (1.1) has at least one weak solution. In 2004, G. Lit-
canu and ]. Malik have also proposed and studied the similar models in [5,6]. G. Holubova and
A. Matas in [4] considered the initial-boundary value problem for the more general nonlinear string—
beam system and obtained the existence and uniqueness of the weak solution by the Faedo-Galerkin
method. In [12], we firstly proved the existence of the global attractors of the weak solutions for (1.1).
To the best of our knowledge, however, the existence of the strong solutions and the strong global
attractors for (1.1) are still not studied, it is just our interest in this paper. For proper k, which will
be given in Section 3, we will firstly establish the existence of strong solutions based on the stan-
dard Faedo-Galerkin methods, then discuss the compact attractors of the strong solutions by making
use of the condition (C) introduced in [3,13] and combining with the techniques of energy estimates.
Especially, our results are hard to be improved because (1.1) have no higher regularity and the so-
lution semigroup associated with (1.1) is not continuous in a strong Hilbert space. So our results
appear to be optimal. On the other hand, the following assumptions, namely, there exists C > 0 such
that

liminf 2O ZFBO o i SO =@

IT|—>00 72 7|00 72 ’

where Fg(t) = fof fe(r)dr, Fs(t) = fof fs(@r)dr, used in [2,11,13,14] for nonlinearity of usual wave
equations can be deleted in this paper.
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2. Preliminaries

With the usual notation, we denote

Yo=1%(0,1),  Y1=Hy(0,1),  Y2=D(A)=H?(©,1)NHy(0,1L),
Y3 =D(A?) ={ue H*0,L) | A2ue?0,1)},

where A = —% A% = % And we introduce some spaces V1, V, which are used throughout the
paper, that is

Vi=Yo x Yo, Vo=Yy xYq,
and endow space V; with the usual scalar product and norm, (-,-), | - |, namely, for any u = (u', u?),

v = (v!, v?), denote

L
(u,v) = /(ulvl +utvi)dx, u = [ul[] + e
0

Especially, (-,-) and | - | also denote the scalar product and the norm of L?(0, L). We can also define
the scalar product ((-,-)) and norm || - || in V3, i.e.

L

2 2
vy = [hevbr o) iR = [ubff+ 12
0
Especially, ((-,-)) and || - || also denote the scalar product and the norm of Yi, and |Au| be the norm

of Y,. In addition, we write V3 = Y3 x Y5, and denote |A%u| as the norm of Y3. Moreover, we have
V3 CVaCVy=ViCVycV3, where Vi, V3 and V3 are the dual of Vi, V, and V3, respectively,
and each space is dense in the next one and the injections are continuous.

Let Aq be the first eigenvalue of —vxx = Av, x € [0, L]; v(0) = v(L) =0, the corresponding eigen-
function ¢1(x) is positive on [0, L]. It is easy to know that Af is the first eigenvalue of Uy = AU,
x€[0,L]; u(0) =u(L) = uxx(0) = uxx (L) = 0. Choosing A = min{irq, Af}, by the Poincaré inequality, we
have

lull> > Alul®, VueVs. (2.1)

Next we iterate some notations and abstract theorems in [3,13], which are important for getting
our main results.

Definition 2.1. Let X be a Banach space, {S(t)};>o be a family operator on X. We say that {S(t)};>0 is
a norm-to-weak continuous semigroup on X, if {S(t)};>o satisfies

(i) S(0) =Id (the identity);
(ii) S()S(s) =S(t +5), Vt,5 > 0;
(iii) S(tp)xn — S(t)x, if t, > t, x; > x in X.

Definition 2.2. A C° semigroup {S(H)}t>0 in a Banach space X is said to satisfy the condition (C) if for
any € > 0 and for any bounded set B of X, there exists t(B) > 0 and a finite dimensional subspace X;
of X, such that {||PS(t)x||x, x€ B, t >t(B)} is bounded and
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[(I—P)Stx|, <e. t>t(B), xeB,
where P : X — X; is a bounded projector.

Theorem 2.3. Let X be a Banach space and {S(t)}¢>0 be a norm-to-weak continuous semigroup on X. Then
{S(©)}t>0 has a global attractor in the topology of X, if the following conditions hold:

(i) {S()}t>0 has a bounded absorbing set Bo; and
(ii) {S(t)}¢>0 satisfies the condition (C).

Theorem 2.4. (See [14].) Let X and Y be two Banach spaces such that X C Y with a continuous injection. If
a function ¢ belongs to L°°(0, T; X) and is weakly continuous with values in Y, then ¢ is weakly continuous
with values in X.

For simplicity, we introduce two symbols E; and Ej:

E1=Vy x Vq, Ey) =V3 x Vs

Theorem 2.5. (See [4,10-12].) Suppose that k > 0, o, B, 81,82 > 0 and (F1)-(F2) hold. If hg, hs € L?>(0, L),
(up, vo, uq, v1) € Eq, then for any given T > O, there exists a unique solution (u, v) of (1.1)-(1.3) such that

ueC([0,T],Y2),  ureC([0,T],Yo),
veC([0,T1, Y1), veeC(0,TI,Yo).

Furthermore, {ug, vo, 1, v1} — {Uu(t), v(t), uc(t), v¢(t)} is continuous in E1. Consequently, it admits to define
a C° semigroup

S(t) : {uo, vo, ur, vi} — {u®), v(®), uc(t), ve(0)}, teRY,
and it maps Eq into itself.

Finally, from (F1) and the definition of Fg, Fs we know that there exist two positive constants K1,
K7 and n =n(8) > 0 such that

fB()T+nTt?2+K1 >0,  fs(O)T+nt?>+K; >0, VreR, (2.2)

and

Fp(t)+nt?+K; >0, Fs(T)+nt®+Ky>0, VreR. (2.3)
3. A priori estimates
3.1. A priori estimates in Eq

Choose 0 < & < €’ be fixed in the course of the proof, where

A S A S
& = min a—,—l,ﬂ—,—z . (3.1)
25, 4725, 4
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Taking the scalar product in L?(0, L) of the first and the second equation of (1.1) with ¢ =u; 4+ gu

and v = v; + €V, respectively, then adding them, this yields

1d
M(ammz + 112+ BIVIZ + ¥ 1?) + el Aul® + (81 — ) |g|?

— &1 — &)W, @)+ BelVI® + (B2 — )Y I — (82 — &) (v, ¥)
+k(w=v* ¢ —y)+ (few), o)+ (Fs(v),¥)
= (hp, ¢) + (hs, ¥).

In line with (2.1), (3.1), the Holder and Young inequalities, we conclude

sl Aul® + (81 — &)|¢1> — &(81 — &) (u, ) + BellvI* + (82 — &)Y |* — (2 — &) (v, ¥)

X0 2 EB 2 81,2 62,
> AP+ I+ 168 + S
In addition,
+ 1 d + 2 + 2
k(= ¢—v)=c—klu—-v)|"+ekl-v"|",
2dt
and
J L L
(fB(u),¢)+(f5(v),¢):E</F3(u)dx+/F5(v)dx>
0 0
L L
+8/f3(u)udx+8/f5(v)vdx,
0 0
and

L L L L
d
(h3,¢)—|—(hs,1//)=a(/hgudx—l—/hsvdx) +8/h3udx+8/h5vdx.
0 0 0 0

Consequently, collecting with (3.2)-(3.6), there holds

1d 2
5a[a|Au|Z +BIVIZ + 1612 + 1917 + K| = )]

L L

L L
+2/Fg(u)dx+2/Fg(v)dx—Z/hBudx—Z/hgvdxi|
0 0

0 0

ep

o &1 82 2
+ 7|Au|2 + 7||v||2 + 5|¢|2 + 5|w|2 + ek|(u —v)*|

L

L L L
+8/fB(Ll)UdX-l—S/fg(V)VdX—E/hBUdX—S/hSVdX
0 0 0 0
<0.

(3.4)

(3.5)

(3.6)
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Provided that &g = min{e, 81, &2}, let

E(t) = alAul® + BIVIE + 1617 + ¥ 2 + K| — )|

L L L L
+2/F3(u)dx+2/Fg(v)dx—Z/hBudx—Z/hsvdx
0 0 0 0
and
1) = a|Au® + BIv]? + [¢1% + 19 + k| — v)* |
L L L L
+2/f3(u)udx+2/fs(v)vdx—Z[hgudx—Z/hsvdx.
0 0 0 0
We have

d

—E(t I(t) <0

i () +eol(t)
which implies

t
E(t) < —sofl(t)dr + E(0),
0

where

2
E(0) = | Aug[® + BlIvoll? + [u1 + euol? + [v1 + evol? + k| (uo — vo) |

L L L L
+2/FB(Llo)dX-f—ZfFs(Vo)dX—Z/hBuOdX—2/h5V0dX.
0 0 0 0

(3.8)

(3.9)

(3.10)

(3.11)

Noticing that (2.2)-(2.3) and (3.8)-(3.9), and using the compact Sobolev embedding theorem we get

E(t) > a|Aul> + BIVII® + 1812 + 19 |? — (k+2n + o) [ul® — (k+ 21 + g0)|v]* — My
k+2n+eg k+2n+¢o
>(a—f Aul? +{ p— ———— )IVI* + 1¢1* + |y |* = My,

where M1 =4K,L + W Similarly
2
10) = a| Aul? + BIIVI + (o1 + 1> + k| — v)*|

L L L L
+2/f3(u)udx+2/fg(v)vdx—Z/hBudx—Z/hsvdx
0 0 0 0

k+2n+e¢o k+2n+¢o
>(a—f Aul? + (B = === )IVI* + 19" + ¥ I* = Mo,

(3.12)

(313)
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where M, =4K,L + w Therefore, let H% < min{a, 8} and 0 < &g < aA — k — 21, we have
k+2 & k+2 £
a,w>0’ 5,#>0. (3.14)

Associated with (3.12)-(3.14), there exists a positive constant C; such that

E(t) > C1(JAul® + VI + 19 + ¥ [%) — My, (3.15)

16) = C1(|Aul® + V2 + 91> + |y [%) — Ma. (3.16)

So we deduce from (3.15)-(3.16) and (3.10) that
Cr(lAul® + [IvII® + 191> + [¥]?) — My

t
< —&o /[61 (IAul® + [IvI> + 161> + ¥ |*) — My] dt + E(0). (317)
0

Thus, for any K > "C/'—]Z there exists tg = tg(B) such that

|Autto) | + [vieo)|* + [ o)|* + v to)|* < K. (3.18)

As a results, if u, v are the solution of the system (1.1)-(1.3), let B = U[>0 S(t)By, where

By = {(uo, u1,vo,v)" € Eo: |Augl* + [|lvoll® + I¢ol* + [¥ol* < K},

then By is a bounded absorbing set of {S(t)}t>o.
On the other hand, from the above discussion, there exists a positive constant w1 such that

|Au© ]+ [vo |* + 6O + [v© <ud Vet (319)
3.2. A priori estimates in E;

Choose 0 < & < 1. Taking the scalar product in L?(0, L) of the first and second equation of (1.1)
with A2¢ = A%u; + eA%u and Ay = Av, + g Av, respectively, then after computation, we find

|

(cr|A%u]® + BIAVI + | A + 1 12)

N =
a

t
+ea|A2u|* + (81 — &)|AGI® — £(81 — ) (AU, ¢) + £BIAVI?
+ G2 —)[YI* — e — ) AV, ¥) + (k(u — v)T, A%9)
— (k(u =), AY) + (fa), A%) + (fs(v). AY)

= (hp, A%p) + (hs, Ay). (3.20)

Thanks to the Hoélder inequalities, Young inequalities and (3.19), we obtain
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d
(k(u —v)*, A%p) = a(k(u - 7T, A%u) — (k((w — v)7T),, A%u) + e (k(u — v)*, A%u)

di(k(u — vt A%u) +e(kw — )T, A%u) —k|((u - ), |- |A%u|

> %(k(u =T, A%u) + (k@ — v) T, A%u) — k| — v)| - |A%u]

d—(k(u T, A%u) + e (k@ —v)T, A%u) — k(Juel + |vel) - |A%u]

di(k(u — vt A%u) +e(kw —v)T, A%u) — 2kpq |A%u|

> E(k(u -t A%u) + e (k@ —v)T, A%u)
2,2

- —|A%u] = ==L, >0, (3.21)
s

and

—(kw —v)*, AY) =k((@ —v)*), ¥x) = =k @ =] -yl

2k? /,Ll

£>to. (3.22)
)

82
—2kpq Iyl = —;nwnZ —

On the other hand, we know that fz(u), fz(u), fs(v), f¢(v) are uniformly bounded in L due
to (F2), (3.19) and the Sobolev embedding theorem, that is, there exists a constant M > 0, such that

f5W]m <M, [fpW] 0 <M. s <M. [FE0)] 0 <M. (3.23)

Therefore, in line with the Hélder inequality, Cauchy inequality and (3.19) again, it follows that

(Fe(w), A%¢) + (fs(v), Ayr)
d
= E(fs(u), A%u) +&(fp(), A%u) — (fpue, A%u) — (FE(V)Va, ¥x)

L

L
d
> a(fs(u), A%u) +&(fp(u), Au) — /}f{;(u)l ue| - |A%u|dx — f|f§<v>} Jvxl - [l dx

0 0

d
> = (fa@), A%u) + &(fa(w), A%u) = M [A%u] = M|y

d M2 MZ 2
> S (o), A%u) + e(fpw), A7) — 55 | A2u® 2y - 51 - S8 e (29)
and
, d d
(ha, A%9) + (hs. Ap) = — (hw, A%u) + & (5, A%u) + = (hs, AV) +e(hs, AV). (3.25)

Thus, collecting (3.21)-(3.22) and (3.24)-(3.25), from (3.20) yields
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%[Oflf\zul2 +BIAVE + A0 + V117 + 2(k — v) T, A%u)
+2(fp W), A%u) —2(hg, A*u) — 2(hs, Av)]

EX
+> \Azu\z +2(81 — &)|ApI* — 26(81 — &)(A%u, ¢) + 26 B|AV|?

+2<%2 - 8) 11> = 2e(82 — &) (Av, ¥) + 2e(k(u —v)*, Azu)

+2¢(fp(u), A%u) — 2¢(hp, A*u) — 2e(hs, Av)

<C, t>to,

where

11
C=2p3(2k +M2)<a + £>'

Furthermore, by (2.1) and the Young inequality, we obtain
oY
~ }A2u|2 +2(81 — &)|Ad|* — 26(81 — £)(A%u, ¢)

ea 2
> —-| A%l +261 - )l - ul - gl

2881 2
— A
«/X‘
o 2 82¢
> |A%ul" +2( 8 —e — 2= )|Ag)?,
s Al 25 e - 2 iag)
and

2 5 2
2eB|Av| +2(Z —8) Y1l —2e(d2 — )(Av, )

> 26B1AvE + (2 26 )1w1? = 225 v - 1y
8 82¢
> eBlAvPE + (2 — 26 — 28 )1y 2.
BlAV| +<2 Aﬁ>||1/f||

Therefore, choosing € small enough, such that

82 8 8 82 8
si—(1+L)e=2,  Z_(242Z)e>2,
A 2 2 AB 4
and taking €9 = min{%, 81, %}, and together with (3.26)-(3.28) we have

d

a[‘>f|f‘211|2 +BIAVIZ + A + Y112 + 2(k(u — v) T, A%u)
+2(fp(u), A%u) — 2(hp. A%u) — 2(hs, Av) ]
+ eo[|A%u|” 4+ BIAVEE + AP + 11 +2(ku — v)", A%u)

+2(fp(u), A%u) — 2(hp., A%u) — 2(hs, AV) ]

< C.

3763

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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On the other hand, by the Hélder inequality, the Sobolev embedding theorem and (3.19), it follows

that
4 2 |a%uf +2(kw—v)* Azu))
de\ 2 ’
Cd| e, Y2k o N N
= \/gA U+ﬁ(U—V) /}(U—V) ! |((U_V) )}dx
d| [« V2k 242
25\/;A2u+ﬁ(u—v)+ —7|(u—v)|.}(u—v)t|
d| ja , 2k +2 16I<2M%
QagAu—kﬁ(u—v) i t > to, (3.31)
and
dt( |A2u]® +2(fgu), A%u) — 2(hB,A2u))
d\/EA2 ff ) \/7h 2
a2y g e =y ghe
4
- af‘fB(u)| : }f{;(u)\-IutlderZ/f{g(u)urhsdx
2 2
d 2 2 ? 4Mm?
E‘\/gAzu-l—\/;fB(u)—\/;hB —TM—ZMm\hBL t > to. (3.32)
Therefore, integrating with (3.31)-(3.32), we get from (3.30)
dt(‘\f +—(u—v>+ ‘[Azuﬂffs(u) [
‘fAv hs +|A¢|2+||wn2)
+80<\/7A2 4’%0!—1/)+ ‘\/7A2u+\/>f3(u) \/7
Av—— + A +
‘f 70| I ||w||)
<C, t>tg, (3.33)
where
. 16k> 2M?2 2
E=c+ ! M(H—E)+—(80+2M1)+2M|hsl<—+u1)+%Ihslz+%olhs|2-

Thus, denote
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| [ VK A \/§2 \/? _\/?
y(t)—’\/;Atwﬁ(u T+ 2Au+ afB(”) ahB

2
+ A2 + 1y |12

2

1
Av— —h
+‘*/BV N/

we have %y(t) + ey (t) < C, t> to(B). By the Gronwall lemma, we conclude that

v

C
y(t) < y(to) exp(—eo(t —to)) + o (20 (3.34)

Now, if B C B, (po, p), the ball of E;, centered at pg of radius p, then it follows from (3.34) that
there exists a constant R; > 0, such that

sup y(to) < Rj.
(u(to),v(to),ue(to),ve(to))€B

Provided
1 2
t1 —to > — logRY,
0]
then

yO <ud t>t, (3.35)
where 2 =1+ %
4. Existence of the strong solutions

Theorem 4.1. Suppose that k > 0 and k’;ﬁ < min{a, B}, @, B, 81,82 > 0, fB, fs satisfy (F1)-(F2), fg(0) =
fs(0) =0, hg, hs € L2(0, L). Then for any given T > 0, the initial-boundary value problem (1.1)-(1.3) has a
unique solution (u, v) with

uel™0,T;Y3), u€l®™0,T;Y2),

vel®0,T;Y>), v, e L®(0,T; Yq)

for (up, vo, uq, v1) € Ea. Moreover, (u, v, ug, v¢) are weakly continuous functions from [0, T] to E,, where A,
n are given by (2.1)—(2.3).

Proof. The principle of the proof is classical. Assume that there exists an orthonormal basis of Y3 x Y3
consisting of eigenvectors (wj, x;) of A2 x A in Y3 x Y3, simultaneously they are also orthonormal
basis of Y, x Y. The corresponding eigenvalues are (v;, Aj), i, j=1,2,..., satisfying

Aza),‘:v,‘a),‘, Axj=xjxj, Vi,jeN.

Now we prove the existence of strong solutions by the standard Faedo-Galerkin schemes in [7,8,
14].

For each m, n, by the basic theory of ordinary differential equations, there exists an approximate
solution (up,, v,) of the form
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m n
Un(O) =) Umiei,  Va(®) = VajXj
i=1

j=1
satisfying

d2up, dum

dt2 +81T+01A2Um +k(um_Vn)++meB(um):(hB)m,
d%v dv
— + 82— BAVL — K — V) + Qufs(vi) = (hs)n, (41)

um(0) = Pug, Uy (0) = Pnpus,
vn(0) = Qqvo, Vvy(0)=Quv1,

where Py : Y3 — V' is the orthogonal projector in V', Q;: Y2 — VI is the orthogonal projector
in V3, (hg)m = Pmhs, (hs)n = Qnhs, and

VI = span{w1, wy, . .., Wm}, VY =span{xi, x2, ..., Xn}-

Existence and uniqueness results for ODEs imply that we have a unique solution (up, v,) of (4.1),
at least on some short time interval [0, Tr;]. We can extend this time interval to infinity if we know
that the (up, v;) are bounded.

Fixed 0 < & < 1. Taking the scalar product in L2(0, L) of the first and second equation of (4.1) with
A2pm = A2ul, + eA%up and Ay, = Av), + eAvy, respectively, and noting that (P, fp(um), A%¢m) =
(fB(um), PmA2¢m) = (fp(um), A2¢m) and (Qn fs(vn), Avm) = (fs(vn), A¥y), we find

d
(@[ A%un[* + BIAVAI 4+ 1Adnl? + [Val?) + et A%um |

N =

+ (81 — &)|Adm|* — £(81 — &) (A%um, dm) + €| Avn|?
+ (82 — ) [Ynll® — £(82 — )(Ava, Yn) + (k(um — va) ", A%
— (k(um — vi)*, AYn) + (£5(um). A%pm) + (Fs(va), AYm)
= ((he)m. A%¢m) + ((hs)n. A¥n). (4.2)

Like the estimates of (3.21)-(3.30), we have

ot A2un [+ BLAVA 4 1A+ 17 + 2 (kG — ), A%t
+2(f5Wm). A%um) — 2((hp)m. A%tm) — 2((hs)n, Avy) ]
+ co[t [ A2un |+ BIAVAI? + 1Al + 19l +2(kCtm — vi)*, A%um)
+2(fa(um). A%tm) = 2((hp)m. A%um) = 2((hs)n. Avn)]

<C, (4.3)

where C and &g are given by (3.30). Exploiting (3.31)-(3.32) again, the following inequality is true:
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2 2
%('\/gAzum-p@(um—vnfr +‘\/EA2um+\/7fB(um)_\/3(hB)m
a 2 o o
’fAv,, 7 + |Agm|* + ||wn||2)

+ &o ('\/7/42 ﬂ —Vn)+ ‘\/7/\211,11 \/7fB(um)_\/7(hB)m

‘fAvn 7 + |Apm|* + ||wn||2)

<C, t>to, (4.4)

(hS)n

(hS)n

where € is given by (3.33).

Consequently, by the Gronwall lemma we easily infer from (4.4) that {un}, {u},} and {v,}, {v}}
remain in a bounded set of L*°(0, T; Y3), L°°(0, T; Y2) and L*°(0, T; Y2), L*°(0, T; Y1), respectively, as
m,n — oo. By means of (4.1) again we know that

d%u du

sz =-5 d_tm — AUy — k(um — V)" = P f3(um) + (hp)m.
d%v dv

dtzn = _82d_tn + BAVy + k(um — Vn)+ — Qnfs(vn) + (hs)n.

Therefore {uy,}, {v;} are uniformly bounded in L*°(0, T; Yo) and L*(0, T; Yp), respectively. Thus we
can extract subsequences, still denoted as {un}, {vn}, such that

um — u star in L*°(0, T; Y3),

up, —~u’ star in L*°(0, T; Y2),

uy —u” star in L°(0, T; Yo),

(Um — vp)t = (u—v)* starin L0, T; Yo), as m,n — oco.

Since L%°(0, T; Y3) C L%(0, T; Y3), L°(0, T; Y2) C L2(0, T; Y3), and L*°(0, T; Yg) C L2(0, T; Yo), it fol-
lows that

Um —u in L?(0, T; Y3),

ul, —u' in L%(0,T;Y>),

u/ —u" in 130, T; Yo),

(Um —v)t = @ —=v)* in L%(0, T; Yy), as m,n — oo.

The similar process leads to

Vg — v in L?(0,T;Yy),
v, = v’ in L%(0,T;Yy),

" "

vp—Vv" in LZ(O, T;Yp), as m,n — oo.

On the other hand, by (F2) and the continuity of fg(u), fs(v) we have
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fe(um) — fp(u) in L*(0, T; Yo),

fs(va) = fs(v) in L%(0,T;Yo), as m,n — oco.

Moreover, (hg)m — hg in L2(0, T; Yo), (hs)n — hs in L2(0, T; Yp). It is then easy to pass to the limit
in (4.1) and we conclude that (u, v) is a solution of (4.1) such that

uel®,T;Y3), u' eL®(0,T;Y),

vel®0,T;Yy), Vv el®0,T;Yy).

Furthermore, making use of Theorems 2.4 and 2.5 we know that (u, v,u’, v') are weakly continu-
ous functions from [0, T] to E».

Finally, uniqueness is followed from Refs. [4,10], since any two strong solutions would both be
weak solutions. O

Thus Theorem 4.1 holds and we also obtain a bounded absorbing set for the solution semigroup
{S(®)}t>0 of (1.1)-(1.3) in E;. This is the following results:

Theorem 4.2. Suppose that k > 0 and ’%2'7 < min{e, B}, «, B, 81,82 > 0 and (F1)-(F2) hold. Then there
exists a bounded absorbing set in E for the semigroup {S(t)};>0, where A and n are given by (2.1)-(2.3).

5. Global attractors in E»

In order to obtain our main results, we need the following compactness results and the norm-to-
weak continuity of semigroup.

Lemma 5.1. Assume that (F1) and (F2) hold, fg(0) = fs(0) =0, and (fg, fs) : Y3 x Yo — Y, x Yy are
defined by

L L
9 9
(Faw.g) = [ D gadx (sonv) = [ Ly

9x2
0 0

V(u,v) eYs x Yy, (¢, %) €Yy x Y1. Then (fp, fs) are continuous compact.

Proof. Assume that {u,} and {v,} are bounded in Y3 and Y, respectively, and let {u,} converge
weakly to ug in Y3, {v,} converge weakly to vo in Y,. By the Sobolev embedding theorem, we know
that

{un} is bounded and converges to ug in LP(0,L), WP (0,L), W*P(0,L), Vp > 1;

{vn} is bounded and converges to vg in W1P(0, L), Vp > 1. (5.1)

Write up — ug = wp, Vo — Vo = Xn-
By (F2), (3.19) and the Sobolev embedding theorem we show that fz(u), fyw), fg'(u), fe(v),
¢ (v) are uniformly bounded in L, that is, there exists a constant M > 0, such that
[fEW] 0 <M, [fE@| <M, |fF@]0 <M; (5.2)

|fsWM)] 0 <M, [f{(W)]; <M. (5.3)
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Since there exists constant 0 < 6 < 1, such that

1
2 2
dx)

82 (ug + Own) .
9x2

(‘/L‘%(fs(un) — fB(uo0))
’ L
< ( O/

L

n

g(uo +6Owy) -

1
2 2

w dx)
2

a 0 2 9
(1o +0wn) \*™ g Fuo +0on) - wn
ax2

2 3 L

P 10) dx) +</

0
L
+2(/
0

2
dx)
L
3% (uo + Own)

2\ 2 L 2
0x2 dx
0 0

n
2 3 L 2 3
0 0 d
dx) +2M(/‘M.ﬂ dx)
0x
0

0x
1
2 2
dx) =0.
Like the above estimates, we also get

L 2 0\ 2
0
lim( — dx) =0.
n—o00 0x
0

1
2 2
dx)

fE' (uo + 9wn)<

B(uo + Oa)n) Bwn

6
fB (up +6wnp) - 3X BX

1
2 2
dx)

2

L
(/Bw
+M
0

n

ax2

Therefore, we achieve due to (5.1)

n—oo

L
52
lim </’—2 (fa(un) — fa(uo))
0

(fs(vn) — fs(vo))

The proof is complete. O

Lemma 5.2. (See [2].) Let g(u,u;) = fg(u)u, and (F1), (F2) hold, fp(0) = 0. Then g : Y3 x Y — Y is
continuous compact.

Lemma 5.3. (See [2].) The semigroup {S(t)}¢>0 associated with (1.1)-(1.3) is norm-to-weak continuous in E>.

By Theorem 2.3, if the solution semigroup {S(t)}»0 associated with the problem (1.1)-(13) is
norm-to-weak continuous semigroup from strong topology to weak topology in E,, then we can con-
clude the following results:

Theorem 5.4. Suppose that k > 0 and "Jr% < min{a, B}, @, B,81,82 >0, hg, hs € 12 (0, L), and conditions
(F1)-(F2) hold. {S(t)}¢>0 is a norm-to-weak continuous semigroup generated by the solution of the system
(1.1)-(1.3). Then the solution semigroup {S(t)};>0 has a global attractor Ain E, it attracts all bounded subsets
of E; in the norm of E,, where A, n are given by (2.1)-(2.3).
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Proof. Applying Theorems 2.3 and 4.2, we only need to prove that the condition (C) holds in E,.
Similar to Theorem 4.1, let {w;}{2, be an orthonormal basis of Y3 which consists of eigenvectors

of A2, the corresponding eigenvalues are denoted by

O<vi<vyy<vy< -+, Vj—>00, asi— 00,
with A2w; = viw;, Vi € N. And we write V, = span{w1, w3, ..., W)

In addition, let {)(j}j?o:l be an orthonormal basis of Y, which consists of eigenvectors of A, the
corresponding eigenvalue are denoted by

O<t<A2<A3<, Aj—> 00, as j— oo,
with Ax; =A;x;j, Vj € N. And we write G, =span{x1, x2,..., X}

Since hg,hs € L2(0,L), (fs, fs): Y3 x Yo — Y, x Y; are compact continuously verified by
Lemma 5.1, then for any ¢ > 0, there exists N > 0, such that

|(I = Pm)hgl, <

Yu € By, (0, u2),

(= Pm) fp ()], <

(= Quihs]y, <

Vv € By, (0, u2), (54)

N I N I N O YY)

(= Qnfsmy, <

for m,n > N, where Py, : Y2 — Vi, and Q, : Y1 — G, are orthogonal projector, j2 is given by (3.35).
For any (u, v; u¢, v¢) € E», we divide into

(U, viug, ve) = (ug, vis ure, vie) + (U2, va; Uz, Var),

where (u1, vi; u1e, Vie) = (Pmtt, QnV; Pmue, Quve).
Taking the scalar product in L%(0, L) of the first and second equation of (1.1) with A2¢; = A%uy, +
0 A%u; and Ay, = Avy + 0 Avsy, respectively, after a computation, we find

%%(ayfxzuz\z + BIAV2® + |Adal* + 1¥2117) +aa\A2u2}2

+ (81 — 0)|Ag2|* — 0 (81 — 0)(A%uz, ¢2) + o BlAV2 |

+ 82 — o) [Y2ll* — 0 (82 — 0)(Ava, ¥2) + (k((u — V)T),, A%¢)
= (k( = v)"),. Av2) + (Fa), A%) + (fs(v), Aa)

= (hp, A%¢2) + (hs, Ay2). (5.5)

Now we deal with each of the terms one by one on the left-hand side. According to the Holder
inequality, Poincaré inequality and Young inequality, (3.19) and (3.35), we obtain

d
= o k(@ =v)T)y, A%u3) — k(@ = V)"),p, A%u2) + 0 (K((w = v)T),, A%u)
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> (k= )0 A2) + 0 (k@ = v) ), A%) = K| (= 1)), |- |40
> —(k(w—=w7),, Auz) + o (k((u — v, A%uz) —k|(u — v)| - |A%us|

/a(k((u—v>+)2,A2uz)+a(k((u—v>+) A%uz) —k(luze| + [vael) - |A%uz|

VUmt1l  Ant

> & k(@ —v)*),. A%5) + 0 (k((w — v)"),. A%) — k( Mzl ||V2t||)‘A2u2|

d 1 1
> (k(w - V1), A%ug) o (k(w —w)'t),. A%uy) — k/Lz( + —) |A%u,|

VUmt1  Antl
d
> & a1 ) o (= )y A0) — A
2k2 2
_ Mz( LI ) (>t (5.6)
oa \vpi o A

and

—(k(@ =v)*),. Ava) =k(((@ = V)T) 5, Yr2x) = —k[(W@ = v)), | - 12
> —k|(u — v)ax| - [W2x] = —k(luzx + [Vax]) - [¥2xl

1 1
> —k 2l
Vm+1 Ant1
> —k(ﬂ + ﬁ) el
Um+1  Ant
2k u2
>——||1/f |12 _5_< -+ 2 ) t>ty. (5.7)
2 \Vip1 M

Moreover, due to (5.4) there holds
(hg. A%¢2) + (hs., Ayr2)
d d
< 2 (e, A%u) + - ((hs)z, Ava) + 77| 42us| + 2 Aval
d /3 o o
< E((hB)z’ A%uy) + ((hs)z, Avy) + —|A2” 1+ =2 1A + (ﬁ + @)527 (5.8)
where (hg)z = (I — Ppy)hp, (hs)2 = (I — Qp)hs. On the other hand,
d
(Fo, A%92) = = ((f3),, A%uz) = ((fpwte),, A%u2) + 0 ((fr(w),, A%uz). (59)
Using Lemma 5.2, it follows that
|(Faue),| < 5. Ve, uo) € Bry ((0,0), ), (5.10)

As a results, by (5.4), (5.9) and (5.10) we achieve
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(fe(w), A%¢2) + (fs(v), Ay)

d

> 2 ((fa), A2u2) = (Fy@ue),. A%uz) + 0 (fa(w) . A2u2) = S 10
d

> 2 (o), A2u2) + 0 (Fa @), A%u2) - 5 [A%ua] = Syl
d

> 2 (fs@),, A%u3) + o ((f5(w)),. A%uz)

o, 2 & 2 1 1T )\.2
Ay, o2 - —)e2 511
4 |42 g vl (160a * 165, (511)

Together with (5.5)-(5.8) and (5.11) it leads to

d
Lo A2zl + BIAVP + 1Agal + 02 + 2k(((@ = V)F) . A%u2)
+2((fsW),. Auz) — 2((hp)2. A%uz) — 2((hs)a. Ava)]
+ %Mzuz!z +2(81 — 0)|Ad2|* — 20 (81 — o) (A%u2, ¢2)
3
+ %ﬁmvzﬂ + (82— 20)[[¥2]1* — 20 (82 — 0)(Ava, ¥2)

+20k(((w —)7T),, A%uz) + 20 ((fs(w)),, A%uz)

<C82, t>t1, asm,n— oo, (5.12)
where
4Pu kP (u? 4 pd 1 1 1 1
Cc— /L2+ (g +u13) — 4 — .
oo 82 160 166, 160~ 168
In line with the Poincaré and Holder inequalities again, we obtain
oo 2
- [A%ua]" + 261 = ) Adal* — 20 (01 — ) (A%ua, 2)
o, 5 2 5 2081, 5
> =A%+ 2681 — o)1 Ag| _V—1|A uz| -
o 820
> —|A2u2|2+2<61 —0—1—2>|A¢2|2, (5.13)
4 av;
and
308 2 2
TIszl + (82 —20)|Y211” — 20 (82 — ) (Av2a, ¥2)
308 208;
> SEIAVE + 2 =202 = = Aval v
2 2550 2
= o BlAva|” + 82_20_W ¥l (5.14)
1

Provided that o is small enough, such that
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20 5 220§
51—0—1—>—1, 8 —20— 2> 2,
av? 4 pr: = 2

then combining with (5.13)-(5.14), we conclude from (5.12) that

%[Of}f\zuzl2 + BlAV2 + [Agal? + 1V2]1® + 2k(((w = v)F),, A%u5)
+2((f5w)),. A%uz) — 2((hp)2, A%uz) — 2((hs)2. Ava)]
+ 22|00+ L 1Aga P + BIAVS + 2 vl
+20 ((fs(w),. A%uz) +20k(((u —v)T),. A%uz)

<Ce?, t>h.

Furthermore, take p = min{%, 571, 672}, it follows that

& oA + LAV + 1A+ Il +2K((@ — 1), A7)
+2((f5w)),. A%uz) — 2((hp)2, A%uz) — 2((hs)2. Ava)]
+ p[ar|A%us[* + BIAVI® + | Ao + I
+2k((w—v)t),, A%uz) +2((faW)),, A%uz)]

<Ce?, t=ty. (5.15)

Exploiting the Sobolev compact embedding inequality, integrating with (3.19) and (3.35), we achieve
[(@=wT),l<e,  [(@=-nT)yl<e
In addition, we find

d
o (@A 2(( = V)7)p A%u2) 4 2((f5@)),. A%u2) = 2((hp)2. Au2))

2

1 1
7o (few)), — ﬁ(hB)z
d

k? k
- —[ﬁ;}(w ~0 @), + 25 (=), (F))

d k
= ‘ﬁAzuz + %((u -, +

dt

= 2@ =9 ) hs)z) = 2 () o) |

Therefore, due to Lemmas 5.1 and 5.2, together with (5.4), (5.15) we deduce

d
dt

2

1
(fe@)), — —=(hp)2

k 1
VaA?u; + —a((u -0, +— 7

Ve Ve

1 2
+|VBAV2 — —=(hs)2| + 2l + 2)
‘\/E V2= (s g2l + vl
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2

k 1 1
+ p(‘ﬁAzuz + ﬁ((u -vF),+ ﬁ(fB(u))z - ﬁ(hs)z
1 2
+ |VBAV2 — —=(hs)a| + Il + 2)
’\/E va= 5|+l + vl
<Cce? +—|((u—v)+ S (@ =w7F), |+ = !fs(u) |- [(fzue),|
2k

2 @ (@), + 2 (= 00, | |,
2 2
+ (=) )] [thaya] + S| (Fpaue), |- (o
,2
+ 2@ =), [P+ 2] (Fa), f + 2 hs)af + 3|(hs)z|2

k
22 ), )] + 22 (= ), [+ 22 (Fptw), |-

where
- (+pk?+6+4pk+4+4p  p
=C+ = +E'

We denote

Y(t) = ‘ﬁAzuz + L((u -v7F),+ L(fB(u)) - L(hB)z 2
NG 2 2 Ja

‘fsz f(hm +|A¢z|2+||wz||2,

then

d By
aY(r) +pY() <Ce%, t>t.

By the Gronwall lemma

Ce?
Y (O <Y(t)exp(—p(t —t1)) + e

Taking t; —t; > 1 log , it follows that

9 2
Y(©) < 1+; 2, t>t.

So we complete the proof. O
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