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ABSTRACT Viscoelasticity of the leading edge, i.e., the lamellipodium, of a cell is the key property for a deeper understanding
of the active extension of a cell’s leading edge. The fact that the lamellipodium of a cell is very thin (\1000 nm) imparts special
challenges for accurate measurements of its viscoelastic behavior. It requires addressing strong substrate effects and
comparatively high stresses ([1 kPa) on thin samples. We present the method for an atomic force microscopy-based
microrheology that allows us to fully quantify the viscoelastic constants (elastic storage modulus, viscous loss modulus, and the
Poisson ratio) of thin areas of a cell (\1000 nm) as well as those of thick areas. We account for substrate effects by applying
two different models—a model for well-adhered regions (Chen model) and a model for nonadhered regions (Tu model). This
method also provides detailed information about the adhered regions of a cell. The very thin regions relatively near the edge of
NIH 3T3 fibroblasts can be identified by the Chen model as strongly adherent with an elastic strength of ;1.6 6 0.2 kPa and
with an experimentally determined Poisson ratio of ;0.4 to 0.5. Further from the edge of these cells, the adherence decreases,
and the Tu model is effective in evaluating its elastic strength (;0.6 6 0.1 kPa). Thus, our AFM-based microrheology allows us
to correlate two key parameters of cell motility by relating elastic strength and the Poisson ratio to the adhesive state of a cell.
This frequency-dependent measurement allows for the decomposition of the elastic modulus into loss and storage modulus.
Applying this decomposition and Tu’s and Chen’s finite depth models allow us to obtain viscoelastic signatures in a frequency
range from 50 to 300 Hz, showing a rubber plateau-like behavior.

INTRODUCTION

Eukaryotic cells reversibly assemble protein filaments (actin

filaments, intermediate filaments, and microtubules) and

accessory proteins into extensive three-dimensional net-

works. The dynamic nature of these networks allows the cell

to move by extending and remodeling peripheral elastic

lamellipodia in the direction of locomotion (Stossel, 1993).

These lamellipodia are large, broad protrusive regions that

are found at leading edges of advancing cells. The actin

cytoskeleton addresses the lamellipodial protrusion through

actin polymerization in conjunction with other accessory

proteins (Borisy and Svitkina, 2000; Pantaloni et al., 2001).

Since viscoelastic changes, i.e., gel-sol transitions, are the

basic elements of cell motility, spatially resolved measure-

ments of the cell’s viscoelastic behavior are quintessential

to the understanding of the cytoskeletal machinery that

advances the cell. However, atomic force microscopy

(AFM)-based measurements of this property are complicated

by the fact that the lamellipodium is very thin (;100–1000-

nm thick), resulting in a strong substrate effect. In addition,

for biological cells, the issue is complicated by the strongly

nonlinear response of cells to deformations, making them

able to withstand stresses of[10 kPa and yet deform readily

to slight pressures when adhering to neighboring cells. Thus,

a technique for this application must provide the ability to

probe a wide range of stresses and start at relatively low

stresses where the cell responds linearly.

Previous studies have attempted to obtain information on

the viscoelastic properties both locally, atmeasurement points

within a cell, and globally, throughout the entire cell. Several

tools measure whole-cell elasticity in suspension such as

micropipette aspiration (Evans and Yeung, 1989; Discher

et al., 1994; Tsai et al., 1994; Lelièvre et al., 1995), optical

tweezers (Hénon et al., 1999), and the optical stretcher (Guck

et al., 2000). In addition, attached fibroblast cells have been

globally characterized through microplate manipulation

(Thoumine and Ott, 1997), the elastic substrate method

(Dembo and Wang, 1999), and the monitoring of fluorescent

bead markers in a cell under deformation by an adjacent cell

(Ragsdale et al., 1997). An average global elasticity was

characterized using a conventional rheometer on cell pellets

(Eichinger et al., 1996). These characterizations of global

mechanical properties contribute vital information on the

differences in mechanical strength of different cell lines.

However, they cannot illuminate the mechanisms of changes

in local viscoelastic properties of motile cells.

Local measurements of a cell’s viscoelastic properties

within micron or submicron regions can reveal information

on cell motion and local structural changes in response to

alterations in cell function (Elson, 1988; Rotsch et al., 2001).

Cell poking represents the first attempt to characterize

local elastic properties accurately (Petersen et al., 1982).

Local viscoelastic information is available through bead
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microrheology using embedded or attached magnetic beads

(Ziemann et al., 1994). Microrheology with beads based on

laser-interferometry provides high frequency and low stress

information (Amblard et al., 1996). Similar methods have

been applied using naturally occurring particles in kidney

epithelial cells (Yamada et al., 2000). Even though these

techniques are the most effective in the low stress regime

(\500 Pa), the measurement points are limited to the placed

bead or the naturally occurring particle in the cell.

AFM providing the method for nanoindentations has

advantages, such as adaptability to the liquid environment,

the ability to measure forces precisely in a localized region,

and repeatability. Although versatile, the AFM technique has

been challenged with the effects of the underlying substrate

in the thin regions of the cell.

Comparative AFM studies measured relative elastic

moduli between different areas within a cell or between

different types of cells (A-Hassan et al., 1998; Goldmann

et al., 1998; Lekka et al., 1999). Some progress has been

achieved by modeling the commercial AFM tip as a conical

indenter to obtain absolute elasticity values of different cell

lines (Rotsch et al., 1999; Radmacher et al., 1996). However,

measurable contributions from the underlying hard substrate

are quickly observed under the high stresses ([1 kPa)

produced by these sharp tips (Domke and Radmacher, 1998).

Finally, in many previous AFM experiments, the cell’s

viscous properties have been only qualitatively observed

from phase differences between an oscillating sample and the

responding tip (Radmacher et al., 1992, 1996). Recent

alterations to the standard Hertz model and a modified AFM

tip have allowed for the determination of the quantitative

viscoelastic properties of thick regions of the cell with

a controlled nondestructive stress range (100 Pa to 10 kPa)

(Mahaffy et al., 2000).

Besides the applied force and the contact area of the probe,

the thickness of the sample also determines the stress on the

sample. The determination of the viscoelastic constants relies

on an accurate model reflecting the geometry of the system.

By attaching a polystyrene bead at the end of the AFM tip,

we obtain a well-defined spherical probe that allows us to

model the mechanical behavior accurately by adopting the

Hertz model (Landau and Lifshitz, 1959). In addition,

because the size of the beads is of the order of mm, a larger

contact area allows us to reduce the stress on the sample.

Nevertheless, thin samples require more sophisticated

models. To overcome substrate effects and high strains, we

applied two additional models for thin regions. Similar

models have been applied to polymer films to obtain elastic

moduli (Dimitriadis et al., 2002). However, with respect to

Dimitriadis et al., our results show a fundamentally different

dependency on the Poisson ratio that is consistent with the

original work of Tu and Chen.

The regions where the cytoskeleton adheres to the substrate

and where it does not, require slightly different modeling

approaches. For areas such as the leading edge where the

cytoskeleton adheres the substrate, our modeling approach is

based on the early work of Chen and co-worker. Thus, we call

this approach the Chen model (Chen, 1971; Chen and Engel,

1972). The Chen model has a significant advantage inasmuch

as it determines both the elastic constant and the Poisson ratio.

In all previous measurements of viscoelastic properties of the

cell, the Poisson ratio was not experimentally accessible, and

was assumed for the deduction of the elastic modulus.

Regions further from the edge are poorly attached to the

substrate and thus require another model that we will call the

Tu model since it is based on Tu’s early work (Tu and Gazis,

1964). The Tu model as well as the Chen model can be

extended to deal with frequency-dependent viscoelastic

contributions and therefore allow us to accurately investigate

the viscoelastic behavior in the thin regions of cells that were

previously quantitatively inaccessible with the AFM.

THEORY

Our discussion of the theoretical models begins with the

Hertz model and the viscoelastic extension of the Hertz model

since it contains the basic ideas of all AFM-based micro-

rheological measurements. Then we explore how to extend

the Hertz model in the very thin regions by introducing the

finite boundary conditions of the Chen and the Tu models.

The Hertz model and its viscoelastic extension

The Hertz model provides a good example of how an elastic

model can be extended to include viscoelastic contributions

and can be used for the thick areas of a cell (Mahaffy et al.,

2000). This model relates the quantities of the deforming

force, fbead, to the indentation, d. Included are the radius of

the probe, R, and the elastic constant, K ¼ E/(1–n2), which
depends on the Young’s modulus, E, and the Poisson ratio, n,

fbead ¼ 4

3
KR

1=2
d
3=2
: (1)

Two important assumptions are made in deriving Eq. 1. First,

the indenter is assumed to have a paraboloid shape. Previous

measurements have shown that this assumption remains

valid in the case that a spherical tip is much larger than

the indentations (d\ 0.3 R; Mahaffy et al., 2000). Second,

the indented sample is assumed to be extremely thick in

comparison to the indentation (h [[ d, h is the sample

thickness). The latter assumption is inaccurate for the thin

lamellipodial regions of cells, but is effective in regions away

from the cell boundary for small indentations.

The Hertz model was designed for soft materials showing

only an elastic behavior. However, a single elastic Young’s

modulus is insufficient to characterize the behavior of a

complex polymer system such as a cell’s cytoskeleton. The

cytoskeleton can show a strong viscous response as well as

an elastic response to deformation and respond actively on

longer timescales. For this reason, dynamic measurements
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must be performed to measure the frequency-dependent

viscoelastic behavior.

Dynamic measurements are done by introducing a high

frequency ([20 Hz), but low amplitude (5–10 nm) os-

cillation to the system. An oscillation introduced in the

sample height (drive oscillation) results in an oscillation of

the cantilever resting on the sample surface with amplitude

and phase differences that depend on the viscoelastic

properties of the intervening sample. In this case, the os-

cillating indentation, d̃
�
; is superimposed on an offset inden-

tation, d0. Thus, the total indentation, d, is

d ¼ d0 1 d̃
�
e
ivt

(2)

with

d̃
� ¼ d91 id0:

For viscoelastic materials, such as cells, the Hertz model

must be extended to include frequency-dependent behavior.

The extended model can be obtained by expanding the Hertz

model in the indentation, d, by a Taylor series, as

fbead � 4

3
R1=2 K0d

3=2

0 1 3=2 K�
1d

1=2

0 d̃
�� �
; (3)

with

Ki ¼ Ei

1� n
2 ; ði ¼ 0; 1; . . .Þ:

The constant, K�
1 ; is complex as indicated by the asterisk.

This two-term expansion is valid when the amplitude of

the oscillating indentation is much smaller than the offset

indentation, d0. Here, fbead can be decomposed into two

terms, as

f0 [
4

3
K0R

1=2
d
3=2

0

f
�
osc [ 2K

�
1R

1=2
d
1=2

0 d̃
�
: (4)

The first term, f0, is simply the contribution of the original

Hertz model. The second term, f �osc, is related to the vis-

coelastic constant, K�
1 , which is determined by the following

function of measurable values:

K
�
1 ¼

f
�
osc

2d̃
�ðRd0Þ1=2

¼ K91 iK0: (5)

Both f �osc and d̃
�

contain real and imaginary parts

corresponding to the components of the measured signal

that are in-phase and 908 out-of-phase with the driving

signal, respectively. The real part, K9, reflects the elastic

storage response, whereas the imaginary part, K0, reflects the
viscous loss response of the sample.

As with the original Hertz model, deviations in the

viscoelastic constant as a function of d0 can occur due to the

finite sample depth, a static nonuniformity in the cell

structure with depth, or dynamic changes in the viscoelastic

modulus during a measurement. The latter of these effects

represents phenomena that could provide strong insights into

the dynamics of the cytoskeleton. A key issue toward

investigating viscoelastic properties is the elimination of the

effect of the finite sample depth. We address this issue with

two additional models described in the following sections.

Nonadhered thin regions of cells—the Tu model

There are two asymptotic regimes for modeling the de-

formation of a layer on a substrate. These regimes are a rigidly

adhered layer, which is unable tomove at the sample substrate

interface, and a nonadhered layer, which slides freely on

the substrate. By applying the proper boundary conditions, we

can solve the two different regimes using the method,

originally developed for the rigidly adhered condition. We

begin with the simpler nonadhered condition.

The problem of a spherical body impacting a nonadhered

layer on a substrate was first addressed and mathematically

described by Popov (1962). Tu and co-worker numerically

solved this problem for a limited range of thickness (Tu and

Gazis, 1964). The complete solution can be found by using

methods developed by Chen and co-worker (Chen, 1971;

Chen and Engel, 1972). The model by Chen was originally

used for the rigidly adhered case, but it can be adopted for the

nonadhered case under the proper boundary conditions

without limits on the sample thickness.

The approach by Chen applies to media composed of

several layers each with a different elastic modulus. In our

case, theChenmodel can be reduced to a single elastic layer on

a hard incompressible substrate. In Chen’s article, the contact

problem is solved as a boundary value problem and the

solutions are assumed to be a series expansion of the standard

Hertz model solution. Thus, the total pressure distribution

on the sample is the sum over a series of partial pressure

distributions (see Appendix Eq. A1). The series expansion

inherently means that the Tu and the Chen models approach

the Hertz solution for small indentations or for thick samples.

In the nonadhered case, the boundary conditions are

analogous to those of two identical spheres indenting a layer

of twice the actual thickness, 2h (see Fig. 1). (In Chen’s

article, they consider a layer of a double thickness, 2h on

a hard substrate, and this is very useful in this problem.) In

essence, it is a mirror-image problem with all the appropriate

boundary conditions.

With the earlier definition of K ¼ E/(1–n2), we find the

following relation between the elastic constants predicted by

the Hertz and the Tu model (for the detailed derivations, see

the Appendix):

KHertz

KTu

¼ 3p

4

aTu

aHertz

+
N

i¼1

p
T

i

11 2i
(6)

with

aTu [ a; aHertz [ ðRdÞ1=2:
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Here a is the contact radius and the subscript indicates the

applicable model. The superscript of pi
T indicates that these

values are specific to the Tu model. They differ from the pi
originally defined in Eq. A1 and the pi

c defined later for the

Chen model in that (1–n) is factored out, i.e., pi
T¼ pi/(1–n).

Consequently, KTu displays the same dependence on the

Poisson ratio as the Hertz model and the ratio of KHertz/KTu is

independent of the Poisson ratio. This also implies that pi
T is

independent of the Poisson ratio. The values of pi
T were

numerically calculated and used to find the ratio of the K
values predicted by the Hertz and Tu models, i.e., KHertz/KTu,

for various indentations. The required order N in the series

expansionwas determined by comparing successive values of

N and looking for a change of\0.1% in the ratio ofKHertz/KTu

over the entire range of indentations. A value of N ¼ 4 is

sufficient to meet this requirement even for extremely thin

samples.

Adhered thin regions of cells—the Chen model

Several groups have investigated the problem of a spherical

probe indenting a rigidly adhered film of arbitrary thickness

(Biot, 1935; Burmister, 1945; El-Sherbiney and Halling,

1976; Ogilvy, 1993; Vorovich and Ustinov, 1959). Chen and

co-worker presented one solution that applies for a large

range of indentations in two successive articles (Chen, 1971;

Chen and Engel, 1972). Unlike the Tu model, the boundary

conditions are not symmetric (see Fig. 1). The detailed

derivations of KChen can be found in the Appendix.

For the Chen model, indicated by the superscript, the

values pi
c are dependent on the Poisson ratio in a way that

cannot be factored out. Thus, for the Chen model, the ratio of

KHertz/KChen is dependent on the Poisson ratio, as

KHertz

KChen

¼ 3p

4
ð1� nÞ aChen

aHertz

+
N

i¼1

p
c

i ðnÞ
11 2i

; (7)

with

aChen [ a; aHertz [ ðRdÞ1=2:
Like the Tu model, the pi

c values are calculated

numerically. The expressions in Eq. 7 are used to convert

the values calculated by the Hertz model to those by the

Chen model.

Viscoelastic extension of the Tu and the
Chen models

The viscoelastic extension of the Tu and the Chen models

follows the previous extension of the Hertz model. In both

models, an independent variable, dR/h2, containing all ex-

perimentally relevant quantities can be extracted and

assigned to a single variable, x ([ dR/h2). The general form
of the applied force, fbead, is

fbead ¼ Kf ðxÞ: (8)

In analogy to the extended Hertz model, this force can be

expanded in a Taylor series in terms of the indentation, as

fbead ¼ K0 f ðxÞ1K
�
1

df

dx

dx

dd
: (9)

The dx/dd can be calculated explicitly as

fbead ¼ K0 f ðxÞ1K
�
1

R

h
2

df

dx
d̃
�
: (10)

The oscillatory force, f �osc, is given by the second term of Eq.

10, which is

f �osc ¼ K�
1

R

h
2

df

dx
d̃
�
: (11)

By comparing the oscillatory force, f �osc, in Eq. 11 with that

from the Hertz model in Eq. 4, the relative viscoelastic value,

K�
Tu1;Chen1=K

�
Hertz1, is calculated as follows:

K
�
Tu 1;Chen 1

K
�
Hertz 1

¼ 2h
2
d
1=2

0

R
1=2 df

dx

� � : (12)

Each subscript indicates the model used. Following from

Eq. A14 and Eq. 12, the ratio of viscoelastic constants,

FIGURE 1 A schematic diagram representing a spherical AFM probe

impacting an elastic layer on a hard substrate. The indentation, d, was

calculated by subtracting the cantilever deflection, zc, from the scanner

displacement, zs. The coordinates relevant to the Chen and the Tu models are

zChen and zTu, respectively. In the Tu model, lateral displacements are

unconstrained and there is no lateral stress within the contact areas between

the sample and the hard substrate. The boundary conditions for this problem

are the same as those of two equal spheres colliding with a layer of twice the

thickness of the real sample, 2h. The boundary conditions of the Chen model

include the fact that the sample is rigidly bound to a substrate without lateral

motion at the interface. A sphere colliding with a layer of the thickness,

h, supported on the hard adherent substrate is sufficient to describe this

boundary condition.
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K�
Tu1;Chen1=K

�
Hertz1, can be obtained from the following

equation for the new models:

K
�
Tu 1;Chen 1

K
�
Hertz 1

¼ 2
1=2

p 3=2 STu;Chenb
1=2 1 x@ðSTu;Chenb

1=2Þ=@x
� � ;

(13)

with

b¼ a
2

2Rd
; STu ¼+

N

i¼1

p
T

i =ð112iÞ; SChen ¼ ð1�nÞ+
N

i¼1

p
c

i =ð112iÞ:

The values of b, S, and the derivative function, @(Sb1/2)/@x,
were calculated numerically for a full range of indentations.

With this information and the complex modulus obtained

using the Hertz model, K*Hertz1, the viscoelastic properties

can be evaluated even for thin cell regions.

MATERIALS AND METHODS

Cells

The data were taken from NIH 3T3 fibroblasts and H-ras-transformed

fibroblasts (American Type Culture Collection, Manassas, VA). The NIH

3T3 fibroblasts were cultured with Dulbecco’s modified Eagle’s medium,

DMEM (American Type Culture Collection), supplemented with 10% calf

serum (American Type Culture Collection). For H-ras-transformed

fibroblasts, fetal bovine serum (American Type Culture Collection) was

substituted for calf serum. To keep the pH constant (;7.4) during AFM

measurements, we added 10 mM HEPES (Sigma Aldrich, St. Louis, MO) to

the medium. For the experiments, cells were plated on the presterilized

coverslips a day before data were taken. We incubated them at 378C in 5%

CO2 atmosphere. For AFM measurements, we continuously provided small

amounts of the medium solution to the cells through the inlet of the liquid

cell (Microcell, TMMicroscopes, Sunnyvale, CA). To ensure the viability of

the investigated cells we stopped the measurements;2 h after removing the

cells from the incubator.

Optical microscopy

For fluorescence microscopy, cells were fixed for 10 min with 3.7%

formaldehyde. After being washed with phosphate-buffered saline (PBS),

the cells were permeabilized with 0.1% Triton in PBS. To visualize the actin

filaments, cells were stained with 0.1% TRITC-phalloidin in PBS (Sigma

Aldrich) in PBS for 10 min at room temperature, subsequently washed with

PBS, and mounted on the cover slide. Fluorescence images were taken with

a confocal microscope (LSM 510, Carl Zeiss, Jena, Germany). Reflection

interference contrast images of cells adhered to a glass coverslip were taken

using a reflection interference contrast objective (633, NA ¼ 1.25, Carl

Zeiss).

AFM—tip modification

As mentioned in the Introduction, to avoid damaging the sample and any

nonlinear deforming stress, the AFM tip geometry was modified to a well-

defined sphere. The cantilevers used in the experiments were commercial

Microlevers (TM Microscopes) with force constants between 0.02 and 0.06

N/m. The spherical probes were constructed by gluing polystyrene beads

(Seradyn Particle Technology, Indianapolis, IN), ranging in radii from 1.5

to 4 mm to the AFM tips using standard TEM epoxy with a low viscosity,

M-Bond 610 (SPI Supplies, West Chester, PA). After curing them overnight

at 858C, the probes were characterized thoroughly by reverse imaging over

a sharp AFM tip to assure that the bead on the tip was well-centered (see

inset in Fig. 2). The AFM topographic images provided the exact radius

and the overall state of the bead (see Fig. 2). Once the probe geometry had

been accurately characterized, the force constant of each cantilever was

calibrated. The most accurate values were obtained when calibrating against

a cantilever with a similar force constant. For this purpose, we prepared

standard cantilevers with a comparable force constant, k, using three

approaches to crosscheck the accuracy. Our standard cantilevers were

calibrated using a commercial cantilever (TM Microscopes) of known force

constant, 0.157 N/m (Tortonese and Kirk, 1997) and by analyzing their

thermal fluctuations (Butt and Jaschke, 1995). Furthermore, the resonance

frequency and cantilever dimensions were measured (Tortonese and Kirk,

1997) to independently determine the force constant. We selected the

standard cantilevers from those that agreed within 5% in their force

constants determined by the three different methods. These standard

cantilevers served as calibration cantilevers with known force constants

(kknown) to characterize unknown cantilevers with attached beads. The

calibration of cantilevers with beads was done by measuring its deflection on

a hard substrate (zc(hard)) as well as on our standard cantilever (zc(can)). To

avoid relative errors due to scanner hysteresis or drift, the cantilever

deflection was measured using the scanner detector signal. The unknown

force constant (kunknown) is given by the formula

kunknown ¼ kknown
zcðhardÞ � zcðcanÞ

zcðcanÞ

� �
: (14)

AFM—oscillatory measurements

All viscoelastic measurements were taken with an Autoprobe CP atomic

force microscope (Park Scientific Instruments, Sunnyvale, CA). A slow

indentation on the surface and subsequent retraction provided the force

curve for the elastic response. The resulting approach curve was used for the

calculations of the zero-frequency elastic modulus.

The experimental setup to perform the viscoelastic measurements is

illustrated in Fig. 3. The main component of the frequency-dependent

viscoelastic measurement was a small amplitude (2–5 nm), high frequency

(50–300 Hz) oscillatory drive signal superposed with the slowly changing

force curve signal. The higher frequency signal was added to the scanner

signal through a custom-made amplifier from a dual-channel lock-in

amplifier, SR830 (Stanford Research Systems, Sunnyvale, CA). The time

constant of the lock-in amplifier was 1 3 100 ms at frequencies\300 Hz.

FIGURE 2 An AFM topographic image of a spherical probe used in our

experiments. The inset illustrates the reverse imaging approach that uses

a sharp AFM tip placed on the substrate to image the modified tip.
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This oscillatory drive signal had a small amplitude and was significantly

faster than the speed of the approach curve. The detected signal from the

cantilever was retrieved through a breakout box and sent to a lock-in

amplifier. The time to obtain a complete force curve depended on the

frequency of the oscillatory signal. As an example, it took 50 s to complete

the force curve at 50 Hz and 30 s at 150 Hz.

The amplitude of the scanner drive signal, adrive, was calibrated by

pressing against a glass slide where the response and drive signals were in-

phase and of approximately equal amplitudes. The amplitude of the response

signal from the cantilever, aresponse, was measured by the dual photodiode

detectors of the AFM. The frequency, v, of the drive signal was determined

by the output of the lock-in amplifier.

The phase and amplitude data were fed back to the computer through two

unused channels of the AFM data acquisition board. Thus, the data from the

lock-in amplifier were included in the data stream from the scanner position

sensors and total cantilever deflection sensors, which were used to determine

the total indentation, d, the oscillating indentation,d̃*, and the total force,

ftotal.

DATA ANALYSIS

Indentations

For a measurement of the static elastic Young’s modulus,

the indentation, d, was calculated from the scanner

displacement, zs, minus the cantilever deflection, zc (see

Fig. 1), d ¼ zs � zc. Here, zc has already been corrected for

the contact point. The force, fbead, was calculated from the

cantilever displacement, zc, and the force constant of the

cantilever, k,

fbead ¼ kz
c
: (15)

For the frequency-dependent modulus, the drive oscillation

was added to the offset displacement. The exact position of

the sample and tip was the sum of the offset displacement

and the added oscillation (see Fig. 3), as

zs ¼ z
s

01 z̃se
ivt

zc ¼ z
c

01 z̃
�
ce

ivt
;

(16)

where z0
s is the offset displacement of the scanner, and z0

c is

the offset displacement of the cantilever after the contact

is made between the tip and the sample. In a sample with

viscous properties, the oscillatory cantilever deflection,z̃�c ,
includes a phase factor, u, that differs from the oscillatory

scanner deflection, z̃s, as

z̃se
ivt ¼ adrivee

ivt

z̃
�
ce

ivt ¼ aresponseðcosu� i sinuÞeivt: (17)

The variable adrive is the amplitude of the oscillatory scanner

deflection, aresponse is the amplitude of the oscillatory

cantilever deflection, and v is the driving frequency.

The offset indentation, d0, was determined by subtracting

the cantilever motion from the scanner displacement, d0 ¼
z0

s � z0
c. The cantilever and the scanner displacements were

determined by subtracting the contact point as discussed

below. The oscillating indentation,d̃�;was found by sub-

tracting z̃�c from z̃s:An example of the raw data of z̃�c is shown
in Fig. 4 B. In-phase and out-of-phase parts of the oscillatory
cantilever signal were plotted as a function of the offset

displacement of the scanner, zs0.

Hydrodynamic drag force

In the oscillatory viscoelastic measurements, the viscous

medium surrounding the entire cantilever resulted in a drag

force that was solely due to the effects of the surrounding

medium and was unrelated to viscous effects of the sample.

The oscillating drive on the sample caused a drag force on

the cantilever, f �drag, which could be approximated by

(Mahaffy et al., 2000)

f
�
drag ¼ ivgd̃

�
: (18)

The constant g contains the viscosity of the medium and

the effective size of the cantilever. The constant g was

determined by monitoring the cantilever oscillation, z̃�0c ; in
response to the scanner oscillation, z̃0s ; before making contact

with the sample (here the superscript, 0, denotes that it was

before contact). This measurement was performed directly

before the tip made contact, i.e., as close as possible to the

surface considering that hydrodynamic friction, i.e., drag,

increased close to a surface. The further increase in fric-

tion after contact stemmed from the viscoelastic properties of

the cell. Close to contact, the drag force was measured di-

rectly by monitoring the cantilever oscillation, i.e.,

f �drag ¼ ivgðz̃0s � z̃�0c Þ ¼ kz̃�0c . The expression for the con-

stant, g, can be simplified because the cantilever oscillation

close to contact was relatively small in comparison to the

drive signal ðjz̃0s j � jz̃�0c jÞ;

g¼� ik

v

z̃�0c
z̃
0

s � z̃
�0
c

� �
�� ik

v

z̃�0c
z̃
0

s

: (19)

Using the expression above, g can be calculated and then

repeatedly used to determine the effect of the cantilever drag

on the total force for each indentation measured while in

FIGURE 3 The experimental setup used to obtain the viscoelastic data.

Modifications were made to a commercial AFM system to obtain the

frequency-dependent viscoelastic data. The scanner was modulated by

a small amplitude (5–20 nm), sinusoidal signal, z̃s. A lock-in amplifier was

used to detect the amplitude and the phase of the cantilever response, z̃c.
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contact with the sample. The cantilever drag does contribute

significantly to the out-of-phase (viscous) component. An

example is shown in Fig. 4 C. As expected for the motion

through a fluid, the in-phase response was small and the out-

of phase response was more significant. After the tip made

contact with the sample, the absolute value of the out-of-

phase signal dropped because less liquid moved past the

cantilever and the cantilever was moving largely in-phase

with the liquid. Nevertheless, the drag effect must be

subtracted from the total viscoelastic force, f �total, over the
range of indentation to obtain an accurate viscous constant

for the sample. The total oscillatory viscoelastic force, f �total,
was measured by the lock-in amplifier, as

f
�
osc ¼ f

�
total� f

�
drag (20)

with

f
�
total ¼ kz̃

�
c :

After the cantilever drag component had been subtracted,

only the oscillatory force between the probe and the sample,

f �osc, remained.

Contact point of the tip

The indentation, d, depended on the contact point of the tip

with the sample that was determined from the data. In the

zero-frequency case, the contact point was simply defined as

the point at which the force curve initially changed slope.

The contact point was subtracted from the measured scanner

displacement such that the zero point of the force curve was

aligned with the contact point.

In the case of viscoelastic measurements, this point could

be quickly isolated as the point at which the maximum phase

change occurs. As discussed earlier, before contact, the

cantilever was subject to the viscous drag of the surrounding

medium leading to a constant phase difference between the

cantilever response and the scanner modulation that was very

close to 908. Upon contact, the cantilever response changed

immediately, causing a significant decrease in the phase shift

with respect to the scanner modulation.

Sample height

The absolute height of the sample, h, is necessary in

analyzing data with the Tu and the Chen models. The height

was determined using a combination of the topographic

image of the cell and the force curve itself. The approximate

height, htop, is measured directly from the topographic image

of the cell. This height differs from the actual height by an

amount corresponding to the imaging indentation. However,

by performing the force-curve measurement, the contact

point can be determined (as described above), which allows

us to determine the actual height more precisely, as

h¼ htop1dtop; (21)

where the value dtop is the slight indentation that occurs in

imaging the cell.

Determination of the modulus

The constants K and K* can be calculated from a complete

force curve obtained at each frequency, including data

FIGURE 4 Viscoelastic data of a fibroblast cell obtained

at a frequency of 50 Hz and a drive amplitude of 5 nm. The

contact point of the tip with the sample, C.P., is marked

and the contact region is marked as the gray bar on the

horizontal axis. (A) Error-mode image of the investigated

NIH 3T3 fibroblast. The gray scale represents the height

profile of the image. The point of measurement is marked

by a star. (B) The real (in-phase) and imaginary (908 out-
of-phase) oscillatory cantilever deflection, plotted as

a function of the offset displacement of the scanner, z0
s.

(C) The cantilever drag force due to the surrounding media,

plotted as a function of the offset displacement of the

scanner, z0
s. Note that the drag force is normalized to

the cantilever force constant, thus having the unit of

displacement. The out-of-phase viscous response is more

significant than the in-phase response. The drag force is

measured directly before contact. After contact, the drag

force is obtained using Eq. 18.
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appearing before the contact point and extending to

significant indentations. The valid indentation range for

each model is determined by the range over which these

calculated values, K and K*, remain nearly constant as would

be expected for linear materials. For thin lamellipodial

regions, the AFM-tip indents solely the actin cortex and

inhomogeneities of these actin networks occur on a length

scale larger than the indenting region. For thicker regions,

Ananthakrishnan and co-workers recently showed that the

actin cortex dominates the elastic response (R. Ananthak-

rishnan J. Guck, F. Wottawah, S. Schinkinger, B. Lincoln,

M. Romeyke, T. Moon, and J. Käs, unpublished). Thus, it is

reasonable to assume a single viscoelastic constant over the

entire range of indentations.

As an example, the plots shown in Fig. 5 demonstrate that

both the real and imaginary parts of K* from the extended

Hertz model are approximately constant as a function of the

indentations, d0, for the thick region (h ¼ 4.8 mm) of

a fibroblast at a frequency of 50 Hz. The initial variation in

K* for small d0 is primarily due to uncertainties in the initial

contact point. The small increases in K9 are not significant

compared with the increases caused by substrate effects in

thin regions.

When significant increases of the viscoelastic constants

were observed with increasing indentation, the data were

better analyzed with the Tu or the Chen model. Our nu-

merical calculation for these two models generated lookup

tables (the numerical tables for the Tu and Chen model are

available upon E-mail request to the corresponding author),

in which K
ð�Þ
Tu =K

ð�Þ
Hertz or K

ð�Þ
Chen=K

ð�Þ
Hertz are listed as a function

of dR/h2 (see also Figs. 6 and 7). This table allows us to

directly convert the complex moduli determined using the

Hertz model into the proper complex moduli for the

nonadhered and the well-adhered model, i.e., the Tu and

the Chen models.

RESULTS AND DISCUSSION

Numerical behavior of the Tu and the
Chen models

For extremely deep samples and/or shallow indentations, the

Tu and the Chen solutions are equivalent to the Hertz model.

This is illustrated in Figs. 6 and 7 where the ratios of the

predicted contact radii, aTu,Chen/aHertz, and the predicted

elastic constants, KTu,Chen/KHertz, approach 1 for large

sample heights. For sample heights that are 10 times less

than the Hertz contact radius, aHertzð¼
ffiffiffiffiffiffi
dR

p Þ, there is

a significant contribution to the total force from the hard

substrate, which makes the constants calculated using the Tu

and the Chen models deviate from those by the Hertz model.

The ratio KTu/KHertz is independent of the Poisson ratio.

However, KChen/KHertz does depend on the Poisson ratio (see

Fig. 7). The Poisson ratio influences the degree at which the

Chen model deviates from the Hertz model. A Poisson ratio

of zero results in an equivalent curve to the nonadhered case

treated by the Tu model. For the Chen model, a Poisson ratio

of zero implies that the sample has no lateral strain coupling,

which makes this case indistinguishable from the non-

adhered case treated as the Tu model. However, this is an

unlikely scenario for the cell cytoskeleton, and thus only

Poisson ratios, n, of 0.3 and 0.5, are shown in Fig. 7. The

hard substrate is felt earlier as the Poisson ratio increases.

Thus, even in relatively thick areas of the cell, the Hertz

model fails where the cell is well adhered and has a high

Poisson ratio. In our experiments, this deviation is rarely

observed, which indicates that thick cellular areas are poorly

attached to the underlying surface and/or have low Poisson

ratios. The dependency of KChen/KHertz on the Poisson ratio,

n, allows us to determine K¼ E/(1–n2) as well as the Poisson
ratio. The Poisson ratio can be obtained from fitting KChen/

KHertz vs. dR/h
2 to the experimental data.

Introducing oscillations of various frequencies allows us

to measure complex constants, K�
1 with real and imaginary

parts, i.e., K�
1 ¼ K911iK01, which are more complete repre-

sentations of the viscoelastic properties of the material. The

ratios of K91/K9Hertz1 for the Chen model with various Poisson

ratios and for the Tu model are plotted in Fig. 8. The ratio,

K01/K0Hertz1, shows an equivalent signature as the ratio,

K91/K9Hertz1 (see Fig. 8, inset). The constants, K91 and K01,
deviate from the Hertz solution for both models in thin

samples. Similar to the zero-frequency case, the Tu and the

Chen models agree well with each other for n ¼ 0.

The Hertz model and its limitations

The limitations of the Hertz model are well illustrated in

the measurement of the zero-frequency elastic constants of

FIGURE 5 The effectiveness of the extended Hertz model for thick

samples. The storage, K9, and the loss modulus, K0, are plotted as a function
of the indentation, d0. The investigated NIH 3T3 fibroblast is shown in the

inset. The data were taken at the frequency of 50 Hz and the drive amplitude

of 5 nm. Both the real, K9, and imaginary parts, K0, remain constant over the

full range of indentations, d0.
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fibroblasts (NIH 3T3) shown in Fig. 9. The Hertz model

appears to be effective only in thick regions away from the

leading edge of the cell. To make this argument, two points

on each fibroblast cell were chosen (see Fig. 9). One point

lies near the leading edge, whereas the other lies closer to the

main cell body. Near the main body of the cell, the Hertz

model successfully measures the elastic constant, whereas

near the leading edge the Hertz model displays an increase in

the elastic modulus as the indentation increases. Thus, this

simple model is not effective in all regions of the cell.

Qualitatively, we expect that a hard substrate provides

support to the soft cell and will result in an apparent increase

in the elastic constants. It is also possible that the thinner

regions experience a higher strain due to the relatively higher

compression. The magnitude of this increase depends on the

thickness of the cell at the point of measurement and on the

adhesion between the cell and the substrate. In nature, a cell

dynamically changes its viscoelastic properties and shows

spatial inhomogeneity over a cell. However, assuming

a constant elastic modulus over the entire range of in-

dentation is valid, considering the small contact area and the

fast measurement time. The lateral inhomogeneity cannot

affect our measurements, considering that the contact area is

small; the diameter of the contact area is in the submicron

range, approximately a few hundred nanometers. For thin

regions, the situation is simple since there is no cytoskeletal

variation perpendicular to the substrate due to the limited

depth. For the thick regions where the Hertz model applies,

our measurements can be affected not only by the lateral

variation but also by the vertical variation. However, the

recent theoretical work shows that even if a stiffer micro-

tubule network or nucleus is underlying the actin cortex, the

elastic response is dominated by the shell-like actin cortex;

only if the tip presses directly on the nucleus does its high

stiffness becomes relevant (R. Ananthakrishnan J. Guck,

F. Wottawah, S. Schinkinger, B. Lincoln, M. Romeyke,

T. Moon, and J. Käs, unpublished). This is in agreement with

our findings that the elastic modulus remains constant for

FIGURE 7 Comparison of the Chen model for adhered

thin regions with the Hertz model. The ratios of the Chen

and the Hertz model in the constant, K, and the contact

radius, a, i.e., KChen/KHertz and aChen/aHertz, are plotted as

a function of the square of the Hertz contact radius (dR)

normalized with respect to the square of the sample height,

i.e., dR/h2. The values of KChen/KHertz and aChen/aHertz
depend on the Poisson ratio, n, of the material. The

substrate effect is apparent at lower indentations as the

Poisson ratio, n, increases.

FIGURE 6 Comparison of the Tu model for nonadhered

thin regions with the Hertz model. The ratios of the Chen

and the Hertz model in the constant, K, and the contact

radius, a, i.e., KTu/KHertz and aTu/aHertz, are plotted as

a function of the square of the Hertz contact radius (dR)

normalized with respect to the square of the sample height,

i.e., dR/h2. As the sample height increases, the predicted

constant, KTu/KHertz, and the predicted contact radius, aTu/

aHertz, approach 1, indicating that the Tu solutions

converge to the Hertz solutions at large sample depths.
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low indentations where we indent only the actin cortex and

for high indentations where other cytoskeletal structures are

compressed. As for the dynamical changes, the measure-

ments are performed within a timescale that is fast with

respect to cell movement. The measurement times range

from 1 s to a few 10 s, which are faster than the speed of

fibroblasts’ movements.

Cell elasticity measurements in thin
adhered regions

For very thin regions of the cell, we expect the Hertz model

to be inaccurate because the substrate effects described

above dominate the elastic properties. In this case the

adhesive state of the plasma membrane is an important

determinant. Strong adhesion between the cell membrane

and the substrate will provide additional support for the cell

to resist lateral deformations that release energy. In non-

adherent areas, the substrate opposes the vertical deforma-

tions, but the sample remains laterally free. Thus, the effect

of the substrate is expected to be less obvious in a non-

adherent sample than in the adherent sample. Different areas

of the cell behave either like the adhered case or the

nonadhered case. Optical microscopy can provide informa-

tion about which regions of a cell are adhered to the

substrate. Rhodamine phalloidin binds to actin filaments in

FIGURE 9 The elastic constants, K, predicted by the

Hertz model. The data were taken at four points on two

different NIH 3T3 fibroblasts (fibroblasts A and B). The

points of measurement are indicated by a star on error-

mode images of the cells. The elastic constants, K, are

plotted as a function of the relative indentation depth, d/R.

The values of K and the heights of each point are shown.

The Hertz model provides reliable data for thick areas of

the cell.

FIGURE 8 Comparison of the storage, K9,
and the loss modulus, K0, calculated from the

Chen model with various Poisson ratios and

from the Tu model. The ratios of the

frequency-dependent elastic constant, K19/
K9Hertz1, for each model are plotted as a function

of the square of the Hertz contact radius

normalized with respect to the square of the

sample height, i.e., dR/h2. The ratio K10/
K0Hertz1 for each model shown in the inset

displays the same relation as that of the

frequency-dependent elastic constant, K19/
K9Hertz1. In the case of a Poisson ratio of zero,

the Chen and the Tu model agree with each

other. At higher Poisson ratios, the Chen and

the Tu model deviate significantly.
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the cell and indicates regions of high actin filament density.

Motile fibroblasts (NIH 3T3) show a higher actin density

relatively near the leading edge (see Fig. 10 A). In this

region, the focal adhesions connected to the actin cytoskel-

eton are closely spaced and indicate that the sample is well

adhered. In contrast, further away from the leading edge, the

densities of the filament and focal adhesion points decrease.

Thus, the sample should behave like the nonadhered case.

Similarly, in images obtained by reflection interference

contrast microscope, the darker points indicate the regions of

strong adhesion at the leading edge of the lamellipodium (see

Fig. 10 B). Therefore, the leading edge should follow the

Chen model whereas regions away from the leading edge

will be closer to the Tu model. Indeed, such assignments of

the well-adhered and nonadhered regions based on optical

microscopy are consistent with the force measurements

performed using AFM.

Considering first the leading edge, we reanalyzed the data

of fibroblast A (NIH 3T3) in Fig. 9 taken at point 2 using

both the Chen model with various Poisson ratios and the Tu

model. At point 2, the total thickness of the sample with

respect to the substrate is 3.8 mm. The results of these

measurements are shown in Fig. 11. The Hertz and the Tu

models clearly fail to predict an elastic constant. The Chen

model with a Poisson ratio of 0.4 yields the most constant

elastic modulus over the full range of indentations. This

observation is commensurate with the optical data, which

show a dense actin network in this region, indicating many

opportunities for adhesion. The high Poisson ratio indicates

that the actin gel in this region is highly cross-linked.

The Chen model is successful in the very thin regions near

the edge of fibroblasts. In these regions the cell is generally

well adhered to the substrate and is \1 mm thick. An

example of data for an NIH 3T3 fibroblast obtained in this

region is shown in Fig. 12. The relative indentations were in

this instance a significant portion of the total height of the

sample, h ¼ 790 nm. Even so, the Chen model returns

a constant value of the elastic modulus of 1.6 kPa and

a Poisson ratio of 0.5. In contrast, no portion of the curve

from the Hertz model is truly constant. The data obtained

from the Chen model confirm that the leading edge of

a fibroblast is strongly adhered and supported by a strongly

cross-linked intracellular polymer network.

Cell elasticity measurements in thin
nonadhered regions

In the case that the cell is poorly adhered, the Chen model

fails for reasonable values of the Poisson ratio. This effect is

demonstrated with point 3 on the same cell of Fig. 9 (see Fig.

13). The plot of the elastic values of K as a function of the

quantity, dR/h2, shows that the Chen model with various

Poisson ratios is ineffective. In this case, the Tu model is

effective in predicting an elastic constant at deep inden-

tations, whereas the other models fail. Fig. 13 demonstrates

an additional effect seen in cells. At very low indentations,

the Tu model is not as effective and the Hertz model seems to

be predicting a somewhat higher elastic constant. This

variation may be due to uncertainty in the contact point. As

FIGURE 10 Optical images of motile NIH 3T3 fibroblasts. The region

close to the leading edge is clearly adhered. (A) An NIH 3T3 fibroblast fixed

and stained with rhodamine phalloidin. The fluorescent areas show high

actin filament density. (B) Reflection interference contrast image of an NIH

3T3 fibroblast. The dark spots near the leading edge indicate that these

regions adhere well to the substrate.

FIGURE 11 Zero-frequency elastic properties of the leading edge of an

NIH 3T3 fibroblast. (A) Error-mode image of an NIH 3T3 fibroblast. The

star indicates the point of measurements close to the leading edge. (B) Plot of
the elastic constant, K0 vs. dR/h

2, as calculated by the Hertz, Tu, and Chen

models for a Poisson ratio of 0.4 and 0.5. The best results are obtained with

the Chen model for a Poisson ratio of 0.4, confirming that the leading edge

adheres to the underlying substrate and shows a strong elastic response,

which is typical for a highly cross-linked polymer gel.
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predicted from the numerical calculations, the apparent

elastic modulus from the Hertz model exceeds the modulus

from the Tu model (see Fig. 6). We also observed in the

above example that the difference between the Hertz and

the Tu constant is ;25% at low indentations (see Fig. 13).

Under the assumption that a sole elastic modulus can be

obtained from our measurements, the Tu model is most

appropriate since it provides the constant elastic modulus

at high indentations. Another potential explanation would

suggest that the Hertz model works at low indentations

where the tip probes the cytoskeleton directly underlying the

plasma membrane although the Tu model is more effective

at higher indentations where the tip probes the entire

cytoskeleton.

The Hertz model generally overestimates the elastic

constant with a bigger error in regions that are well adhered,

even though the height of the sample may be ;30 times

larger than the indentation. The Chen model predicts an

elastic constant of 1.01 kPa for the thicker sample, whereas

the Hertz model predicts an approximate constant of 1.4 kPa

at low indentation, representing a difference of nearly 40%

(see Fig. 11). Although both the Tu and the Chen models are

relatively simple, in that they assume a sole elastic constant

with respect to the indentation, they are extremely effective

over the thin regions of the cell.

Viscoelastic behavior in thin regions

The viscoelastic values at 80 Hz were measured for an NIH

3T3 fibroblast at the point indicated in the inset of Fig. 14.

Neither the Hertz nor the Tu model is effective in this case at

predicting the two parts of the viscoelastic constant, K9 and
K0. Only the Chen model with a Poisson ratio of 0.5 shows

a constant behavior for K9 and K0 over a wide range of

indentations. The storage modulus, K9 ; 1.4 kPa, is

comparable to our measurements of the zero-frequency

elastic constant, K, obtained at the leading edge. The viscous
contribution, i.e., the loss modulus, K0, is ;860 Pa. The

viscosity clearly represents an important component of the

total mechanical properties of the cell. However, since K9[
K0, the cell displays an elastic behavior similar to polymer

gels in the rubber plateau regime. From the strong elastic

FIGURE 12 Demonstration of the effectiveness of the Chen model on

extremely thin adhered regions of an NIH 3T3 fibroblast. (A) Error-mode

image of an NIH 3T3 fibroblast. The zero-frequency elastic data were taken

at the marked point. The height of this point, h, is 790 nm. (B) K0 vs. dR/h
2

plotted for the Hertz, the Tu, and the Chen model for Poisson ratios of 0.4

and 0.5. The best result is obtained for the Chen model for a Poisson ratio of

0.4, confirming the appropriateness of this model for very thin, and adhered

regions of a cell.

FIGURE 13 Measuring the zero-frequency elastic properties of an NIH

3T3 fibroblast at a point further back from the well-adhered leading edge. (A)

Error-mode image of the NIH 3T3 fibroblast. The point of measurement is

marked by a star. The height of this point is 9.81 mm. (B) K0 vs. dR/h2

plotted for the Hertz model, the Chen model with a Poisson ratio of 0.5, and

the Tu model. For deep indentations only the Tu model leads to satisfactory

results.
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component and the effectiveness of the Chen model, we can

conclude that this region of the cell, shown in the inset of

Fig. 14, is well adhered to the substrate and strongly cross-

linked. This measurement is done at the point relatively near

the edge of the cell and thus the noted adhesion is in ag-

reement with our previous optical results (see Fig. 10 B).
Viscoelastic data of the same cell in Fig. 14 taken at

frequencies ranging from 80 to 300 Hz are shown in Fig. 15.

The Hertz model is not suitable to predict the loss and

storage moduli for this thin sample (h ¼ 600 nm) and the Tu

model also fails as shown in Fig. 14. The Chen model with

a Poisson ratio of 0.5 efficiently alleviates the substrate

effect. Thus, we were able to evaluate the viscoelastic moduli

in an analogous manner to the zero-frequency data with the

premise that this point of the cell is well adhered to the

substrate. Between 80 Hz and 300 Hz the storage modulus,

K9, exceeds the loss modulus, K0, for the Chen model. Thus,

the sample shows an elastic, rubber plateau-like behavior.

The storage modulus ranges from 1400 Pa to 2870 Pa over

the observed frequency range. A transition from the plateau

regime to an internal dynamic regime does not occur within

this frequency range (80–300 Hz), although the viscous

component approaches the elastic component at high

frequency, indicating the onset of this transition (see data

taken at 300 Hz). The onset of the internal dynamics regime

at such high frequencies implies the presence of a cross-

linked actin network in vivo, since the onset occurs earlier in

a non-cross-linked, solely entangled network (Morse, 1998).

This cross-linking is also consistent with our finding that the

Chen model with a Poisson ratio of 0.5 is most effective in

this region. In addition, the transition frequency to an internal

dynamics regime depends on the length of actin filaments.

Shorter filaments like those found in a cell show a higher

transition frequency. The numerical data by Morse predicts

the transition at 160 Hz for non-cross-linked entangled

filaments of 17 mm in length, which is much longer than

cellular actin filaments (\1 mm). These measured visco-

elastic constants and the Poisson ratio of 0.5 lead to shear

moduli of G9 ¼ 350–715 Pa and G0 ¼ 215–500 Pa for the

storage and the loss moduli, respectively. Since malignantly

transformed fibroblasts exhibit a drastically reduced cyto-

skeleton—actin decreases by ;30%—it is expected that the

strength is drastically lowered in the elastic plateau regime.

H-ras-transformed fibroblasts are a typical example of

malignantly transformed fibroblasts. The data taken from

an H-ras fibroblast are shown in Fig. 16. The data were best

analyzed by the Chen model with the Poisson ratio of 0.5,

which makes the data comparable to the normal fibroblast

(NIH 3T3) studied in Fig. 15. The frequency-dependent

measurement again displays an elastic plateau regime.

However, the elastic strength of this plateau is significantly

FIGURE 14 The storage, K9, and loss constant, K0, for
a frequency of 80 Hz plotted as a function of dR/h2. The

measurement point is marked as a star at the error-mode

image of the NIH 3T3 fibroblast. The height of this point is

0.6 mm. In the case of the Hertz and the Tu model, K9 and
K0 deviate from a constant value as the indentation, dR/h2,

increases. However, the Chen model with a Poisson ratio

of 0.5 shows a constant behavior over an extended range of

indentations. The resulting storage modulus, K9¼ 1.40 6
0.26 kPa, is higher than the loss modulus,K0¼ 0.866 0.05

kPa. Thus, the sample behaves elastically.

FIGURE 15 The storage, K9, and loss constant, K0, plotted as a function

of the frequency (80–300 Hz) for an NIH 3T3 fibroblast. The Chen model

with a Poisson ratio of 0.5 was most effective to alleviate the strong substrate

effect associated with the deep indentation as shown in Fig. 14. The data are

taken at the point indicated in the error-mode image of the fibroblast. The

height of this point is;0.6 mm. The constants, K9 and K0, at each frequency
were obtained as an average over the regions, in which the plot of K9 and K0
vs. dR/h2 shows a constant behavior over an extended range of indentations

(see Fig. 14). The error bar indicates the standard deviation over these

regions. The data show that there is a rubber plateau region\300 Hz.
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lower. The shear moduli were determined to beG9¼ 50–100

Pa and G0 ¼ 20–30 Pa. Both are significantly lower than

values for the normal NIH 3T3 fibroblasts. Our data illustrate

that the local viscoelastic signature of cells can be used as

a cell marker to distinguish cells by their cytoskeletal

phenotype. As a rule of thumb the elastic strength of a cell

increases with its degree of differentiation. The measured

plateau moduli can only be achieved by cross-linked actin

networks and not by entangled actin networks (Morse,

1998). Considering that physiologic actin concentrations is

10–20 mg/ml and only a fraction of actin filaments are

cross-linked by transient cross-linking proteins, actin

networks can only achieve the structural strength measured

in our experiments if most of the cellular actin is con-

centrated in the lamellipodial regions that we investigated

(Ananthakrishnan, 2003; Wachsstock et al., 1994).

In conclusion, the appropriate model treating the visco-

elastic indentation of a soft sample with finite thickness is

key to successfully characterizing both the viscoelastic and

adhesive properties of a cell. Viscoelastic data can be

obtained even in very thin regions of the cell while

simultaneously measuring the Poisson ratio. Besides the

impact of thickness, the local adhesion of the cell has a strong

effect on the apparent elastic properties of the sample.

Simple models such as the Hertz model can overestimate the

elastic constant in regions where the cell is well adhered. The

combination of a well-defined spherical contact area and

a carefully chosen model provides accurate information on

a cell’s or any thin sample’s viscoelastic properties. The

presented methods allow spatially resolved precise rheolog-

ical measurements of thin soft samples such as lamellipodia

of cells and block co-polymer films. Simultaneously, these

methods also allow us to determine the adhesive state of the

sample with respect to the underlying substrate. In thin

adhered samples the method uniquely determines the

Poisson ratio in addition to the shear modulus providing

the most complete viscoelastic information. Our results show

that the region relatively close to the leading edge of motile

fibroblasts strongly adheres to the substrate. The viscoelastic

signature of the lamellipodium strongly resembles those of

cross-linked polymer networks such as actin gels. Thus the

structural strength of the leading edge of a lamellipodium is

determined by a cross-linked network of short actin filaments

that are strongly coupled to the substrate by focal adhesions.

The data demonstrate that our method is ideally suited for

measuring the frequency-dependent elastic modulus, the

Poisson ratio, and the adhesive state of the lamellipodium.

APPENDIX

Here we summarize the adaptation of the calculations originally presented

by Tu and co-worker and Chen and co-worker to our AFM measurements

(Tu and Gazis, 1964; Chen, 1971; Chen and Engel, 1972). Since we consider

the loading over a circular region of radius, a, caused by the modified

spherical AFM tip, it is more convenient to use the cylindrical coordinates (r,
u, z). The total stress distribution applied by the spherical tip, p(r), can be

described by the sum over a series of partial pressure distributions, qi(r),

which is approximated in Eq. A1. The normalization factors, pi, must be

calculated for each qi(r) and included in the total force calculation, as

pðrÞ ¼Gd

a
+
N

i¼1

piqiðrÞ; (A1)

with

qiðrÞ ¼ 1� r
2

a
2

� �i�1=2

:

The indentation depth, d, the shear modulus, G, and the radius of the contact

region, a, are related in these equations. The stress distribution relates to the

displacement, u(r), at each point in the contact area as

FIGURE 16 The storage, K9, and loss constant, K0,
plotted as a function of the frequency (80–300 Hz) for an

H-ras-transformed fibroblast. The Chen model with

a Poisson ratio of 0.5 is used to evaluate the viscoelastic

modulus. The data were taken at the point indicated in the

error-mode image of the fibroblast. The height of this point

is ;4.1 mm. In the studied frequency regime the adhered

region of the H-ras-transformed fibroblast displays an

elastic plateau, which is significantly lower than the plateau

for the NIH 3T3 fibroblast shown in Fig. 15.
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uðrÞ ¼+
N

i¼1

uiðrÞ; (A2)

with

uiðrÞ ¼ d piwiðrÞ:

Here, wi(r) is defined as a normalized displacement and is related to the

corresponding partial pressure distribution, qi(r), which appears later in

Eq. A5.

For the elasticity problem, in which the shearing stress vanishes at all

points in a hard substrate, stresses and displacements are expressed in terms

of two harmonic functions, F and Z, in the form of Fourier-type integrals

(Green and Zerna, 1954). As mentioned earlier, assuming the axially

symmetric loading allows us to use cylindrical coordinates. So the integrand

ei(mx1ny) of the Fourier-type integrals can be replaced with the spherical

Bessel function J0(ar) as

F¼
ð‘

0

1

a
2 ðAe�az1BeazÞpðaÞJ0ðarÞa da

Z¼
ð‘

0

1

a
ðCe�az1De

azÞpðaÞJ0ðarÞa da

:

8>>><
>>>:

(A3)

Here a is defined as (m2 1 n2)1/2 and pðaÞ is the Fourier transform of the

total pressure distribution, p(r),

pðaÞ ¼
ða

0

pðrÞJ0ðarÞr dr: (A4)

Similarly the N normalized displacements, wi(r), can be written as

awiðrÞ ¼G

ð‘

0

unðahÞqiðaÞJ0ðarÞda; (A5)

with

qiðaÞ ¼
ða

0

qiðrÞJ0ðarÞrdr:

The N normalized displacements are calculated through numerical

integration of the pressure distribution over the surface of contact. The

function unðahÞ is determined by the boundary conditions of the adhered

and nonadhered regions. The detailed boundary conditions and the exact

forms of unðahÞ for the Tu and the Chen models are presented in the next

two sections. The subscript, n, denotes the normal component with respect

to the hard substrate. For the calculation of the elastic values, the

spherical Bessel function, J0(ar), as well as the total stress distribution,

p(r), can be approximated as a series of Legendre polynomials.

The spherical probe shape of the tip can be modeled as a parabolic

indenter, which results in a surface indentation as

u0ðrÞ ¼ d� r2

2R
: (A6)

The real surface indentation function, u(r), has the properties of being

a smooth and continuous function, which vanishes at the edge of the tip and

is stationary at the center of the tip. The error resulting from the

approximation of a parabolic probe can be rewritten as a function, e(r),

eðrÞ ¼ 1

d
ðu0ðrÞ�uðrÞÞ; (A7)

eðrÞ ¼ 1� r
2

2Rd
�+

N

i¼1

piwiðrÞ: (A8)

Using the method of least-squares, one needs to minimize the integral of the

square of the error over the contact area,

IL ¼ 1

a
2

ða

0

re2ðrÞdr: (A9)

The above error integral is minimized when the following conditions are

fulfilled:

@IL
@ðd=aÞ ¼ 0;

@IL
@pi

¼ 0; ði¼ 1 . . .NÞ: (A10)

These conditions, which result in N1 1 equations, allow us to determine the

radius of the contact area, a, and the normalization factors of the partial

pressure distribution, pi. These equations have the form of

3� a
2

Rd
�12

a4

ða

0

r
3 +

N

i¼1

piwiðrÞdr¼ 0

ða

0

rwjðrÞ 1� r
2

2Rd
�+

N

i¼1

piwiðrÞ
� �

dr¼ 0;

ði; j¼ 1;2;3; . . . :NÞ

:

8>>>>><
>>>>>:

(A11)

To complete the numerical integration of the above equations, all the

integrals must be rewritten in terms of equivalent integrals over the range

[0,1] . For this purpose, we introduced three normalized quantities, r9, h9,
and a9, corresponding to r/a, h/a, and aa, respectively. The integrals

converge more quickly if the half-space solution for a given pressure

distribution, uHn ðahÞ; is subtracted from wi(r) before integration and then

added back later. So Eq. A5 can be rewritten as

awiðrÞ�aw
H

i ¼G

ð‘

0

½unðahÞ�u
H

n ðahÞ�qiðaÞJ0ðarÞda;
(A12)

with

aw
H

i ¼G

ð‘

0

u
H

n ðahÞqiðaÞJ0ðarÞda:

The results of the numerical integration provide coefficients, wi(r), for the

equations shown in Eq. A11. Consequently, these equations can be solved to

determine the values of pi and d/a, where d is experimentally measured. The

other experimentally measurable quantity is the deforming force, which is

related to the integral of the total pressure distribution over the contact area,

as

fbead ¼
ða

0

pðrÞ2pr dr: (A13)

With the relationship of shear modulus, G, and the Young’s modulus, E,
which is given by G ¼ E/(2 1 2n), the deforming force is

fbead ¼ pE

11n
da+

N

i¼1

pi

112i
: (A14)

Here, the value, pi, is a function of the Poisson ratio, n. In the following

we consider our two boundary conditions: the nonadhered and adhered

regions.
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Nonadhered thin regions of cells—the Tu model

The general forms of the displacements and the stresses, i.e., unðazÞ;
usðazÞ;snðazÞ; and ssðazÞ; are defined as

Here, k is equal to (3–4n), where n is the Poisson’s ratio. The subscripts, n

and s, correspond to the normal and tangential components with respect to

the hard substrate. For the nonadhered case, at the center of the layer there is

no vertical displacement as would be expected for an infinitely hard substrate

ðunð0Þ ¼ 0Þ. However, the lateral displacement is unconstrained and there is

no lateral stress on the rigid surface ðssð0Þ ¼ 0Þ. The vertical stresses at the
sample surface are functions of the indenter shape ðsnðhÞ ¼ 1Þ. The indenter
is frictionless with respect to the sample ðssðhÞ ¼ 0Þ. These four conditions
are enough to determine unðahÞ in Eq. A15. unðahÞ is a simple function of

the height of the layer, h, and the Poisson ratio, n, as

GunðahÞ ¼ 2ð1�nÞsinh2ðahÞ
sinhð2ahÞ12ah

: (A16)

Since the Poisson ratio appears in a single factor, (1–n), of unðahÞ; it can
be factored out and grouped with the Young’s modulus in the Tu model

as was done for the Hertz model.

The half-space solution for a given pressure distribution was solved by

Chen and co-worker (Chen, 1971; Chen and Engel, 1972). The displace-

ments in the corresponding uniform half-space problem are

Gu
H

n ¼ ð1�nÞ ¼ ðk11Þ=4; (A17)

GwH

i ¼�ð1�nÞapð2n�1Þð2n�3Þ . . . ::ð3Þð1Þ
2
n11

n!

3 2F1ð1=2;�n;1;
r
2

a
2Þ: (A18)

Adhered thin regions of cells—the Tu model

To simplify the numerical calculations, Chen redefined the coefficients as

Ae
�ah=2 ¼ A9e�2ah

Be
ah=2 ¼ah=2�ð1� 2nÞ1B9e�2ah

Ce�ah=2 ¼C9e�2ah

De
ah=2 ¼�11D9e�2ah

:

8>>><
>>>:

(A19)

Based on these variables, the corresponding quantities from Eq. A15

became

Now, the sample is rigidly bound to the substrate and thus the tension is

only freely released at the surface. The boundary conditions are that the

lateral and vertical displacements at the surface of the substrate are zero

ðusð�2=hÞ ¼ 0; unð�2=hÞ ¼ 0Þ. The vertical and lateral stresses at the

probe-sample interface are the same as those used in the Tu model

ðsnðh=2Þ ¼ 1; ssðh=2Þ ¼ 0Þ. Applying these boundary conditions to each

equation in Eq. A20, the coefficients are calculated to be

C
0 ¼ ½112ah1ke

�2ah�=cðaÞ
D

0 ¼ ½2ahð112ahÞ1k
21ke

�2ah�=cðaÞ
A

0 ¼�½ðah1kÞC0 �D
0�=2

B
0 ¼�½C01ðah� kÞD0�=2

;

8>>><
>>>:

(A21)

where cðaÞ is defined to be

cðaÞ ¼ k1 ½k21ð2ahÞ211�e�2ah1ke
�4ah

; (A22)

so the full form of unðah=2Þ is given by

2GunðazÞ ¼ �½A1 ðaz1 kÞC�e�az 1 ½B1 ðaz� kÞD�eaz
2GusðazÞ ¼ �½A1azC�e�az � ½B1azD�eaz
snðazÞ ¼ ½A1 ðaz1 2� 2nÞC�e�az 1 ½B1 ðaz� 21 2nÞD�eaz
ssðazÞ ¼ ½A1 ðaz1 1� 2nÞC�e�az � ½B1 ðaz� 11 2nÞD�eaz

:

8>><
>>:

ðA15Þ

2G unðazÞ � u
H

n

ah

2

� �� �
e
2ah ¼ �½A91 ðaz1 kÞC0�e�aðz�h=2Þ 1 ½B0 1 ðaz� kÞD0�eaðz�h=2Þ

2G usðazÞ � u
H

s

ah

2

� �� �
e
2ah ¼ �½A0 1azC

0�e�aðz�h=2Þ � ½B0 1azD
0�eaðz�h=2Þ

snðazÞ � s
H

n

ah

2

� �� �
e
2ah ¼ ½A0 1 ðaz1 2� 2nÞC0�e�aðz�h=2Þ 1 ½B0 1 ðaz� 21 2nÞD0�eaðz�h=2Þ

ssðazÞ � s
H

s

ah

2

� �� �
e
2ah ¼ ½A0 1 ðaz1 1� 2nÞC0�e�aðz�h=2Þ � ½B0 1 ðaz� 11 2nÞD0�eaðz�h=2Þ

:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(A20)

un

ah

2

� �
� u

H

n

ah

2

� �
¼ � 2kð11 kÞe�4ah 1 ½11 4ahð11ahÞ1 k1 k2 1 k3 1 4kahð11ahÞ�e�2ah

4½k1 ðk2 1 ð2ahÞ2 1 1Þe�2ah 1 ke
�4ah� : (A23)
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Note that for the rigidly adhered model, we substitute unðahÞ � uHn ðahÞ in
Eq. A12 with unðah=2Þ � uHn ðah=2Þ; because the coordinate is defined

differently (see Fig. 1).
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