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Recently there has been a lot of work on the Yamabe flow on manifolds by S. Brendle [1,2], B. Chow [4], P. Daskalopoulos
and N. Sesum [5], S.Y. Hsu [8], A. Burchard, R.J. Mccan and A. Smith [3], L. Ma and L. Cheng [6], M. Del Pino, M. Saez [7] and
others. A time dependent metric g(-,t) on a Riemannian manifold M is said to evolve by the Yamabe flow if the metric g
satisfies

0
3¢ 8= —Rgi; (1)

on M where R is the scalar curvature. Yamabe gradient solitons are special solutions of Yamabe flow (1). We say that
a metric g;; on a Riemannian manifold M is a Yamabe gradient soliton if there exist a smooth function f: M — R and
a constant p € R such that

(R—p)gij=ViV;f onM. (2)

It is proved in [5] that the metric of any compact Yamabe gradient soliton (M, g) is a metric of constant scalar curvature.
In this paper we will give a simple alternate proof of this interesting result.
The main theorem of this paper is the following.

Theorem 1. Let (M, g) be an n-dimensional compact Yamabe gradient soliton withn > 3. Then (M, g) is a manifold of constant scalar
curvature.

Proof. As observed in p. 20 of [5] (cf. [4]) by (2) and a direct computation one has

(n—l)AgR+%(VR,Vf)g—i-R(R—,o):O. 3)
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Tracing (2) over i, j,
nR—p)=Af (4)
= /(R—p)dV:lfAde:O. (5)
M

n
M

Integrating (3) over M by (4) we get

/R(R—,o)dV :—%/(VR,Vf)ng

M M
1
=§/RAde
M
n
:E/R(R—p)dv. (6)
M

Since n > 3, by (6),

/R(R—,o)dV:O. (7)
M
By (5) and (7),

/(R—p)de=o.
M

Hence R = p on M and the theorem follows. O
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