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Abstract

Let Γ be a finite connected graph. The (unlabelled) configuration space UCnΓ of n points on Γ is the space of n-element
subsets of Γ . The n-strand braid group of Γ , denoted BnΓ , is the fundamental group of UCnΓ .

We use the methods and results of [Daniel Farley, Lucas Sabalka, Discrete Morse theory and graph braid groups, Algebr.
Geom. Topol. 5 (2005) 1075–1109. Electronic] to get a partial description of the cohomology rings H∗(Bn T ), where T is a tree.
Our results are then used to prove that Bn T is a right-angled Artin group if and only if T is linear or n < 4. This gives a large
number of counterexamples to Ghrist’s conjecture that braid groups of planar graphs are right-angled Artin groups.
c© 2007 Elsevier B.V. All rights reserved.

MSC: Primary: 20F65; 20F36; secondary: 57M15; 55R80

1. Introduction

If Γ is a finite connected graph and n is a natural number, then the unlabelled configuration space of n points
on Γ , denoted UCnΓ , is the space of n-element subsets of Γ , endowed with the Hausdorff topology. The labelled
configuration space CnΓ is the space of n-tuples of distinct elements in Γ . The n-strand braid group of Γ , denoted
BnΓ , is the fundamental group of UCnΓ ; the n-strand pure braid group of Γ , P BnΓ , is the fundamental group of
CnΓ .

Various properties of graph braid groups have been established by other authors. Ghrist showed in [14] that the
spaces CnΓ are K (P BnΓ , 1)s, and that a K (P BnΓ , 1) is homotopy equivalent to a complex of dimension at most k,
where k is the number of vertices in Γ of degree at least 3. He also made the following conjecture:

Conjecture 1.1 ([1,14]). The (pure) braid group of any planar graph is a right-angled Artin group.

Abrams [1] (for all n) and Hu [17] (for the case n = 2) introduced a discretized configuration space DnΓ , and
showed that CnΓ andDnΓ are homotopy equivalent under appropriate hypotheses (which are easy to satisfy). Abrams
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went on to prove that the universal cover of the space DnΓ is a CAT(0) cubical complex. This implies, in particular,
that graph braid groups have solvable word and conjugacy problems [2]. Abrams also showed that P B2(K5) and
P B2(K3,3) are the fundamental groups of closed surfaces, and thus aren’t right-angled Artin groups. This is the
reason for the word “planar” in Conjecture 1.1. Crisp and Wiest [6] have shown that all graph braid groups embed
in right-angled Artin groups, which implies that graph braid groups are linear, bi-orderable, residually finite, and
residually nilpotent. Connolly and Doig [5] showed that the braid group of any linear tree is a right-angled Artin
group. (A tree T is linear if there is an embedded arc which passes through every vertex in T of degree at least 3.)

This paper continues a project begun in [10]. In [10], we used a discrete version of Morse theory (due to
Forman [13]) to simplify the configuration spaces UCnΓ within their homotopy types. Our immediate goal was to
settle Conjecture 1.1. We were able to compute presentations P(BnT ) for all braid groups BnT , where T is a tree; that
is, for all tree braid groups ([10], Theorem 5.3). The generators of P(BnT ) are in one-to-one correspondence with
critical 1-cells of UCnΓ and relators correspond to critical 2-cells. Here “critical” is used in the sense of Forman’s
discrete Morse theory. In [11] it was shown that Hi (UCnT ) (equivalently, Hi (BnT ), since UCnΓ is aspherical for any
graph Γ [1,14]) is a free abelian group of rank equal to the number of critical i-cells in UCnT . It follows from this that
P(BnT ) has the minimum possible number of generators and relators. We were unable to produce counterexamples
to Conjecture 1.1, although the form of the relators in P(BnT ) made a negative answer seem likely for most trees and
most natural numbers n.

Here we get nearly complete information about the mod 2 cohomology rings of tree braid groups. Our results allow
us to prove that most tree braid groups are not right-angled Artin groups (see Theorem 5.11). Thus we produce a large
number of counterexamples to the version of Conjecture 1.1 in which the word “pure” is omitted. (It is worth noting
here that Abrams and Ghrist made the conjecture only for pure braid groups. In this paper, we refer to either version
of Conjecture 1.1 as “Ghrist’s conjecture”. We believe that the analogue of Theorem 5.11 will be true for pure braid
groups.)

The argument is as follows. We first compute the cohomology ring of B4Tmin, where Tmin is the minimal nonlinear
tree. Our calculation shows that B4Tmin is not a right-angled Artin group, since H∗(B4Tmin; Z/2Z) is not the exterior
face ring of a flag complex (see Section 5). If T is any nonlinear tree and n ≥ 4, we embed UC4Tmin into UCnT .
By analyzing the kernel of the map on cohomology, we can conclude that BnT is also not a right-angled Artin group,
since its cohomology ring also fails to be the exterior face ring of a flag complex.

Finally, we note that our description of the mod 2 cohomology rings of tree braid groups is likely to have other
applications. For instance, Michael Farber [9,8] has defined an invariant T C(X) of a topological space X , called the
topological complexity of X , which is an integer measuring the complexity of motion-planning problems of systems
having X as their configuration space. Farber establishes cohomological lower bounds for T C(X) in [9].

This paper is organized as follows. In Section 2 we give a brief description of discrete Morse theory and its
applications to computing homology. In Section 3 we describe Morse matchings on the spaces UCnΓ . In Section 4,
we give a partial description of the mod 2 cohomology ring of any tree braid group. In Section 5, we use the results of
Section 4 and a cohomological argument to determine which tree braid groups are right-angled Artin groups.

2. Background on discrete Morse theory

2.1. Basic definitions

In this subsection, we collect some basic definitions from [10] (see also [3,13], which were the original sources for
these ideas).

Let X be a finite regular CW complex. Let K denote the set of open cells of X . Let K p be the set of open p-cells
of X . For open cells σ and τ in X , we write σ < τ if σ 6= τ and σ ⊆ τ , where τ is the closure of τ , and σ ≤ τ if
σ < τ or σ = τ .

A partial function from a set A to a set B is a function defined on a subset of A, and having B as its target. A
discrete vector field W on X is a sequence of partial functions Wi : Ki → Ki+1 such that:

(1) Each Wi is injective;
(2) if Wi (σ ) = τ , then σ < τ ;
(3) im (Wi ) ∩ dom (Wi+1) = ∅, where im denotes image and dom denotes domain.
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Let W be a discrete vector field on X . A W -path of dimension p is a sequence of p-cells σ0, σ1, . . . , σr such that
if W (σi ) is undefined, then σi+1 = σi ; otherwise σi+1 6= σi and σi+1 < W (σi ). The W -path is closed if σr = σ0, and
non-stationary if σ1 6= σ0. A discrete vector field W is a Morse matching if W has no non-stationary closed paths.

If W is a Morse matching, then a cell σ ∈ K is redundant if it is in the domain of W , collapsible if it is in the
image of W , and critical otherwise. Note that any two of these categories are mutually exclusive by condition (3) in
the definition of discrete vector field.

The ideas “discrete Morse function” and “Morse matching” are largely equivalent, in a sense that is made precise
in [13], p. 131. In practice, we will always use Morse matchings instead of discrete Morse functions in this paper (as
we also did in [10]). A Morse matching is sometimes referred to as a “discrete gradient vector field” in the literature;
in particular, this is the case in [10].

2.2. Discrete Morse theory and homology

The discrete Morse theory sketched in Section 2.1 can be used to compute homology groups. We include only a
brief account, without proofs. More extended expositions can be found in [13] and [12].

Fix an oriented finite regular CW complex X . Let C∗(X) be the cellular chain complex of X . Each chain group
Cn(X) has a distinguished basis consisting of positively oriented n-cells, denoted Bn(X). Let W be a Morse matching,
and define a map Ŵn : Cn(X) → Cn+1(X) as follows:

Ŵn(c) = ±W (c) if c is redundant;
Ŵn(c) = 0 otherwise.

Here the sign is chosen so that the oriented cell c occurs with the coefficient −1 in ∂Ŵn(c) if c is redundant.
Extend linearly to a map Ŵn : Cn(X) → Cn+1(X). Define a chain map fŴ : C∗(X) → C∗(X), called the discrete
flow associated to Ŵ , by setting fŴ = 1 + ∂Ŵ + Ŵ∂ . We usually omit the subscript and simply write f .

The discrete flow f has the following properties:

Lemma 2.1. (1) ( [12,13]). For any finite chain c ∈ C∗(X), there is some m ∈ N such that f m(c) = f m+1(c) = · · ·.
It follows that there is a well-defined chain map f ∞

: C∗(X) → C∗(X).
(2) ( [12]; cf. [13]). If c is any cycle in C∗(X), then there is a unique f -invariant cycle that is homologous to c,

namely f ∞(c). Moreover, f ∞(c) is a linear combination of oriented critical cells and collapsible cells (i.e., any
redundant cell appears with a coefficient of 0).

(3) ( [12]). If c is a collapsible cell, then f ∞(c) = 0. If c is critical, then f ∞(c) = c + (collapsible cells). As a
result, an f -invariant chain is determined by its critical cells, i.e., if c is an f -invariant chain and c = ccrit +ccoll,
where ccrit is a linear combination of critical cells and ccoll is a linear combination of collapsible cells, then

c = f ∞(c) = f ∞(ccrit).

Properties (1)–(3) show that if a finite regular CW complex X is endowed with a Morse matching W , then the
homology groups of X are largely determined by the critical cells of X . We now make this statement more precise.
Fix a Morse matching W . For i ≥ 0, let Mi (X) denote the free abelian group on the set of positively oriented critical i-
cells. Give the collection of abelian groups Mi (X) (i ≥ 0) the structure of a chain complex, called the Morse complex,
by identifying Mi (X) with Ci (X) via the map f ∞. The boundary map ∂̃ in the Morse complex is defined by

∂̃(c) = Π ∂ f ∞(c) (c ∈ Mi (X)) ,

where Π denotes projection onto the factor of Ci−1(X) spanned by the critical i − 1 cells.
We have the following theorem:

Theorem 2.2 ([12,13]). The Morse complex (Mn(X), ∂̃n) and the cellular chain complex (Cn(X), ∂n) have
isomorphic homology groups, by an isomorphism which sends a cycle c from the Morse complex to f ∞(c). �
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3. A Morse matching on the discretized configuration space U DnΓ

3.1. Definitions and an example

Throughout this paper, all graphs are assumed to be finite and connected.
Let Γ be a graph, and fix a natural number n. The labelled configuration space of Γ on n points is the space(

n∏
Γ

)
− ∆,

where ∆ is the set of all points (x1, . . . , xn) ∈
∏n Γ such that xi = x j for some i 6= j . The unlabelled configuration

space of Γ on n points is the quotient of the labelled configuration space by the action of the symmetric group Sn ,
where the action permutes the factors. The braid group of Γ on n strands, denoted BnΓ , is the fundamental group of
the unlabelled configuration space of Γ on n strands. The pure braid group, denoted P BnΓ , is the fundamental group
of the labelled configuration space.

The set of vertices of Γ will be denoted by V (Γ ), and the degree of a vertex v ∈ V (Γ ) is denoted d(v). If a vertex
v is such that d(v) ≥ 3, v is called essential.

Let ∆′ denote the union of those open cells of
∏n Γ whose closures intersect ∆. Let DnΓ denote the space∏n Γ − ∆′. Note that DnΓ inherits a CW complex structure from the Cartesian product, and that a cell in DnΓ has

the form c1 × · · · × cn such that each ci is either a vertex or the interior of an edge, and the closures of the ci are
mutually disjoint. Let UDnΓ denote the quotient ofDnΓ by the action of the symmetric group Sn which permutes the
coordinates. Thus, an open cell in UDnΓ has the form {c1, . . . , cn} such that each ci is either a vertex or the interior
of an edge and the closures are mutually disjoint. The set notation is used to indicate that order does not matter.

Under most circumstances, the labelled (respectively, unlabelled) configuration space of Γ is homotopy equivalent
to DnΓ (respectively, UDnΓ ). Specifically:

Theorem 3.1 ([1]). For any n > 1 and any graph Γ with at least n vertices, the labelled (unlabelled) configuration
space of n points on Γ strong deformation retracts onto DnΓ (UDnΓ ) if

(1) each path between distinct vertices of degree not equal to 2 passes through at least n − 1 edges; and
(2) each path from a vertex to itself which is not null-homotopic in Γ passes through at least n + 1 edges.

A graph Γ satisfying the conditions of this theorem for a given n is called sufficiently subdivided for this n. It is
clear that every graph is homeomorphic to a sufficiently subdivided graph, no matter what n may be.

Throughout the rest of the paper, we work exclusively with the space UDnΓ where Γ is sufficiently subdivided for
n. Also from now on, “edge” and “cell” will refer to closed objects.

Choose a maximal tree T in Γ . Edges outside of T are called deleted edges. Pick a vertex ∗ of valence 1 in T to be
the root of T . Choose an embedding of the tree T into the plane. We define an order on the vertices of T (and, thus,
on vertices of Γ ) as follows. Begin at the basepoint ∗ and walk along the tree, following the leftmost branch at any
given intersection, and consecutively number the vertices in the order in which they are first encountered. (When you
reach a vertex of degree one, turn around.) The vertex adjacent to ∗ is assigned the number 1. Note that this numbering
depends only on the choice of ∗ and the embedding of the tree. Let ι(e) and τ(e) denote the endpoints of a given edge
e of Γ . Without loss of generality, we orient each edge to go from ι(e) to τ(e), and so that ι(e) > τ(e). (Thus, if
e ⊆ T the geodesic segment [ι(e), ∗] in T must pass through τ(e).)

We use the order on the vertices to define a Morse matching W on U DnΓ . We begin with some definitions which
will help to classify cells of U DnΓ as critical, collapsible, or redundant.

Let c = {c1, . . . , cn−1, v} be a cell in UDnΓ containing a vertex v. If v = ∗, then v is blocked in c; otherwise, let
e be the unique edge in T such that ι(e) = v. If e ∩ ci 6= ∅ for some i ∈ {1, . . . , n − 1}, we also say v is blocked in c;
otherwise, v is unblocked. Equivalently, v is unblocked in c if and only if {c1, . . . , cn−1, e} is also a cell in UDnΓ . If
c = {c1, . . . , cn−1, e}, the edge e is disrespectful in c if

(1) there is a vertex v in c such that
(a) v is adjacent to τ(e), and
(b) τ(e) < v < ι(e), or

(2) e is a deleted edge.
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Fig. 1. Three different cells of UDn T .

Otherwise, the edge e is respectful in c. Conceptually, think of the edge e as representing a strand in c moving from
ι(e) to τ(e). Then e is disrespectful in c if that strand is moving out of turn by not respecting the order on vertices of
T . In the paper [10], disrespectful was referred to by “non-order-respecting”.

It will occasionally be useful to have another definition. If v is a vertex in the tree T , we say that two vertices v1
and v2 lie in the same direction from v if the geodesics [v, v1], [v, v2] ⊆ T start with the same edge. Thus, there are
deg(v) directions from a vertex of degree deg(v) in T . We number these directions 0, 1, 2, . . . , deg(v)− 1, beginning
with the direction represented by [v, ∗], numbered 0, and proceeding in clockwise order. We will sometimes write
g(v1, v2) (where v1 6= v2) to refer to the direction from v1 to v2.

Suppose that we are given a cell c = {c1, . . . , cn} in U DnΓ . Assign each cell in c a number as follows. A vertex of
c is given the number from the above traversal of T . An edge e of c is given the number for ι(e). Arrange the cells of
c in a sequence S, from the least numbered to the greatest numbered. The following definition of a Morse matching
W is equivalent to the definition of W from [10], by Theorem 3.6 of the same paper.

Definition 3.2. We define a Morse matching W on UDnΓ as follows:

(1) If an unblocked vertex occurs in S before all of the respectful edges in c (if any), then W (c) is obtained from
c by replacing the minimal unblocked vertex v ∈ c with e(v), where e(v) is the unique edge in T satisfying
ι(e(v)) = v. In particular, c is redundant.

(2) If a respectful edge occurs before any unblocked vertex, then c ∈ im W , i.e., c is collapsible. The cell W −1(c) is
obtained from c by replacing the minimal respectful edge e with ι(e).

(3) If there are neither unblocked vertices nor respectful edges in c, then c is critical.

Example 3.3. Fig. 1 depicts three different cells of U D4Tmin for the given tree Tmin. In each case, the vertices and
edges of the given cell are numbered from least to greatest, in the sense mentioned above. (The numbering of these
cells differs from the above-described order, but this doesn’t matter since the ordering remains the same. For instance,
the vertices and edges in the cell pictured in Fig. 1(a) should be numbered 10, 14, 16, and 19, instead of (respectively)
1, 2, 3, 4.)

The vertex numbered 1 in (a) is blocked. The vertex numbered 2 is unblocked, so the cell in (a) is redundant. Note
that edge 3 is respectful, and edge 4 is disrespectful. We get W (c1) by replacing vertex 2 with the unique edge in T
having vertex 2 as its initial vertex. In terms of the usual ordering, this is the edge [v14, v13].

Let c2 denote the cell depicted in (b). The vertex numbered 1 in c2 is blocked. The edge numbered 2 is respectful,
so c2 is collapsible. Note that vertex 3 is blocked and edge 4 is disrespectful. The description of W −1 above implies
that W −1(c2) is obtained from c2 by replacing edge 2 with its initial vertex.

The cell depicted in (c) is critical since vertices 1 and 2 are both blocked, and the edges 3 and 4 are disrespectful.

4. The mod 2 cohomology ring of UDnT

In this section, we give a partial description of the mod 2 cohomology ring of UDnT , where n is an arbitrary natural
number and T is an arbitrary tree. The method is to map UDnT to a new complex ÛDnT , which is a subcomplex of
a high-dimensional torus. The induced map q∗

: H∗(ÛDnT ) → H∗(UDnT ) turns out to be surjective. This gives
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us an easy way to compute the cup product: we take two cohomology classes in H∗(UDnT ), look at their preimages
under the map q∗, cup these preimages using known facts about the cohomology rings of subcomplexes of tori, and
then push the product back over into H∗(UDnT ).

The complex ÛDnT can be described very simply: it is the result of identifying the opposite sides of all of the
cubes in UDnT . Thus ÛDnT consists of a union of (potentially singular) tori, one for each cell of UDnT .

It is by no means clear, however, and false in general, that identifying all opposite faces in a CAT(0) cubical
complex will result in a subcomplex of a torus. For this reason, we give a very careful (and somewhat abstract) proof
that ÛDnT has the properties we want.

4.1. An equivalence relation on the cells of UDnT

Let E(c) denote the set of edges of the i-cell c. We abuse the notation by also letting E(c) denote the subset⋃
e∈E(c) e of T .
Let c and c′ be i-cells (0 ≤ i ≤ n) of UDnT . Say c = {e1, . . . , ei , vi+1, . . . , vn} and c′

=

{e′

1, . . . , e′

i , v
′

i+1, . . . , v
′
n}, where E(c) = {e1, . . . , ei } and E(c′) = {e′

1, . . . , e′

i }. Write c ∼ c′ if

(1) E(c) = E(c′), and
(2) for any connected component C of T − E(c),

|C ∩ {vi+1, . . . , vn}| =
∣∣C ∩

{
v′

i+1, . . . , v
′
n
}∣∣ .

Let K be the set of open cells in UDnT , as in Section 2.1. It is rather clear that ∼ is an equivalence relation on K . Let
[c] denote the equivalence class of a cell c.

We define a partial order ≤ on the equivalence classes based on the partial order on cells, writing [c] ≤ [c1] if there
exist representatives ĉ ∈ [c], ĉ1 ∈ [c1] such that ĉ ≤ ĉ1. It is slightly non-trivial to verify that ≤ is transitive on the
equivalence classes. Suppose that [c1] ≤ [c2] and [c2] ≤ [c3]. There are representatives ĉ1 ∈ [c1], ĉ2, c̃2 ∈ [c2], and
c̃3 ∈ [c3] such that ĉ1 ≤ ĉ2 and c̃2 ≤ c̃3. Since ĉ2 ∼ c̃2, it is possible, by moving the vertices of ĉ2 one at a time along
edges of T , and leaving all edges fixed, to arrive at c̃2. Every vertex of ĉ2 is also a vertex of ĉ1; if a vertex of ĉ1 is also
in ĉ2, then move it as above. Call the result of doing these moves c̃1. Then c̃1 ∼ ĉ1 and it is clear that c̃1 ≤ c̃2 ≤ c̃3,
so transitivity of ≤ follows.

We state the following lemma in terms of a tree T , but we note that with the appropriate definitions the statements
in parts (1), (4), and (5) may be generalized to arbitrary graphs.

Lemma 4.1 (Properties of ∼ and ≤). Let T be a finite connected tree.

(1) If c and c′ are i-cells of UDnT with E(c) = E(c′) and the equivalence classes [c], [c′
] have a common upper

bound [c̃] with respect to ≤, then [c] = [c′
].

(2) Let c1, . . . , c j be 1-cells in UDnT from distinct equivalence classes. If {[c1], . . . , [c j ]} has an upper bound with
respect to ≤, then {[c1], . . . , [c j ]} has a least upper bound with respect to ≤. Furthermore, if e1, . . . , e j are edges
of T satisfying ei ∈ ci for 1 ≤ i ≤ j , then e1, . . . , e j are pairwise disjoint.

(3) If c̃ is a j-cell in UDnT , then there is a unique collection {[c1], . . . , [c j ]} of equivalence classes of 1-cells such
that [c̃] is the least upper bound of {[c1], . . . , [c j ]} with respect to ≤.

(4) If c is a critical cell in UDnT and [c′
] ≤ [c], then c′

∼ ĉ for some critical cell ĉ.
(5) If c is a critical cell in UDnT and c′

∼ c, then c′
= c or c′ is redundant.

Proof. (1) Let [c̃] be an equivalence class of j-dimensional cells in UDnT , where c̃ = {e1, . . . , e j , v j+1, . . . , vn}. It
is enough to show that, for any c with [c] ≤ [c̃], the equivalence class [c] is uniquely determined by the collection
{ei1 , . . . , eik } of all edges common to both c̃ and c.

An arbitrary face c of c̃ is determined by selecting a subset of the edges {e1, . . . , e j } and replacing each edge of this
subset by either its initial or its terminal vertex. By an argument similar to that establishing the transitivity of ≤, the
equivalence class of c depends neither on the representative chosen from [c̃] nor on the choice involved in replacing an
edge with one of its endpoints. Thus, given c̃ with [c] ≤ [c̃], [c] is uniquely determined by the edges c has in common
with c̃ — i.e. [c] is uniquely determined by E(c). This proves part (1).

(2) Suppose that [c] is an upper bound for {[c1], . . . , [c j ]} where the [c1], . . . , [c j ] are all distinct. For i ∈

{1, . . . , j}, let ei be the unique edge in ci . Certainly, {e1, . . . , e j } ⊆ c. Let c′ be a cell given by replacing any extra
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edges e ∈ c − {e1, . . . , e j } with either ι(e) or τ(e). Then [ci ] ≤ [c′
] for i ∈ {1, . . . , j}, so [c′

] is an upper bound for
{[c1], . . . , [c j ]}. It follows that given any upper bound [c] for {[c1], . . . , [c j ]} there exists another upper bound [c′

]

such that [c′
] ≤ [c] and E(c′) = {e1, . . . , e j }.

To prove the first claim of part (2), it remains to be shown that there is only one upper bound [c′
] such that

E(c′) = {e1, . . . , e j }. Suppose that [c′
] and [c′′

] are both such upper bounds for {[c1], . . . , [c j ]}. Thus E(c′) =

E(c′′) = {e1, . . . , e j }. Fix an integer i , 1 ≤ i ≤ j . Let C be a connected component of T − ei , and assign to C the
integer fei (C) defined by:

fei (C) =
(
#{vertices or edges of c′ contained in C}

)
−
(
#{vertices or edges of c′′ contained in C}

)
.

It must be that fei (C) = 0 for every i and every component C of T − ei . For if not, then for some i there exist
distinct equivalence classes [c′

0], [c
′′

0 ] of 1-cells with E(c′

0) = E(c′′

0) = {ei } such that [c′

0] ≤ [c′
] and [c′′

0 ] ≤ [c′′
]. But

by part (1), we must have that [ci ] = [c′

0] since [c′
] is a common upper bound for [ci ] and [c′

0]. Similarly, [ci ] = [c′′

0 ].
This means that [c′

0] = [c′′

0 ], which is a contradiction, so indeed fei (C) = 0 for any i and any C .
If [c′

] 6= [c′′
], then c′ and c′′ have a different number of cells in some connected component of T − E(c′). Fix a

connected component C of T − E(c′). Let ei1 , . . . , eil be the edges of the collection {e1, . . . , e j } that have exactly one
endpoint in the component C . We analyze the connected components of T −

⋃l
k=1 eik . These connected components

are either C itself, or contain a single endpoint from exactly one of the edges ei1 , . . . , eil . (Note: here we have just
used the fact that T is a tree for the first time.) If a connected component C ′ of T −

⋃l
k=1 eik is not C itself, and

contains an endpoint of eim , say, then it contains equal numbers of cells from c′ and c′′ by the claim, since C ′ is in
fact a connected component of T − eim . (This again uses the fact that T is a tree.) It follows by process of elimination
that C contains equal numbers of cells, necessarily vertices, from both c′ and c′′. Since C was an arbitrary connected
component of T − E(c′), it must be that [c′

] = [c′′
].

We now prove the second claim. Suppose that [c1], . . . , [c j ] are distinct equivalence classes of 1-cells having
a common upper bound [c]. Part (1) shows that ei1 6= ei2 for two distinct equivalence classes [ci1 ], [ci2 ] ∈

{[c1], . . . , [c j ]}. If ei1 ∈ ci1 , ei2 ∈ ci2 , ei1 ∩ ei2 6= ∅, then ei1 , ei2 ∈ c, which is impossible since c is a cell of
UDnT and ei1 ∩ ei2 6= ∅.

(3) Let S = {[c] | dim c = 1 and [c] ≤ [c̃]}. Part (1) implies that an element of S is uniquely determined by a
choice of edge from c̃. Thus |S| = j . The fact that [c̃] is the least upper bound of S follows from the description of
the least upper bound in (2).

(4) If c is a critical cell of UDnΓ and [c1] < [c], then there is some representative of the equivalence class [c1] –
say c1 – such that c1 < c. For, let c′

1 ∈ [c1] and c′
∈ [c] be such that c′

1 < c′. Then c1 (respectively, c) is the result of
moving all vertices in c′

1 (respectively, c′) toward ∗ until they are blocked. Thus each edge in c1 is an edge in c, and
each vertex in c is a vertex in c1. It follows that no edges in c1 are respectful. Now repeatedly move each unblocked
vertex of c1 toward ∗ until it is blocked. This operation clearly preserves ∼, and the resulting cell is critical, having
no unblocked vertices and no respectful edges.

(5) Suppose c is critical and c1 ∼ c. Suppose first that c1 has no respectful edges. If c1 has unblocked vertices, then
it follows that c1 is redundant. If c1 has no unblocked vertices, then it is critical by Definition 3.2. In fact c1 = c in
this case, since both cells involve the same edges, the vertices in both are blocked, and each component of T − E(c)
contains the same number of vertices from each of c1 and c.

Now suppose that c1 has respectful edges. Let e be the smallest such (recall that “smallest” means that ι(e) is
minimal). Since the edge e is disrespectful in c, there is some vertex v ∈ c adjacent to τ(e) and satisfying

0 < g(τ (e), v) < g(τ (e), ι(e)).

Let C be the connected component of T − E(c) containing τ(e) and lying in the direction g(τ (e), v) from τ(e). This
component contains vertices of c and thus vertices of c1, since c1 ∼ c. If C contains unblocked vertices of c1, then
any such vertex v1 satisfies v1 < ι(e), and so it follows that c1 is redundant. If c contains only blocked vertices, then
it follows that the vertex v is a vertex of c1, whence the edge e is disrespectful in c1, a contradiction. �

4.2. The complex ÛDnT

Define a complex ÛDnT as follows. For each equivalence class [c] of 1-cells in the set K of open cells of UDnT ,
introduce a copy of S1, denoted S1

[c]. Give S1
[c] a cell structure with one open 1-cell, denoted e1

[c], and one 0-cell.
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Form the finite product
∏

[c] S1
[c]. Since we are interested in giving each cell an explicit characteristic map, we order

the factors in the product as follows. Assign to each equivalence class [c] of 1-cells the number N ([c]) of the vertex
ι(e), where e is the unique edge satisfying e ∈ c. This numbering of equivalence classes is well-defined (though not
one-to-one). Arrange the factors of

∏
[c] S1

[c] so that if N ([c1]) < N ([c2]), then the factor S1
[c1]

occurs before S1
[c2]

.
(This arrangement of factors is not unique.)

Since each 1-cell of this product corresponds naturally to an equivalence class [c] of 1-cells in UDnT , each i-cell
corresponds to a collection {[c1], . . . , [ci ]} of (distinct) equivalence classes of 1-cells. We obtain the space ÛDnT
by throwing out an open i-cell {[c1], . . . , [ci ]} if {[c1], . . . , [ci ]} has no upper bound. If {[c1], . . . , [ci ]} has an upper
bound, then it has a least upper bound [c], and we label the corresponding i-cell by [c]. Note that, by Lemma 4.1(3),
the equivalence classes [c] are in one-to-one correspondence with cells of ÛDnT , and the dimension of the cell c of
UDnT is the same as that of the cell labelled [c] in ÛDnT .

If R is a field, then the exterior algebra ([16], p. 217) on a set {v1, v2, . . . , vn+1}, denoted ΛR[v1, . . . , vn+1], is the
R-module having relations viv j = −v jvi and v2

i = 0. The products vi1vi2 . . . vi j (0 ≤ j ≤ n; i1 < i2 < · · · < i j )
form a basis. The empty product is the multiplicative identity.

For any equivalence class [c] of j-cells, let φ̂[c] : C∗( ˆUDnT ) → Z/2Z denote the j-cocycle satisfying
φ̂[c]([c]) = 1 and φ̂[c]([c′

]) = 0 for all [c′
] 6= [c]. (Here C j ( ˆUDnT ) denotes the free abelian group generated by

oriented j-cells of ˆUDnT . Note that φ̂[c] is necessarily a cocycle, since all of the boundary maps in the cellular chain
complex of a subcomplex of

∏
S1 are 0.)

Proposition 4.2. The space ÛDnT is a CW complex. The mod 2 cohomology ring H∗(ÛDnT ; Z/2Z) is isomorphic
to

ΛZ/2Z [[c1], . . . , [ck]] /I,

where {[c1], . . . , [ck]} is the collection of all equivalence classes of 1-cells in UDnT , and I is the ideal generated by
the set of all monomial terms [ci1 ] · [ci2 ] · · · · · [cim ] where {[ci1 ], . . . , [cim ]} has no upper bound.

The isomorphism sends the j-cocycle φ̂[c] to the product [ci1 ] · [ci2 ] · · · · · [ci j ], where {[ci1 ], . . . , [ci j ]} is the unique
collection with least upper bound [c] as in Lemma 4.1(3).

The elements φ̂[c] form a basis for the cohomology as [c] ranges over all possible equivalence classes.

Proof. The complex ÛDnT inherits a cell structure from
∏

[c] S1
[c]. To prove that ÛDnT is a CW complex, we need

to verify that, for every open cell in ÛDnT , the attaching map to
∏

[c] S1
[c] also maps into ÛDnT . This means we must

show that if an open cell {[c j1 ], . . . , [c jl ]} is thrown out of the product
∏

[c] S1
[c], then so is any other open cell having

{[c j1 ], . . . , [c jl ]} as a face. By definition, if the cell {[c j1 ], . . . , [c jl ]} is thrown out, the collection {[c j1 ], . . . , [c jl ]} has
no upper bound. Any cell having {[c j1 ], . . . , [c jl ]} as a face must be labelled by a collection S of equivalence classes
of 1-cells satisfying {[c j1 ], . . . , [c jl ]} ⊆ S. But as {[c j1 ], . . . , [c jl ]} has no upper bound, S can have no upper bound.
Since S has no upper bound, by the definition of ÛDnT the open cell labelled S is also thrown out of the product, as
required.

The remaining statements then follow easily from the description of ÛDnT as a subcomplex of
∏

[c] S1
[c], and from

the description in [16] (p. 227) of the cohomology rings of subcomplexes of the torus. �

4.3. A map q : UDnT → ÛDnT and the induced map on cohomology

For each edge e in the tree T , choose a characteristic map he : [0, 1] → e, such that he(0) = ι(e) and he(1) = τ(e).
These maps induce characteristic maps on the cells of UDnT as follows. Let c = {e1, . . . , ei , vi+1, . . . , vn} be an
i-cell of UDnT , and suppose without loss of generality that ι(e1) < ι(e2) < · · · < ι(ei ). Define the characteristic
map hc : [0, 1]

i
→ c by

hc(t1, . . . , ti ) = {he1(t1), . . . , hei (ti ), vi+1, . . . , vn}.

Note that hc(t1, . . . , ti ) is an n-element subset of T here, rather than an n-tuple of cells in T . The map hc is a
homeomorphism.
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Fig. 2. Defining the map q .

We now choose characteristic maps for the cells of ÛDnT . Begin by choosing a characteristic map h[c] :

[0, 1] → S1
[c] for each 1-cell e1

[c]. Suppose that [c] is the label of an i-dimensional cell in ÛDnT . Thus, [c] is
the least upper bound of a collection {[c1], . . . , [ci ]} of distinct equivalence classes of 1-cells. If e1, . . . , ei are
the unique edges satisfying e j ∈ c j (1 ≤ j ≤ i), then e1, . . . , ei are pairwise disjoint by Lemma 4.1(2). In
particular, the natural numbers N ([c1]), . . . , N ([ci ]) are all different. We assume, without loss of generality, that
N ([c1]) < · · · < N ([ci ]). The characteristic map for the cell [c] in ÛDnT is ĥ[c] : [0, 1]

i
→ ei

[c], defined by
ĥ[c](t1, . . . , ti ) = (h[c1](t1), . . . , h[ci ](ti )), where the value of ĥ[c](t1, . . . , ti ) on each omitted factor [ĉ], where [ĉ] is
an equivalence class of 1-cells, is always assumed to be the unique vertex of S1

[ĉ].

Now we are ready to define the map q : UDnT → ÛDnT . Consider the diagram in Fig. 2.
The vertical arrow is a quotient map, so, by a well-known principle (e.g., [7], Theorem 3.2), there will exist a

well-defined map q making the above diagram commute if
∐

c∈K ĥ[c] is constant on point inverses of
∐

c∈K hc.

Proposition 4.3. There is a well-defined map q : UDnT → ÛDnT making the above diagram commute. The map
q∗

: H∗(ÛDnT ; Z/2Z) → H∗ (UDnT ; Z/2Z) sends φ̂[c] to the cohomology class of φ[c] ∈ C∗ (UDnT ; Z/2Z),
where φ[c] is the cellular cocycle satisfying:

φ[c] (c̃) = 1 if c̃ ∼ c

φ[c] (c̃) = 0 otherwise.

Proof. We have to show that
∐

c∈K ĥ[c] is constant on point inverses of
∐

c∈K hc. For this, it is sufficient to show
that ĥ[c′] ◦ h−1

c′ = ĥ[c] ◦ h−1
c |c′ , where c′ is a codimension-1 face of c. We let c be a j-dimensional cell in UDnT ,

say c = {e1, . . . , e j , v j+1, . . . , vn}, where the edges ei are arranged in order. Assume, without loss of generality, that
c′

= {ι(e1), e2, . . . , e j , v j+1, . . . , vn}.
Choose a point x ∈ c′. (Here we really mean a point in the cell c′, rather than one of

the “members” ι(e1), e2, . . . , e j , v j+1, . . . , vn of c′.) Suppose that x = hc′(t1, . . . , t j−1), i.e., x =

{ι(e1), he2(t1), . . . , he j (t j−1), v j+1, . . . , vn}.

ĥ[c′] ◦ h−1
c′ (x) = ĥ[c′](t1, . . . , t j−1)

= (h[c′

1]
(t1), . . . , h[c j−1](t j−1)).

ĥ[c] ◦ h−1
c (x) = ĥ[c](0, t1, . . . , t j−1)

=
(
h[c1](0), h[c2](t1), . . . , h[c j ](t j−1)

)
=
(
h[c2](t1), . . . , h[c j ](t j−1)

)
.

For this last equality, recall that h[c1](0) is the vertex of S1
[c1]

, and we omit such factors for the sake of simplicity.
Now [c′

i ], by definition, is the unique equivalence class of 1-cells satisfying: (i) ei+1 ∈ c′

i , and (ii) [c′

i ] ≤ [c]. Note
that [ci+1] has the same properties, so [c′

i ] = [ci+1]. It follows that the map q exists.
The remaining statements about cohomology follow easily from the description of the map q : UDnT → ÛDnT .

The main point is that the interior of a cell c in UDnT is mapped homeomorphically to the interior of [c], and thus
the mod 2 mapping number of c with [c] is equal to 1. �

To describe the mod 2 cohomology ring of UDnT , we will need to recall a result from [11]:

Theorem 4.4 ([11], Theorem 3.7). The boundary maps in the Morse complex (M∗(UDnT ), ∂̃) are all zero. In
particular, Hi (UDnT ) is a free abelian group of rank equal to the number of critical i-cells in UDnT . �
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By Lemma 2.1, we obtain explicit cycles in Ci (UDnT ), the i th cellular chain group of UDnT , by applying the map
f ∞ to any linear combination of critical i-cells. A collection of representatives for a distinguished basis of the cellular
i-dimensional homology is thus { f ∞(c) | c is a critical i-cell}. For the sake of simplicity in notation, we express a
cellular homology class in H∗(UDnT ) as a linear combination Σai ci of critical cells ci , as opposed to f ∞(Σai ci ).
Identify H i (UDnT ; Z/2Z) with Hom(Hi (UDnT ); Z/2Z) by the universal coefficient isomorphism. Let c∗ denote
the dual of a critical cell c.

Proposition 4.5. (1) If c is a critical cell in UDnT , then q∗(φ̂[c]) = c∗.
(2) Let c be a critical cell in UDnT . If [c] is the least upper bound of {[c1], . . . , [ci ]}, where the [c1], . . . , [ci ] are

distinct equivalence classes of 1-cells, then, without loss of generality, c1, . . . , ci are critical and

c∗

1 ∪ · · · ∪ c∗

i = c∗.

(3) If [c1], . . . , [ci ] are distinct equivalence classes of 1-cells having the least upper bound [c], then[
φ[c1]

]
∪ · · · ∪

[
φ[ci ]

]
=
[
φ[c]

]
.

If [c1], . . . , [ci ] have no upper bound, then the above cup product is 0.

Proof. (1) By Proposition 4.3, φ[c] is a cocycle representative of q∗(φ̂[c]), where φ[c](c̃) = 1 if c̃ ∼ c, and φ[c](c̃) = 0
otherwise. Note that, by Lemma 4.1(5), the support of φ[c] consists of redundant cells, and a single critical cell (c
itself), but no collapsible cells.

We evaluate the cohomology class of φ[c] on a basis for Hi (UDnT ) consisting of critical cells c1, . . . , c j . As c is
the unique critical cell in the support of φ[c], for a critical 1-cell ck (viewed as a homology class), φ[c](ck) = 1 if and
only if ck = c. The statement of (1) follows.

(2) The statement that c1, . . . , ci may be chosen to be critical follows from Lemma 4.1(4). By Proposition 4.2,
φ̂[c] = φ̂[c1] ∪ · · · ∪ φ̂[ci ] in H∗(ÛDnT ; Z/2Z). By (1), the statement of (2) follows.

(3) This follows from applying Propositions 4.2 and 4.3. �

4.4. A computation of H∗(UD4Tmin; Z/2Z)

Let Tmin be the tree depicted in Fig. 3. The tree Tmin is the tree, unique up to homeomorphism, with the fewest
number of essential vertices which is not ‘linear’: i.e., the vertices of degree 3 or more in Tmin do not all lie on a single
embedded line segment. We compute the mod 2 cohomology ring of UD4Tmin as an application of the ideas of this
section. The results will be used in the proof of Theorem 5.11.

To begin, we will need to compute the integral homology groups of UD4Tmin. According to Proposition 4.1 of [11],
we have

H0(UD4Tmin) ∼= Z, H1(UD4Tmin) ∼= Z24

H2(UD4Tmin) ∼= Z6, Hn(UD4Tmin) ∼= 0 (n ≥ 3).

We also need to describe the critical cells c, which are determined by the following choices. First, choose the
locations of the edges of c. The requirement that the edges in c be disrespectful means that there are only four
possibilities: [v3, v7], [v9, v19], [v12, v16], and [v21, v25]. We let ek denote the unique edge in T having vk as its initial
vertex. With this notation, we can rewrite the four edges above as e7, e19, e16, and e25, respectively. A choice of n
edges from this collection, together with the requirement that the edges be disrespectful, forces n vertices also to be
in c. More specifically, v4 ∈ c if e7 ∈ c, v10 ∈ c if e19 ∈ c, v13 ∈ c if e16 ∈ c, and v22 ∈ c if e25 ∈ c. It immediately
follows that there are exactly

(
4
2

)
= 6 critical 2-cells and no critical n-cells for n ≥ 3, so H2(UD4Tmin) ∼= Z6 and

H3(UD4Tmin) ∼= 0 if n ≥ 3.
If c is a critical 1-cell, there is another choice to make. We have determined the location of an edge e and a vertex v.

The locations of the other two vertices are completely determined by specifying how many are in each component of
T − {τ(e)}, since all vertices in c are blocked. There are 3 distinguishable components of T − {τ(e)} and 2 remaining
indistinguishable vertices, which make 6 possible ways. There are thus a total of 24 critical 1-cells c, since there are 4
possible choices for the edge e in c, 6 choices for the remaining vertices and these choices are independent.

Finally, we note that there is only one critical 0-cell.
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Fig. 3. The minimal nonlinear tree Tmin.

To understand the multiplication in H∗(UD4Tmin; Z/2Z), it is clearly enough to understand the product of any two
elements c∗

1 , c∗

2 (c1 and c2 are critical 1-cells) of the standard dual basis for H1(UD4Tmin; Z/2Z). Proposition 4.5(1)
says that c∗

1 = [φ[c1]] and c∗

2 = [φ[c2]], and Proposition 4.5(3) says that [φ[c1]]∪[φ[c2]] = 0 if c1 ∼ c2, or if {[c1], [c2]}

has no upper bound. We are therefore led to determine which equivalence classes [c] of 2-cells can be the upper bound
for a pair of distinct equivalence classes of 1-cells [c1] and [c2], where c1 and c2 are critical.

For this, it will be helpful to have a definition. If c is a j-cell in UDnΓ , and c′ is obtained from c by replacing
each member of some collection {ei1 , . . . , eim } ⊆ E(c) of edges with either its initial or its terminal vertex, then c′ is
the result of breaking the edges {ei1 , . . . , eim } in c. We note that the choice of replacing a given edge eil with τ(eil )

or ι(eil ) is made independently for each edge, and these choices do not affect [c′
]. In fact, by Lemma 4.1(1), [c′

] is
completely determined by its edges, since [c′

] ≤ [c]. Note also that c′ is a codimension-m face of c, and conversely if
c′ is a codimension-m face of c then c′ is obtained from c by breaking m edges.

Suppose that [c] is the least upper bound for two distinct equivalence classes [c1] and [c2], where c1 and c2 are
critical 1-cells in UD4Tmin. For i = 1, 2, let ei be the unique edge in ci . (Note: this is inconsistent with the convention
that ι(ek) = vk , but should cause no confusion.) By Lemma 4.1(2), e1 and e2 are disjoint edges, and, by the above
description of critical cells in UD4Tmin, {e1, e2} ⊆ {e7, e19, e16, e25}. Thus, if [c] is an upper bound for [c1] and
[c2] where c1 and c2 critical, we have: (i) the edges of c, namely e1 and e2, are distinct elements of the above 4-
element set, and (ii) the cell resulting from breaking either of the edges e1, e2 in c must be equivalent to a critical cell.
Reformulating slightly, we get the following conditions, which must be satisfied by c:

(1) {e1, e2} ⊆ {e7, e19, e16, e25}.
(2) If e7 ∈ c, then v4, v5, or v6 is in c.
(3) If e16 ∈ c, then v13, v14, or v15 is in c.
(4) If e25 ∈ c, then v22, v23, or v24 is in c.
(5) If e19 ∈ c, then either e16 ∈ c or at least one element of {v10, . . . , v18} is in c.

In light of (3), (5) may be replaced with:

(5′) If e19 ∈ c, then at least one element of {v10, . . . , v18} is in c.

A total of 10 distinct equivalence classes of 2-cells have representatives c satisfying (1)–(5). Representatives of
these classes are:

(1) {e7, e19, v4, v10} (6) {e19, e16, v13, v14}

(2) {e7, e16, v4, v13} (7) {e19, e16, v13, v17}
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Fig. 4. A preliminary picture of the relations in H∗
(
UDn Tmin;Z/2Z

)
. The numbers on the edges refer to the numbering of 2-cells in the text. The

vertices represent duals of critical 1-cells. Here, B denotes the critical 1-cell {e19, v12, v11, v10}, B′ denotes the critical 1-cell {e19, v11, v10, ∗},
and C denotes the critical 1-cell {e16, v13, v1, ∗}.

(3) {e7, e25, v4, v22} (8) {e19, e16, v13, v10}

(4) {e16, e25, v13, v22} (9) {e19, e16, v13, v20}

(5) {e19, e25, v10, v22} (10) {e19, e16, v13, ∗}.

The reason is that a choice of edges e1, e2 from {e7, e16, e19, e25} completely determines [c], by (1)–(5), unless
{e1, e2} = {e16, e19}. The first five edges listed above result from the five cases in which {e1, e2} 6= {e16, e19}. If
{e1, e2} = {e16, e19}, then one of the vertices of c must be v13, v14 or v15 (by (3)), but the other vertex may be chosen
from any of the five remaining components of Tmin − (e16 ∪ e19), and this accounts for the last five 2-cells above.

Fig. 4 depicts these 10 equivalence classes [c] of 2-cells as line segments whose endpoints are the equivalence
classes [c1], [c2] of 1-cells (c1, c2 critical) satisfying [c1], [c2] ≤ [c].

It follows from what we’ve said so far that there are only 10 equivalence classes [c′
] of 1-cells such that: (1) [c′

]

contains a critical 1-cell, and (2) there is another distinct equivalence class [c′′
], also containing a critical 1-cell, such

that {[c′
], [c′′

]} has an upper bound. By Proposition 4.5(1) & (3), these equivalence classes correspond to the only
elements of the standard basis for H1(UD4Tmin; Z/2Z) which might have non-trivial cup products. In fact, checking
labels of edges, it is not difficult to see that cases (1)–(5) and (8) are all (distinct) critical cells, and thus correspond to
linearly independent elements of the standard basis for H2(UD4Tmin; Z/2Z). We now consider the remaining edges.

Lemma 4.6. If ĉ is one of the 2-cells (6), (7) or (9), then φ[ĉ] represents 0 in cohomology.

Proof. Consider the following cochains α6, α7, α9 : C1(UD4Tmin) → Z/2Z, depicted pictorially in Fig. 5. The
cochain α6 sends a given 1-cell c to 1 if and only if: (1) c contains the edge e16; (2) c contains exactly one element
from {∗, v1, . . . , v11}, and (3) c contains exactly two elements from {v13, v14, v15}. (Of course, α6 sends any other
1-cell to 0.) The cochain α7 sends a given 1-cell c to 1 if and only if c satisfies conditions (1) and (2) in the definition
of α6, as well as: (3′) c contains exactly one element from {v17, v18}, and exactly one element from {v13, v14, v15}.
The cochain α9 sends a given 1-cell c to 1 if and only if c contains exactly two elements from the set {v19, . . . , v27},
exactly one element from the set {v13, v14, v15}, and the edge e16.

We leave it as an exercise to show that the coboundaries δ(α6), δ(α7), and δ(α9), are precisely φ[ĉ], where ĉ is the
cell (6), (7), and (9), respectively. �

Lemma 4.7. Let c1 be the cell labelled (8), and let c2 be the cell labelled (10). The cocycles φ[c1] and φ[c2] are
cohomologous in H1(UD4Tmin; Z/2Z).
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(a) α6. (b) α7. (c) α9. (d) α10.

Fig. 5. The 1-cochains α6, α7, α9, and α10 used in Lemmas 4.6 and 4.7. Each 1-cochain maps a given 1-cell c to 1 in Z/2Z if and only if c contains
the edge shown and has exactly as many strands specified in each circled portion of the tree.

Fig. 6. A picture of the cohomology ring H∗
(
UDn Tmin;Z/2Z

)
. The solid edges represent duals of critical 2-cells; the vertices represent (sums

of) duals of critical 1-cells. Two vertices cup to the solid edge connecting them, or to 0 if there is no such edge.

Proof. Consider the 1-cochain α10 defined as follows and depicted in Fig. 5. Let α10 be the 1-cochain which sends a
1-cell c to 1 if and only if: (1) c contains the edge e16; (2) c contains exactly one of the vertices {v13, v14, v15}, and
(3) c contains exactly two vertices from {∗, v1, . . . , v11}.

We leave it as an exercise to show that δ(α10) = φ[c1] + φ[c2]. �

We now interpret Fig. 4 as a multiplication table for the cup product. If we let dashed edges correspond to 0
products and perform an elementary row operation, we arrive at Fig. 6.

We thus arrive at a complete description of the multiplication in H∗(UD4Tmin; Z/2Z): an 18-dimensional subspace
W of H1(UD4Tmin; Z/2Z) annihilates all one-dimensional cohomology classes. This subspace W is spanned by the
duals of the 14 critical 1-cells not appearing in Fig. 6, together with the four elements of H1 (UDnT ; Z/2Z) which
are endpoints of only dashed lines. The multiplication in the remaining six-dimensional subspace is described by the
subgraph of Fig. 6 consisting of six solid lines and the six vertices they connect: two basis elements cup to the label
of the solid edge connecting them, or to 0 if there is no such edge.

This description of the multiplication in H∗(UD4Tmin; Z/2Z) suggests that it is an exterior face algebra, an idea
we define in the next section.
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5. Counterexamples to Ghrist’s conjecture

5.1. Preliminaries on exterior face rings

For a ring R, an exterior ring over R on a set {v1, v2, . . . , vn}, denoted ΛR[v1, . . . , vn], is the free R-module having
the products vi1vi2 . . . vi j (0 ≤ i1 < i2 < · · · < i j ≤ n) as a basis. The empty product is the multiplicative identity.
The multiplicative relations are generated by all relations of the following types: viv j = −v jvi and v2

i = 0.
Let K = ({v1, . . . , vn}, S) be a finite simplicial complex and R be a commutative ring with identity. The exterior

face ring ΛR (K ) of K over R is the quotient of the exterior ring ΛR[v1, . . . , vn] by the relations vi1 . . . vik = 0 for
0 ≤ i1 < i2 < · · · < ik ≤ n and when {vi1 , . . . , vik } 6∈ S. Note that an exterior ring on a set {v1, v2, . . . , vn, vn+1}

is isomorphic the exterior face ring ΛR (K ) where K is a standard n-simplex. If R is a field, then ΛR(K ) inherits an
algebra structure, and is called an exterior face algebra.

Example 5.1. The calculation of the previous subsection shows that the ring H∗(UD4Tmin; Z/2Z) is isomorphic to
ΛZ/2Z(K ), where K is the union of 18 isolated vertices with a graph isomorphic to the one in Fig. 6(2) consisting of
the six solid edges labelled (1)–(5) and (8), and vertices incident with them.

If R = Z/2Z, then the exterior face ring ΛZ/2Z (K ) is a quotient of a polynomial ring:

ΛZ/2Z (K ) = Z/2Z [v1, . . . , vn] /I (K ),

where I (K ) is the ideal of Z/2Z [v1, . . . , vn] generated by the set{
v2

1, . . . , v
2
n

}
∪
{
vi1vi2 . . . vik |

{
vi1 , . . . , vik

}
6∈ S

}
.

In this case, since R is a field, we have that ΛR(K ) inherits an algebra structure. Throughout the rest of the paper, all
exterior face rings ΛR(K ) will be over Z/2Z, and we will therefore drop the subscript R without further comment.

A simplicial complex K is flag if, whenever a collection of vertices vi1 , . . . , vi j ∈ K pairwise span edges,
{vi1 , . . . , vi j } is a simplex of K .

In case K is a flag complex, there is a simple set of generators for I (K ):

Lemma 5.2. If K is a flag complex, then

I (K ) =

〈{
v2

1, . . . , v
2
n

}
∪
{
vi1vi2 |

{
vi1 , vi2

}
6∈ S

}〉
.

Proof. Let I ′(K ) denote the ideal on the right half of the equality in the lemma. We need to show that I (K ) ⊆ I ′(K ),
the reverse inclusion being obvious.

Suppose that vi1 . . . vik satisfies {vi1 , . . . , vik } 6∈ S. Since K is a flag complex, there must exist v j1 , v j2 ∈

{vi1 , . . . , vik } such that {v j1 , v j2} 6∈ S. It follows that v j1v j2 ∈ I ′(K ). Now v j1v j2 | vi1 . . . vik , so vi1 . . . vik ∈ I ′(K ).
Thus, I (K ) ⊆ I ′(K ). �

Example 5.3. Let Γ be a finite simple graph. The right-angled Artin group GΓ associated to Γ is a group defined by
a presentation in which the generators are in one-to-one correspondence with vertices of Γ , and relations consist of
all commutators of the form [vi , v j ], where vi and v j are adjacent in Γ .

Charney and Davis [4] have described K (GΓ , 1) complexes for all right-angled Artin groups (generalizing the
Salvetti complex of [19] for spherical Artin groups). Begin with a torus

∏
S1, where the factors are in one-to-one

correspondence with vertices in Γ . Assume that each S1 is given the standard cellulation, consisting of one 0-cell
and one 1-cell. Their K (GΓ , 1) space is obtained from this product by throwing out an open i-cell if the i 1-cells
in its factorization correspond to vertices v1, v2, . . . , vi which do not form a clique, i.e., if some pair of vertices
v j1 , v j2 ∈ {v1, . . . , vi } do not span an edge of Γ .

This description of K (GΓ , 1), together with the description of the cohomology rings of subcomplexes of a torus
in [16, p. 227], implies
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Proposition 5.4. The cohomology ring H∗(GΓ ; Z/2Z) is the exterior face ring Λ(K ), where K is the unique flag
complex having Γ as its 1-skeleton. �

(Here K is the simplicial complex whose n-simplices are the cliques in Γ having n + 1 members.)
We can now give a simple principle which will allow us to find counterexamples to Ghrist’s Conjecture 1.1. A

homomorphism φ : R[x1, . . . , xl ] → R[y1, . . . , ym] between polynomial rings is degree-preserving if it sends any
homogeneous polynomial of degree k to another homogeneous polynomial of degree k (or, equivalently, if it sends
any homogeneous polynomial of degree 1 to another homogeneous polynomial of degree 1). More generally, if R1 and
R2 are quotients of polynomial rings by ideals generated by homogeneous polynomials, then φ : R1 → R2 is degree-
preserving if any equivalence class of homogeneous polynomials is mapped to an equivalence class of homogeneous
polynomials of the same degree.

Proposition 5.5. Let K be a flag complex, and let ∂∆n be the boundary of the standard n-simplex (n ≥ 2). If
φ : Λ(K ) → Λ (∂∆n) is a degree-preserving surjection, then kerφ cannot be generated by homogeneous degree 1 and
degree 2 elements.

Proof. Let {v1, . . . , vm} be the vertices of K . The hypotheses imply that φ induces a linear surjection from the space
Λ(K )1 of homogeneous degree 1 elements of Λ(K ) to the space Λ (∂∆n)1 of homogeneous degree 1 elements of
Λ (∂∆n), which is (n +1)-dimensional. Thus there is a collection of n +1 elements of the standard basis {v1, . . . , vm}

for Λ(K ) which map onto a basis for the space of homogeneous degree 1 elements of Λ (∂∆n). We can thus assume,
without loss of generality, that {φ (v1) , . . . , φ (vn+1)} is a basis for Λ (∂∆n)1.

For i ∈ {n + 2, . . . ,m}, let si denote the (unique) linear combination of v1, . . . , vn+1 such that φ (si ) = φ (vi ).
Thus, each si + vi is an element of kerφ. Since the set {si + vi | i ∈ {n + 2, . . . ,m}} is linearly independent, it must
form a basis for kerφ ∩ Λ(K )1, since the dimension of kerφ ∩ Λ(K )1 is m − n − 1.

Now assume that kerφ is generated by degree 1 and degree 2 elements. Suppose that kerφ ∩ Λ(K )2 is spanned by
t1, t2, . . . , tk , where ti , for i ∈ {1, . . . , k}, is a homogeneous element of degree 2. By Lemma 5.2,

Λ(K ) ∼= Λ [v1, . . . , vm] /〈u1, . . . , ul〉,

where ui is a homogeneous element of degree 2 for 1 ≤ i ≤ l. It follows that

φ : Λ [v1, . . . , vm] / 〈sn+2 + vn+2, . . . , sm + vm, t1, . . . tk, u1, . . . , ul〉 → Λ
(
∂∆n)

is an isomorphism. Let Λφ(K ) be the quotient of Λ[v1, . . . , vn+1] by the ideal Iφ(K ) = 〈t̂1, . . . , t̂k, û1, . . . , ûl〉, where
t̂ j (respectively, û j ) is the result of replacing vi with si (n + 2 ≤ i ≤ m) in t j (respectively, u j ). Note that Iφ(K ) is
generated by homogeneous elements of degree 2. It is easy to see that the map

ψ : Λφ(K ) → Λ [v1, . . . , vm] / 〈sn+2 + vn+2, . . . , sm + vm, t1, . . . tk, u1, . . . , ul〉 ,

sending vi to vi for i ∈ {1, . . . , n + 1}, is an isomorphism, which also preserves degree.
Now we obtain a contradiction by counting the dimensions of Λφ(K )2, Λφ(K )n+1, Λ (∂∆n)2, and Λ (∂∆n)n+1 as

vector spaces. We have:

dim
(
Λ
(
∂∆n)2)

=
n(n + 1)

2
; dim

(
Λ
(
∂∆n)n+1

)
= 0.

Either Iφ(K ) is the 0 ideal or it isn’t. If it is, then

dim
(
Λφ(K )n+1

)
= 1;

if it isn’t, then

dim
(
Λφ(K )2

)
<

n(n + 1)
2

.

In either case, we have a contradiction since φ◦ψ is a degree-preserving bijection and thus preserves the dimension
in each degree. �
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Corollary 5.6. Let K1 and K2 be finite simplicial complexes.

(1) If φ : Λ(K1) → Λ(K2) is a degree-preserving surjection, K1 is a flag complex, and kerφ is generated by
homogeneous elements of degrees one and two, then K2 is also a flag complex.

(2) If φ : Λ(K1) → Λ(K2) is a degree-preserving isomorphism, then K1 is a flag complex if and only if K2 is.

Proof. (1) If K2 is not flag, then for some n ≥ 2, ∂∆n is a full subcomplex of K2, i.e., ∂∆n is not the boundary of
an n-simplex in K2. Define a map ψ : Λ(K2) → Λ(∂∆n), sending a given vertex v to 0 if v 6∈ ∂∆n , and to itself
otherwise. The map ψ is a degree-preserving surjection whose kernel is generated by elements of degree 1. It follows
that ψ ◦φ : Λ(K1) → Λ(∂∆n) is a degree-preserving surjection whose kernel is generated by homogeneous elements
of degrees 1 and 2. This contradicts Proposition 5.5.

(2) This is an easy consequence of (1). �

Note that Gubeladze [15] has proven a strong generalization of Corollary 5.6(2): φ : Λ(K1) → Λ(K2) is a degree-
preserving isomorphism if and only if K1 is isomorphic to K2 as simplicial complexes.

Our experience in computing H∗ (UDnT ; Z/2Z) for various small examples, including the case T = Tmin and
n = 4, suggests the following conjecture:

Conjecture 5.7. The cohomology ring H∗ (UDnT ; Z/2Z) is an exterior face algebra, for any tree T and any n.

We note finally that the conjecture seems just as likely to be true for arbitrary fields, not simply Z/2Z.

5.2. Which tree braid groups are right-angled Artin?

Recall the definition of a right-angled Artin group from Example 5.3. In this subsection, we characterize exactly
which tree braid groups are right-angled Artin. Theorem 5.11 states that a tree braid group BnT is a right-angled Artin
group exactly when either n < 4 or T is linear (recall that a tree is linear if there exists an embedded line segment
which contains all of the essential vertices of T ).

Let Tmin be the minimal nonlinear tree described in Section 4.4.

Lemma 5.8. Let n ≥ 4. Let T be a nonlinear tree that is sufficiently subdivided for n. There is a cellular embedding
θ of (a suitably subdivided) Tmin into T such that:

(1) the image of Tmin is sufficiently subdivided for 4 strands;
(2) there is a choice of basepoints ∗ for Tmin and ∗ for T such that ∗ has degree 1 in Tmin, ∗ has degree 1 in T , and

the geodesic segment [∗, ∗] in T crosses exactly n − 4 edges, none of which are edges of Tmin.

Proof. Choose a collection C of essential vertices of T such that the elements of C all lie along an embedded arc, and
such that C is a maximal set of essential vertices with this property. Fix an arc [v1, v2] in T such that C ⊆ [v1, v2],
where v1 and v2 are essential. Since T is a nonlinear tree, there exists an essential vertex v3 6∈ [v1, v2]. Consider the
geodesic segment γ connecting v3 to [v1, v2]. By maximality of C, γ must meet [v1, v2] in another essential vertex
v4 6∈ {v1, v2}, for otherwise γ ∪ [v1, v2] is an arc containing C ∪ {v3}, which contradicts the maximality of C.

The Y -graph formed by the segments [v1, v4], [v2, v4], and [v3, v4] is sufficiently subdivided for 4, since the tree T
is sufficiently subdivided for n and n ≥ 4. For i = 1, 2, 3, add to the Y -graph two additional embedded line segments
at vi , each consisting of exactly 3 edges, in such a way that the new segments have no edges in common with either
each other or with the Y -graph. It is possible to do this because each of the vertices v1, v2, and v3 are essential. The
result of this procedure gives a cellular embedding of Tmin into T which satisfies (1).

To produce an embedding satisfying (2) as well, proceed as follows. Choose a vertex ∗̂ having degree 1 in Tmin. If
∗̂ has degree 1 in T , then since T is sufficiently subdivided for n it must be that n = 4. In this case, choose ∗ = ∗ = ∗̂.
Otherwise, ∗̂ has degree at least 2 in T . Choose an arc γ̂ in T with no edges in common with the embedding of Tmin,
and with the embedding of ∗̂ as one of its endpoints. Furthermore, choose γ̂ to be a maximal such arc, so that the
other endpoint of γ̂ has degree 1 in T . Declare the other endpoint of γ̂ to be ∗, and let ∗ be the (unique) vertex lying
on γ̂ at distance exactly n − 4 from ∗. Modify Tmin (if necessary) by adding in the segment

[
∗, ∗̂

]
. �
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Fig. 7. The larger tree T is sufficiently subdivided for n = 6. The smaller tree (encircled) is a copy of Tmin. This figure shows the image of a
critical 2-cell in UD4Tmin under the map θ : UD4Tmin → UD6T .

Let n ≥ 4, and let T be a nonlinear tree. The embedding θ of the previous lemma induces a map of configuration
spaces θ : UD4Tmin → UDnT , defined by θ ({c1, c2, c3, c4}) = {θ(c1), θ(c2), θ(c3), θ(c4)} ∪ {∗, v1, v2, . . . , vn−5},
where ∗, v1, v2, . . . , vn−5 are the n − 4 vertices of T closest to ∗ (see Fig. 7).

Choose an embedding of T in the plane, and consider the induced classifications of cells in UDnT and UD4Tmin
into the critical, collapsible, and redundant cell types.

Proposition 5.9. The map θ preserves cell type — i.e. takes critical, collapsible, and redundant cells in UD4Tmin to
critical, collapsible, and redundant cells in UDnT , respectively.

Proof. Let c be a cell in UD4Tmin. Since the map θ on configuration spaces is induced by a cellular embedding on
the level of trees, by the choices of ∗ and ∗, a vertex in c is blocked if and only if it is blocked in θ(c). Since the
embedding of Tmin in the plane is induced from the embedding of T in the plane, an edge in c is respectful if and
only if it is respectful in θ(c). The cell θ(c) is obtained from c by adding exactly n − 4 blocked vertices. Thus, the
numbering on vertices and edges in θ(c) used to determine cell type (see the discussion preceding Definition 3.2)
differs from the numbering for c only by the insertion of n − 4 blocked vertices at the beginning of the numbering. By
the definition of the Morse matching, Definition 3.2, the proposition is proven. �

Proposition 5.10. We have:

(1) The map θ induces an injection θ∗ : H∗(UD4Tmin; Z/2Z) → H∗ (UDnT ; Z/2Z). The homology class
corresponding to a given critical cell c ⊆ UD4Tmin goes to a homology class corresponding to θ(c) ⊆ UDnT .
In particular, the image of θ∗ is a direct factor of H∗ (UDnT ).

(2) The induced map θ∗
: H∗(UDnT ; Z/2Z) → H∗(UD4Tmin; Z/2Z) sends the dual of a critical cell c to (θ−1(c))∗

if c is in the image of θ , or to 0 otherwise.

Proof. (1) Fix an embedding of T into the plane, and choose an embedding θ : Tmin → T as in Lemma 5.8. We
note that, due to the choices of the embedding θ : Tmin → T and basepoints, the map θ : UD4Tmin → UDnT sends
collapsible cells to collapsible cells, redundant cells to redundant cells, and critical cells to critical cells.

If c is an arbitrary critical cell of UD4Tmin, then a cycle representing the homology class determined by c is f ∞(c),
which has the form c + (collapsible cells). Since θ preserves a cell’s type, it follows that the homology class θ∗(c)
may be represented by a cycle of the form θ(c) + (collapsible cells), where θ(c) is critical. By Lemma 2.1(2), the
cycle θ(c)+ (collapsible cells) is homologous to f ∞(θ(c)+ (collapsible cells)). By Lemma 2.1(3) and the fact that
θ(c) is critical,

f ∞(θ(c)+ collapsible cells) = θ(c)+ ((different) collapsible cells).
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On the other hand, the homology class corresponding to the critical cell θ(c) is, by definition, f ∞(θ(c)), which
consists of θ(c)+ (collapsible cells). Thus, using the fact from Lemma 2.1(3) that an f -invariant chain is determined
by its critical cells, we conclude that θ∗(c) = θ(c), as required.

(2) This is an easy consequence of (1) and the naturality of the universal coefficient isomorphism. �

Theorem 5.11. The tree braid group BnT is a right-angled Artin group if and only if T is linear or n < 4.

Proof. (⇐) Connolly and Doig [5] showed that BnT is a right-angled Artin group if T is linear. If n < 4 and T is a
tree, then Theorem 4.3 of [10] shows that BnT is in fact a free group, since UDnT strong deformation retracts on a
graph. This proves one direction.

(Note that it is possible to get a proof of Connolly and Doig’s result as an application of the ideas in [10]. Suppose
T is a linear tree. Choose some basepoint ∗ for T and an embedded arc ` containing ∗ and all essential vertices of
T ; it is possible to do this since T is linear. Now embed T in R2 so that: (1) ∗ is mapped to the origin; (2) ` is
mapped to a segment on the positive y-axis, and (3) the image of T is contained in {(x, y) ∈ R2

| x ≤ 0}. With this
choice of embedding and the induced order on the vertices of T , Theorem 5.3 of [10] gives a presentation of BnT as
a right-angled Artin group. The proof is left as an exercise for the interested reader.)

(⇒) Proof by contradiction. Suppose that T is nonlinear, n ≥ 4, and BnT is a right-angled Artin group.
Since UDnT is aspherical [1,14], UDnT is a K (BnT, 1). In particular, by Proposition 5.4, the cohomology ring
H∗(UDnT ; Z/2Z) is the exterior face algebra of a flag complex.

We choose an embedding θ : UD4Tmin → UDnT as in Lemma 5.8. By Proposition 5.10, θ∗
:

H∗(UDnT ; Z/2Z) → H∗(UD4Tmin; Z/2Z) is surjective, and it is necessarily degree-preserving. Since
H∗(UD4Tmin; Z/2Z) is the exterior face algebra of a complex that is not flag, we will arrive at a contradiction to
Corollary 5.6(1) if we can show that ker(θ∗) is generated by homogeneous elements of degrees one and two. For this,
it is sufficient to show that if c is a critical cell in UDnT of dimension at least 3, then c∗ is divisible by some element
c∗

1 ∈ ker(θ∗) of degree one.
Let c be a critical cell in UDnT of dimension at least 3. There are two cases: either every cell of c lies inside of

(the embedded image of) Tmin ∪ [∗, ∗], or some cell of c is not contained in Tmin ∪ [∗, ∗].
We first consider the case in which some vertex or edge x of T occurring in c is not contained in Tmin ∪ [∗, ∗].

Either x is an edge e or x is a blocked vertex. If x is a blocked vertex, then at the largest essential vertex on the
geodesic [x, ∗] there must be a disrespectful edge e. In either case, break all edges of c other than e, and consider the
resulting 1-cell c′. By Lemma 4.1(4), c′ is equivalent to a critical 1-cell c̃′, and the proof of Lemma 4.1(4) shows that
c̃′ may be described as simply the result of moving all vertices in c′ toward ∗ until they are all blocked. If follows that
x occurs in c̃′. This implies that c̃′ is not in the image of θ : UD4Tmin → UDnT , since all cells in this image consist
of cells in Tmin. It now follows from Proposition 5.10(2) that c̃′

∗
∈ ker(θ∗). But [c] is the least upper bound of its

one-dimensional lower bounds, so Proposition 4.5(2) implies that c̃′
∗

| c∗, as required.
Finally, suppose that all vertices and edges in c are contained in Tmin ∪ [∗, ∗]. Let A, B, C , D denote the four

essential vertices of Tmin, listed in the order they are numbered, from least to greatest. Let eA, eB , eC , and eD denote
the edges incident with A, B, C , and D, respectively, which are in the greatest direction possible from each —
namely, 2 (see the paragraphs preceding Definition 3.2). Note these are the only four edges in Tmin which can possibly
be disrespectful in a cell of UDnTmin. Since c is critical and has dimension at least 3 by assumption, c contains at
least 3 edges in Tmin, and these must be chosen from {eA, eB, eC , eD}. It follows that either eA or eB is in c. Let c′ be
the result replacing all edges in c with either endpoint, except for eA if eA ∈ c or eB if eA 6∈ c. Let c̃′ be the result of
moving all vertices in c′ toward ∗ until they are blocked. By Lemma 4.1(4), c̃′ is critical.

For an arbitrary cell c, a vertex v ∈ c is blocked by an edge e ∈ c if and only if there are no vertices of T − c which
are less than v and between v and e. We claim that there are at least five vertices in c̃′ blocked by eA (if eA ∈ c) or eB
(if eA 6∈ c). The reason is that there must be at least three edges in c, all of which are greater than or equal to eA or eB ,
respectively. As each edge must be disrespectful, each of the three edges blocks at least one vertex. When all of these
strands are moved towards ∗ until they are blocked, the result is that at least five vertices are blocked in c̃′ by the edge
eA or eB , respectively. This proves the claim.

It follows from this that c̃′ is not in the image of θ : UD4Tmin → UDnT , since any cell in θ(UD4Tmin) will
contain at most 4 cells from the tree Tmin. This implies that (c̃′)∗ ∈ ker(θ∗). By construction [c̃′] ≤ [c], and, since [c]
is the least upper bound of its one-dimensional lower bounds, (c̃′)∗ | c∗ by Proposition 4.5(2). �
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