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a b s t r a c t

We study the interplay between the principal pivot transform
(pivot) and loop complementation for graphs. This is done by
generalizing loop complementation (in addition to pivot) to set
systems. We show that the operations together, when restricted to
single vertices, form the permutation group S3. This leads, e.g., to a
normal form for sequences of pivots and loop complementation on
graphs. The results have consequences for the operations of local
complementation and edge complementation on simple graphs:
an alternative proof of a classic result involving local and edge
complementation is obtained, and the effect of sequences of local
complementations on simple graphs is characterized.
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1. Introduction

The principal pivot transform (PPT, or simply pivot), due to Tucker [21], partially inverts a given
matrix. Its definition is originally motivated by the extensively studied linear complementarity
problem [11]. However, there are many other application areas for PPT; see [20] for an overview.
We consider pivots on graphs where loops are allowed (i.e., symmetric matrices over F2). It is shown
by Bouchet [4] that, in this case, the pivot operation satisfies an equivalent definition in terms of set
systems (more specifically, in terms of delta-matroids due to a specific exchange axiom that they
fulfil).

Pivot operations on graphs (where loops are allowed) can be decomposed into two kinds
of elementary pivots: local complementation and edge complementation. The names ‘‘local
complementation’’ and ‘‘edge complementation’’ are due to similar operations on simple graphs. Local
complementation on simple graphs has originally been considered in [16] and edge complementation
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has subsequently been defined in terms of local complementation in [5]. There these operations
were motivated by circle graphs (or overlap graphs), where local and edge complementation model
natural transformations on the underlying interval segments (or, equivalently, on Euler tours within
a 4-regular graph). Many other application areas have since been identified. For example, local
complementation on simple graphs retains the entanglement of the corresponding graph states in
quantum computing [22], and this operation is ofmain interest in relation to rank-width in the vertex-
minor project initiated in [17]. Moreover, edge complementation is fundamentally related to the
interlace polynomial [2,3,1], the definition of which ismotivated by the computation of the number of
k-component circuit partitions in a graph. Elementary pivots on graphs naturally appear in the formal
study of gene assembly in ciliates [12,8] (a research area of computational biology).

Surprisingly, the similarity between local and edge complementation for simple graphs on the one
hand and pivots on matrices (or graphs) on the other hand has been largely unnoticed (although it is
observed in [13]), and as a result they have been studied almost independently.

In this paper we consider the interplay between pivots and loop complementation (flipping the
existence of loops for a given set of vertices) on graphs. By generalizing loop complementation to set
systems, we obtain a common viewpoint for the two operations: pivots and loop complementations
are elements of order 2 (i.e., involutions) in the permutation group S3 (by restricting to single
vertices). We find that the dual pivot from [9] corresponds to the third element of order 2 in
S3. We obtain a normal form for sequences of pivots and loop complementations on graphs. As a
consequence a number of results for local and edge complementations on simple graphs are obtained
including an alternative proof of a classic result [5] relating local and edge complementation (see
Proposition 23). Finally we characterize the effect of sequences of local complementations on simple
graphs. In this way we find that, surprisingly, loops are the key to fully understand local and edge
complementation on simple (i.e., loopless) graphs, as they bridge the gap in the definitions of local
and edge complementation for graphs on the one hand and simple graphs on the other.

An extended abstract of this paper containing selected results without proofs was presented at
TAMC 2010 [10].

2. Notation and terminology

In this paper, matrix computations (except for the first part of Section 3) will be over F2, the
field consisting of two elements. We will often consider this field as the Booleans, and its operations
addition andmultiplication are as such equal to the logical exclusive-or and logical conjunction,which
are denoted by ⊕ and ∧ respectively. These operations carry over to sets, e.g., for sets A, B ⊆ V and
x ∈ V , x ∈ A ⊕ B iff (x ∈ A) ⊕ (x ∈ B).

A set system (over V ) is an ordered pairM = (V ,D)with V a finite set andD a family of subsets of V .
Wewrite simply Y ∈ M to denote Y ∈ D. For X ⊆ V , X isminimal (resp.,maximal) in Dw.r.t. inclusion
iff both X ∈ D and Y ∉ D for every Y ⊂ X (resp., Y ⊃ X). The set of minimal (resp., maximal) elements
of D (w.r.t. inclusion) is denoted by min(D) (resp., max(D)). Moreover, we write min(M) = min(D)
and max(M) = max(D).

For a V × V -matrix A (the columns and rows of A are indexed by finite set V ) and X ⊆ V , A[X]

denotes the principal submatrix of A w.r.t. X , i.e., the X × X-matrix obtained from A by restricting to
rows and columns in X .

We consider undirected graphs without parallel edges; however we do allow loops. For graph
G = (V , E) we use V (G) and E(G) to denote its set of vertices V and set of edges E, respectively,
where for x ∈ V , {x} ∈ E iff x has a loop. For X ⊆ V , we denote the subgraph of G induced by X as
G[X].

With a graph G one associates its adjacency matrix A(G), which is a V × V -matrix

au,v


over F2

with au,v = 1 iff {u, v} ∈ E (we have au,u = 1 iff {u} ∈ E). In this way, the family of graphs with
vertex set V corresponds precisely to the family of symmetric V × V -matrices over F2. Therefore we
often make no distinction between a graph and its matrix, so, e.g., by the determinant of graph G,
denoted detG, we will mean the determinant det A(G) of its adjacency matrix (computed over F2). By
convention, det(G[∅]) = 1.
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For graph G, the loop complementation operation on a set of vertices X ⊆ V , denoted by G + X ,
removes loops from the vertices of X when present in G and adds loops to vertices of X when not
present in G. Hence the adjacency matrix of G+ X is obtained from A(G) by adding 1 to each diagonal
element axx, x ∈ X , of A(G). Clearly, (G + X) + Y = G + (X ⊕ Y ) for X, Y ⊆ V .

3. Pivots

In general the pivot operation is defined for matrices over arbitrary fields, e.g., as done in [20]. In
this paperwe restrict to symmetricmatrices overF2, which leads to a number of additional viewpoints
for the same operation, and for each of them an equivalent definition of the pivot operation.
Matrices. LetA be aV×V -matrix (over an arbitrary field), and letX ⊆ V be such that the corresponding
principal submatrix A[X] is nonsingular, i.e., det A[X] ≠ 0. The pivot of A on X , denoted by A ∗ X , is
defined as follows. If P = A[X] and A =


P Q
R S


, then

A ∗ X =


P−1

−P−1Q
RP−1 S − RP−1Q


.

The pivot can be considered a partial inverse, as A and A∗X satisfy the following characteristic relation,
where the vectors x1 and y1 correspond to the elements of X:

A

x1
x2


=


y1
y2


iff A ∗ X


y1
x2


=


x1
y2


. (1)

Equality (1) can be used to define A ∗ X given A and X: any matrix B satisfying this equality is of the
form B = A ∗ X , see [20, Theorem 3.1], and therefore such a B exists precisely when det A[X] ≠ 0.
Note that if det A ≠ 0, then A ∗ V = A−1. Also note that by Eq. (1) a pivot operation is an involution
(operation of order 2), and more generally, if (A ∗ X) ∗ Y is defined, then A ∗ (X ⊕ Y ) is defined and
they are equal.

It is easy to verify that A ∗ X is skew-symmetric whenever A is. In particular, computed over F2, if
A is a graph (i.e., a symmetric matrix over F2), then A ∗ X is also a graph.

The following fundamental result on pivots is due to Tucker [21] (see also [18] or
[11, Theorem 4.1.1] for an elegant proof using equality (1)).

Proposition 1 ([21]). Let A be a V × V-matrix, and let X ⊆ V be such that det A[X] ≠ 0. Then, for
Y ⊆ V , det(A ∗ X)[Y ] = det A[X ⊕ Y ]/ det A[X].

In particular, assuming that A ∗ X is defined, (A ∗ X)[Y ] is nonsingular iff A[X ⊕ Y ] is nonsingular.
Set systems. LetM be a set system over V . We define, for X ⊆ V , the pivot (often called the twist in the
literature; see, e.g., [13])M ∗ X = (V ,D ∗ X), where D ∗ X = {Y ⊕ X | Y ∈ D}.

For V × V -matrix A, let MA = (V ,DA) be the set system with DA = {X ⊆ V | det A[X] ≠ 0}. As
observed in [4] we have, by Proposition 1, Z ∈ MA∗X iff det((A ∗ X)[Z]) ≠ 0 iff det(A[X ⊕ Z]) ≠ 0 iff
X ⊕ Z ∈ MA iff Z ∈ MA ∗ X . Hence MA∗X = MA ∗ X .

From now on we restrict to graphs G and we work over F2. Given set system MG = (V (G),DG),
one can (re)construct the graph G: {u} is a loop in G iff {u} ∈ DG, and {u, v} is an edge in G iff
({u, v} ∈ DG) ⊕ (({u} ∈ DG) ∧ ({v} ∈ DG)); see [7, Property 3.1]. Hence the function M(·) which
assigns to each graph G its set system MG is injective. In this way, the family of graphs (with set V of
vertices) can be considered as a subset of the family of set systems (over set V ).

Remark 2. Note that M(·) is not injective for binary matrices (i.e., matrices over F2) in general: e.g.,

for fixed V with |V | = 2, the 2 × 2 zero matrix and the matrix

0 1
0 0


correspond to the same set

system. Also, M(·) is not surjective: we have, e.g., ∅ ∈ MA for every matrix A. Consequently, the
notions of binarymatrix and set system are incomparable (i.e., one is notmore general than the other)
w.r.t. M(·).
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Fig. 1. Pivot on an edge {u, v} in a graph. Adjacency between vertices x and y is toggled iff x ∈ Vi and y ∈ Vj with i ≠ j. Note that
u and v are adjacent to all vertices in V3—these edges are omitted in the diagram. The operation does not affect edges adjacent
to vertices outside the sets V1, V2, V3 , nor does it change any of the loops.

As MG∗X = MG ∗ X , the pivot operation for graphs coincides with the pivot operation for set
systems. Therefore, pivot on set systems forms an alternative definition of pivot on graphs. Note that
while for a set systemM over V ,M ∗X is defined for all X ⊆ V , for a graph G,G∗X is defined precisely
when detG[X] = 1, or equivalently, when X ∈ DG, which in turn is equivalent to ∅ ∈ DG ∗ X .

It turns out that MG has a special structure, that of a delta-matroid [4]. A delta-matroid is a set
system M that satisfies the symmetric exchange axiom: for all X, Y ∈ M and all x ∈ X ⊕ Y , we have
X ⊕{x} ∈ M or there is a y ∈ X ⊕Y with y ≠ x such that X ⊕{x, y} ∈ M .1 In this paper wewill not use
this property. In fact, we will consider an operation on set systems that does not retain this property
of delta-matroids (cf. Example 10).

Graphs. The pivots G∗X where X ∈ min(DG \{∅}) are called elementary. It is noted by Geelen [13] that
an elementary pivot X corresponds to either a loop, X = {u} ∈ E(G), or an edge, X = {u, v} ∈ E(G),
where (distinct) vertices u and v are both non-loops. Thus for Y ∈ MG, if G[Y ] has elementary pivot
X1, then Y \ X1 = Y ⊕ X1 ∈ MG∗X1 . By iterating this argument, each Y ∈ MG can be partitioned:
Y = X1 ∪ · · · ∪ Xn such that G ∗ Y = G ∗ (X1 ⊕ · · · ⊕ Xn) = (. . . (G ∗ X1) . . . ∗ Xn) is a composition of
elementary pivots. Consequently, a direct definition of the elementary pivots on graphs G is sufficient
to define the (general) pivot operation on graphs.

The elementary pivot G ∗ {u} on a loop {u} is called local complementation. It is the graph obtained
from G by ‘‘toggling’’ the edges in the neighbourhood NG(u) = {v ∈ V | {u, v} ∈ E(G), u ≠ v} of u in
G: for each v, w ∈ NG(u), {v, w} ∈ E(G) iff {v, w} ∉ E(G ∗ {u}), and {v} ∈ E(G) iff {v} ∉ E(G ∗ {u})
(the case v = w). The other edges are left unchanged.

We now recall edge complementation G ∗ {u, v} on an edge {u, v} between non-loop vertices. For a
vertex x consider its closed neighbourhoodN ′

G(x) = NG(x)∪{x}. The edge {u, v} partitions the vertices
of G adjacent to u or v into three sets V1 = N ′

G(u) \ N ′

G(v), V2 = N ′

G(v) \ N ′

G(u), V3 = N ′

G(u) ∩ N ′

G(v).
Note that u, v ∈ V3.

The graph G ∗ {u, v} is constructed by ‘‘toggling’’ all edges between different Vi and Vj: for {x, y}
with x ∈ Vi and y ∈ Vj (i ≠ j): {x, y} ∈ E(G) iff {x, y} ∉ E(G∗{u, v}); see Fig. 1. The other edges remain
unchanged. Note that, as a result of this operation, the neighbours of u and v are interchanged.

Example 3. Let G be the graph depicted in the upper left corner of Fig. 2.

We have A(G) =


p q r s

p 1 1 1 1
q 1 1 0 0
r 1 0 0 1
s 1 0 1 0

. Graph G corresponds to MG = ({p, q, r, s},DG), where

DG = {∅, {p}, {q}, {p, r}, {p, s}, {r, s}, {p, q, r}, {p, q, s}, {p, r, s}, {q, r, s}}.

1 The explicit formulation of the case X ⊕ {x} ∈ M is often omitted in the definition of delta-matroids. It is then understood
that ymay be equal to x and {x, x} = {x}. To avoid confusion we will not use this convention here.
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Fig. 2. The orbit of G of Example 3 under pivot. Only the elementary pivots are shown.

For example, {p, r} ∈ DG since det(G[{p, r}]) = det

1 1
1 0


= 1. The orbit of G under pivot as well

as the applicable elementary pivots (i.e., local and edge complementation) are shown in Fig. 2. For
example, G ∗ {p, q, r} is shown lower right in the same figure. Note that

DG ∗ {p, q, r} = {∅, {q}, {p, r}, {p, s}, {q, r}, {q, s}, {r, s}, {p, q, r}, {p, q, s}, {q, r, s}}

indeed corresponds to G ∗ {p, q, r}.

4. Unifying the pivot and loop complementation

We now introduce a class of operations on set systems. As we will show, it turns out that this class
contains both the pivot and (a generalization of) loop complementation. Each operation is a linear
transformation, where the input and output vectors indicate the presence (or absence) of sets Z and
Z \ {j} in the original and resulting set systems.

Definition 4. LetM = (V ,D) be a set system, and let α be a 2×2-matrix over F2. We define, for j ∈ V ,
the vertex flip α ofM on j, denoted byMαj

= (V ,D′), where, for all Z ⊆ V with j ∈ Z , the membership
of Z and Z \ {j} in D′ is determined as follows:

α(Z ∈ D, Z \ {j} ∈ D)T = (Z ∈ D′, Z \ {j} ∈ D′)T .

In the above definition,we regard the elements of the vectors as Boolean values, e.g., the expression
Z ∈ D is either true (1) or false (0). To be more explicit, let α =


a11 a12
a21 a22


. Then we have for all

Z ⊆ V , Z ∈ D′ iff
(a11 ∧ Z ∈ D) ⊕ (a12 ∧ Z \ {j} ∈ D) if j ∈ Z
(a21 ∧ Z ∪ {j} ∈ D) ⊕ (a22 ∧ Z ∈ D) if j ∉ Z .

Note that in the above statement we may replace both Z ∪ {j} ∈ D and Z \ {j} ∈ D by Z ⊕ {j} ∈ D as in
the former we have j ∉ Z and in the latter we have j ∈ Z . Thus, the operation αj decides whether or
not set Z is in the new set system based on whether or not Z and Z ⊕{j} belong to the original system.

Note that if α is the identity matrix, then αj is simply the identity operation. Moreover, with
α∗ =


0 1
1 0


we have Mα

j
∗ = M ∗ {j}, the pivot operation on a single element j.

By definition, a composition of vertex flips on the same element corresponds to matrix
multiplication. Moreover, the following lemma shows that vertex flips on different elements
commute.

Lemma 5. Let M be a set system over V , and let j, k ∈ V . We have that (Mαj)β j
= M(βα)j, where βα

denotes matrix multiplication of β and α. Moreover (Mαj)βk
= (Mβk)αj if j ≠ k.

Proof. The fact that (Mαj)β j
= M(βα)j follows directly from Definition 4.
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Let M = (V ,D), and assume that j ≠ k. Let Mαj
= (V ,D′), and let Mβk

= (V ,D′′). For any set
Z ⊆ V with j, k ∈ Z , we consider the sets Z, Z \ {j}, Z \ {k}, and Z \ {j, k}. Now, for any family Q of
subsets of V , let vQ = (Z ∈ Q , Z \ {j} ∈ Q , Z \ {k} ∈ Q , Z \ {j, k} ∈ Q )T . The 4 × 4-matrices α′ and β ′

such that α′vD = vD′ and β ′vD = vD′ are

α′
=

a11 a12 0 0
a21 a22 0 0
0 0 a11 a12
0 0 a21 a22

 and β ′
=

b11 0 b12 0
0 b11 0 b12
b21 0 b22 0
0 b21 0 b22

 ,

where

α =


a11 a12
a21 a22


and β =


b11 b12
b21 b22


.

Equivalently, focussing on the 2 × 2 blocks, we have α′
=


α 0
0 α


and β ′

=


b11I b12I
b21I b22I


. It is

easy to see that these matrices commute. Multiplication (in either order) yields the 4 × 4-matrix
α′β ′

= β ′α′
=


(b11I)α (b12I)α
(b21I)α (b22I)α


. �

To simplify notation, we assume left associativity of the vertex flip, and write Mϕ1ϕ2, . . . , ϕn to
denote (. . . ((Mϕ1)ϕ2) . . .)ϕn, where ϕ1ϕ2, . . . , ϕn is a sequence of vertex flip operations applied to
set system M . Hence, as a special case of the vertex flip, the pivot operation is also written in the
simplified notation. We carry this simplified notation over to graphs G.

Due to the commutative property shown in Lemma 5we (may) define, for a set X = {x1, . . . , xn} ⊆

V ,MαX
= Mαx1αx2 , . . . , αxn , where the result is independent of the order in which the operations

are applied. Moreover, if α is of order 2 (i.e., αα is the identity matrix), then (MαX )αY
= MαX⊕Y .

Now consider α+ =


1 1
0 1


. The matrices α+ and α∗ given above generate the group GL2(F2) of

2 × 2-matrices with non-zero determinant. In fact GL2(F2) is isomorphic to the group S3 = {1, a,
b, c, f , g} of permutations of three elements, where 1 is the identity, a, b, and c are the elements of
order 2, and f and g are the elements of order 3. The matrices α+ and α∗ are both of order 2 and we
may identify themwith any two (distinct) elements of S3 of order 2. The generators α+ and α∗ satisfy
the relations α2

+
= 1, α2

∗
= 1, and (α∗α+)3 = 1.

As, by Lemma 5, vertex flips on j and kwith j ≠ k commute, we have that the vertex flips form the
group (S3)V of functions f : V → S3 where composition/multiplication is pointwise: (fg)(j) = f (j)g(j)
for all j ∈ V . Note that by fixing a linear order of V , (S3)V is isomorphic to (S3)n with n = |V |, the
direct product of n times group S3. The vertex flips form an action of (S3)V on the family of set systems
over V .

5. Loop complementation and set systems

In this section we focus on vertex flips of matrix α+ (defined in the previous section). We will
show that this operation is a generalization to set systems of loop complementation for graphs
(cf. Theorem 8). Consequently, we will call it loop complementation as well.

Let M = (V ,D) be a set system and let j ∈ V . We denote Mα
j
+ by M + {j}. Hence, we have

M + {j} = (V ,D′) where, for all Z ⊆ V , Z ∈ D′ iff
(Z ∈ D) ⊕ (Z \ {j} ∈ D) if j ∈ Z
Z ∈ D if j ∉ Z .

The definition of loop complementation can be reformulated as follows: D′
= D ⊕ {X ∪ {j} | X ∈

D, j ∉ X}.

Example 6. Let V = {1, 2, 3} and M = (V , {∅, {1}, {1, 2}, {3}, {1, 2, 3}}) be a set system. We have
M + {3} = (V , {∅, {1}, {1, 2}, {3}, {1, 2, 3}} ⊕ {{3}, {1, 3}, {1, 2, 3}}) = (V , {∅, {1}, {1, 2}, {1, 3}}).
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Fig. 3. Toggling one-by-one loops on the vertices of a graph, and the corresponding set systems.

We denote, for X ⊆ V ,MαX
+
byM + X . Moreover, as α+ is of order 2, we have, similar to the pivot

operation, (M + X) + Y = M + (X ⊕ Y ). Also, by the commutative property of the vertex flip in
Lemma 5, we have for X, Y ⊆ V with X ∩ Y = ∅,M ∗ X + Y = M + Y ∗ X .

We now provide a characterization of loop complementation which describes how successive
applications of loop complementation in set systems interact.

Theorem 7. Let M be a set system and X, Y ⊆ V . We have Y ∈ M + X iff |{Z ∈ M | Y \ X ⊆ Z ⊆ Y }| is
odd.

Proof. The proof is by induction on |X |. First consider the case X = ∅. Y ∈ M + ∅ iff Y ∈ M iff
|{Z ∈ M | Z = Y }| is odd.

Now consider X ∪ {y} with y ∉ X in the induction step.
If y ∉ Y , then Y ∈ M + X + {y} iff Y ∈ M + X iff |{Z ∈ M | Y \ X ⊆ Z ⊆ Y }| is odd iff |{Z ∈ M |

(Y \ X) \ {y} ⊆ Z ⊆ Y }| is odd, as Y \ X = (Y \ X) \ {y}.
Now assume that y ∈ Y . Let C1 = {Z ∈ M | (Y \ {y}) \ X ⊆ Z ⊆ Y \ {y}} and let C2 = {Z ∈ M |

Y \ X ⊆ Z ⊆ Y }. Elements in C1 do not contain y whereas those in C2 do. Thus C1 and C2 are disjoint,
and C1 ∪ C2 = {Z ∈ M | Y \ (X ∪ {y}) ⊆ Z ⊆ Y }. Moreover |C1 ∪ C2| is odd iff exactly one of |C1| and
|C2| is odd.

By the definition of loop complementation Y ∈ (M + X) + y iff (Y \ {y} ∈ M + X) ⊕ (Y ∈ M + X).
According to the induction hypothesis this means that exactly one of |C1| and |C2| is odd, i.e., |{Z ∈

M | Y \ (X ∪ {y}) ⊆ Z ⊆ Y }| is odd, as required. �

The next result implies that the notion of loop complementation for set systems is indeed a
generalization of the notion of loop complementation for graphs.

Theorem 8. Let A be a V × V-matrix over F2 and X ⊆ V . Then MA+X = MA + X.

Proof. It suffices to show the result for X = {j} with j ∈ V , as the general case follows by the
commutative property of the vertex flip (Lemma 5). Let Z ⊆ V . We compare det A[Z] with det(A +

{j})[Z]. First assume that j ∉ Z . Then A[Z] = (A + {j})[Z], and thus det A[Z] = det(A + {j})[Z]. Now
assume that j ∈ Z , which implies that A[Z] and (A + {j})[Z] differ in exactly one position: (j, j). We
may compute determinants by Laplace expansion over the jth column, and summing minors. As A[Z]

and (A + {j})[Z] differ at only the matrix element (j, j), these expansions differ only in the inclusion
of minor det A[Z \ {j}]. Thus det(A+{j})[Z] equals det A[Z]⊕ det A[Z \ {j}], fromwhich the statement
follows. �

Surprisingly, this natural definition of loop complementation on set systems is not found in the
literature.

Example 9. The set system M = ({1, 2, 3}, {∅, {1}, {1, 2}, {3}, {1, 2, 3}}) of Example 6 has a graph
representation G: M = MG and G are given on the left-hand side in Fig. 3. The figure also contains
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some other set systems obtainable from M through loop complementation. Notice that M + {3} =

({1, 2, 3}, {∅, {1}, {1, 2}, {1, 3}}) of Example 6 corresponds to graph G + {3}.

While for a set system the property of being a delta-matroid is closed under pivot, the next example
shows that it is not closed under loop complementation.

Example 10. Let V = {1, 2, 3} and M = (V ,D) with D = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}} be a
set system. It is shown in [7, Section 3] that M is a delta-matroid without graph representation.
Consider {1} ⊆ V . Then M + {1} = (V ,D′) with D′

= {∅, {2}, {3}, {2, 3}, {1, 2, 3}} is not a delta-
matroid: for X = ∅, Y = {1, 2, 3} ∈ D′, and x = 1 ∈ X ⊕ Y , we have X ⊕ {x} = {1} ∉ D′ and there is
no y ∈ X ⊕ Y such that X ⊕ {x, y} ∈ D′.

6. Compositions of loop complementation and the pivot

In this section we study sequences of loop complementation and pivot operations. As we may
consider both operations as vertex flips, we obtain in a straightforward way general equalities
involving loop complementation and pivot.

Theorem 11. Let M be a set system over V and X ⊆ V . Then M + X ∗ X + X = M ∗ X + X ∗ X.
Proof. In group S3 we have aba = bab = c. Hence α+α∗α+ = α∗α+α∗. Now by Lemma 5, we have
M + {j} ∗ {j} + {j} = M ∗ {j} + {j} ∗ {j} for any j ∈ V . By the commutative property of the vertex flip
in Lemma 5, this can be generalized to sets X ⊆ V , and hence we obtain the desired result. �

Let us define α ∗̄ = α+α∗α+ and denote, for X ⊆ V ,MαX
∗̄
by M ∗̄ X . We will call the ∗̄ operation

the dual pivot. As α+ is of order 2, we have, similar to the pivot operation and loop complementation,
(M ∗̄ X) ∗̄ Y = M ∗̄ (X ⊕Y ). The dual pivot together with pivot and loop complementation correspond
precisely to the elements of order 2 in S3.

We now obtain a normal form for sequences of pivots and loop complementations.

Theorem 12. Let M be a set system over V , and let ϕ be any sequence of pivot and loop complementation
operations on elements in V . We have that Mϕ = M + X ∗ Y + Z for some X, Y , Z ⊆ V with X ⊆ Y .
Proof. Again we can consider the operations with respect to a single element j, as the generalization
to sets follows by the commutative property of Lemma 5.

The six elements of GL2(F2) are 1, α+, α∗, α+α∗, α∗α+, and α+α∗α+. Hence any sequence of pivots
and loop complementation over j reduces to one of these six elements, each of which can be written
in the form of the statement (with X, Y , Z either equal to {j} or to the empty set). �

Because local and edge complementation operations are special cases of pivot, the normal form of
Theorem 12 is equally valid for any sequence ϕ of local, edge, and loop complementation operations.

The central interest of this paper is to study compositions of pivot and loop complementation
on graphs. As explained in Section 3, the pivot operations for set systems and graphs coincide, i.e.,
MG∗X = MG ∗ X , and we have established that the same holds for loop complementation (cf.
Theorem 8). Hence results that hold for set systems in general, like Theorem 11, subsume the special
case where the set system M represents a graph (i.e., M = MG for some graph G)—recall that the
injectivity of M(·) allows one to view the family G of graphs (over V ) as a subset of the family of set
systems (over V ). We only need to make sure that we ‘‘stay’’ in G, i.e., by applying a pivot or loop
complementation operation to MG we obtain a set system M such that M = MG′ for some graph G′.
For loop complementation this will always hold; however care must be taken for pivot as MG ∗ X ,
which is defined for all X ⊆ V , only represents a graph if detG[X] = 1. Hence when restricting a
general result (on pivot or local complementation for set systems) to graphs, we add the condition of
applicability of the operations.

It is useful to explicitly state Theorem 11 restricted to graphs. This is a fundamental result for
pivots on graphs (or, equivalently, symmetric matrices over F2) not found in the literature. We will
study some of its consequences in the remainder of this paper.

Corollary 13. Let G be a graph and let X ⊆ V . Then G+ X ∗ X + X = G ∗ X + X ∗ X when both sides are
defined.
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In the particular case of Corollary 13 it is not necessary to verify the applicability of both sides: it
turns out that the applicability of the right-hand side implies the applicability of the left-hand side of
the equality.

Lemma 14. Let G be a graph and X ⊆ V . If G ∗ X + X ∗ X is defined, then G + X ∗ X + X is defined.

Proof. Assume thatG∗X+X ∗X is defined. Thus,G2 = G1+X ∗X+X ∗X+X is defined forG1 = G+X .
Now considerMG2 . We have thatMG2 ∗X = MG1 by Theorem 11. Since the pivot operation is of order
2, MG1 ∗ X = MG2 . Hence, MG1 ∗ X has a graph representation (graph G2), and thus ∅ is in set system
MG1 ∗ X . Consequently, X is in set system MG1 , thus detG1[X] = 1, and so G1 ∗ X = (G + X) ∗ X is
defined. �

The reverse implication of Lemma 14 does not hold: take, e.g., G to be the connected graph of two
vertices with each vertex having a loop.

We now state Theorem 12 restricted to graphs.

Corollary 15. Let G be a graph, and let ϕ be a sequence of local, edge, and loop complementation
operations applicable to G. We have that Gϕ = G + X ∗ Y + Z for some X, Y , Z ⊆ V with X ⊆ Y .

Proof. By Theorem 12, MGϕ = MG + X ∗ Y + Z for some X, Y , Z ⊆ V with X ⊆ Y . It suffices to show
now that G + X ∗ Y + Z is defined, i.e., to show that ∗Y is applicable to G + X . As MG + X ∗ Y + Z
represents a graph (the graph Gϕ), MG + X ∗ Y also represents a graph (the graph Gϕ + Z). Therefore,
∅ is in MG + X ∗ Y and thus Y is in MG + X . Consequently, ∗Y is indeed applicable to G + X . �

Corollary 13 can also be proven directly using equality (1), i.e., the partial inverse property of pivots.
This is shown in the next theoremwhich also provides a direct definition of the dual pivot formatrices.

Let A be a V × V -matrix and let X ⊆ V . We write A(x, y)T to denote the application of A to the
vector


x
y


, where it is understood that x corresponds to the X-coordinates, and y to the remaining

coordinates. We make now an exception and consider arbitrary matrices, instead of symmetric
matrices, over F2. In this way the next result provides another generalization (in addition to the
generalization to set systems of Theorem 11) of the concept of dual pivot on graphs.

Theorem 16. Let A be a V ×V-matrix over F2 and let X ⊆ V . Then A+X ∗X +X = A∗X +X ∗X (if both
sides are defined), and moreover A(x1, y1)T = (x2, y2)T iff (A+ X ∗ X + X)(x1 + x2, y1)T = (x2, y2)T (if
A + X ∗ X is defined). In addition, any matrix B with this property is of the form B = A + X ∗ X + X.

Proof. The pivot operation acts as a partial inverse; cf. (1). Hence A(x1, y1)T = (x2, y2)T iff (A ∗

X)(x2, y1)T = (x1, y2)T . The loop complementation adds 1 to the diagonal elements corresponding
to X , and thus A(x1, y1)T = (x2, y2)T iff (A + X)(x1, y1)T = (x1 + x2, y2)T .

We simply chain these equalities: A(x1, y1)T = (x2, y2)T iff (A + X)(x1, y1)T = (x1 + x2, y2)T iff
(A + X ∗ X)(x1 + x2, y1)T = (x1, y2)T iff (A + X ∗ X + X)(x1 + x2, y1)T = (x2, y2)T . We get a similar
result by chaining the equalities for A ∗ X + X ∗ X instead of A + X ∗ X + X .

Finally, if a matrix B exists with B(x1 + x2, y1)T = (x2, y2)T given the matrix A with A(x1, y1)T =

(x2, y2)T , then (B + X)(x1 + x2, y1)T = (x1, y2)T and (A + X)(x1, y1)T = (x1 + x2, y2)T . Thus, by
the definition of pivot given by equality (1) in Section 3, we have A + X ∗ X = B + X , and so
B = A + X ∗ X + X . �

It is interesting to consider Theorem 16 for the case X = V . Recall that for matrix A, A ∗ V is
the inverse A−1 of A. Also, A + V simply means adding the identity matrix (often denoted by I) to A.
Therefore, by Theorem 16, we see that over F2, addition of I and matrix inversion together form the
group S3. In particular, ((A−1

+ I)−1
+ I)−1

+ I = A (assuming that the left-hand side is defined).

7. Maximal pivots

In this sectionwe show that the dual pivot retains themaximal elementsmax(M) (w.r.t. inclusion)
for any set system M , i.e., max(M) = max(M ∗̄ X) for any X ⊆ V . In this way we generalize and
provide an alternative proof for the main result of [9] where this result is shown for graphs (i.e., the
caseM = MG): max(MG) = max(MG ∗̄ X ) for graph G and X ⊆ V (G) such that G ∗̄ X is defined.
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Remark 17. More precisely, in [9] the operation G + V ∗ X + V is considered instead of G ∗̄ X = G +

X ∗ X + X . Now as pivot and loop complementation on disjoint sets commute (see just below
Example 6), G + V ∗ X + V = G + X ∗ X + X (as V \ X and X are disjoint, and the left-hand side
is defined iff the right-hand side is defined). Hence, this operation is precisely the dual pivot G ∗̄ X
restricted to graphs G. In fact, M ∗̄ X defined in this paper is named dual pivot as the corresponding
graph operation G + V ∗ X + V in [9] is called dual pivot as well.

First we define the dual pivot explicitly for set systems. We have α∗̄ =


1 0
1 1


. Hence, for

j ∈ V ,M ∗̄ {j} = (V ,D′) where, for all Z ⊆ V , Z ∈ D′ iff
Z ∈ D if j ∈ Z
(Z ∪ {j} ∈ D) ⊕ (Z ∈ D) if j ∉ Z .

(2)

Similarly as for loop complementation, we can reformulate the definition of the dual pivot. If we
letM = (V ,D), thenM ∗̄ {j} = (V ,D′) with D′

= D⊕{Z \ {j} | j ∈ Z ∈ D}. Moreover, we may provide
a characterization of dual pivot similar to the characterization of loop complementation in Theorem 7.

Theorem 18. Let M be a set system and X, Y ⊆ V . We have Y ∈ M ∗̄ X iff |{Z ∈ M | Y ⊆ Z ⊆ Y ∪ X}|

is odd.

Proof. We apply Theorem 7 to M ∗̄ X = M ∗ V + X ∗ V and use the fact that the operation ∗V
complements the sets of a set system.We have Y ∈ M ∗̄ X iff V \Y ∈ M ∗V +X iff the set {Z ∈ M ∗V |

(V \ Y ) \ X ⊆ Z ⊆ V \ Y } = {Z ∈ M | (V \ Y ) \ X ⊆ V \ Z ⊆ V \ Y } = {Z ∈ M | Y ⊆ Z ⊆ X ∪ Y }

is of odd cardinality (where in the first equality we have changed the variable Z := Z ⊕ V , and in the
second equality we applied ⊕V to invert both inclusions). �

The following result is almost a direct consequence of Theorems 7 and 18.

Theorem 19. Let M be a set system over V and X ⊆ V . Then max(M) = max(M ∗̄ X) and min(M) =

min(M + X).

Proof. If Y ∈ max(M), then Y ∈ M ∗̄ X by Theorem 18 (as {Z ∈ M | Y ⊆ Z ⊆ Y ∪ X} = {Y }).
Let M ′

= M ∗̄ X . By exactly the same reasoning as before, we find that Y ∈ max(M ′) implies that
Y ∈ M ′

∗̄ X = M . Hence max(M) = max(M ∗̄ X).
Similarly, the equality min(M) = min(M + X) follows from Theorem 7. �

Example 20. Let V = {p, q, r, s} and M = (V ,D) with

D = {∅, {p}, {q}, {p, r}, {p, s}, {r, s}, {p, q, r}, {p, q, s}, {p, r, s}, {q, r, s}}.

ThenM ∗̄ {r} = (V ,D′) with

D′
= {∅, {q}, {s}, {p, q}, {p, r}, {q, s}, {r, s}, {p, q, r}, {p, q, s}, {p, r, s}, {q, r, s}}.

Thus indeed we have max(M) = {{p, q, r}, {p, q, s}, {p, r, s}, {q, r, s}} = max(M ∗̄ {r}). Note
that the maximal elements may differ dramatically when performing the (regular) pivot or loop
complementation: e.g., max(M ∗ {q}) = {{p, q, r, s}}.

The corresponding result restricted to graphs is given below for completeness. The result is shown
in [9] using linear algebra techniques, while in this paper it is almost a direct consequence of the
definition of dual pivot on set systems. Note that for graph G and X ⊆ V (G), X ∈ max(MG) iff both
detG[X] = 1 and detG[Y ] = 0 for every Y ⊃ X .

Corollary 21 ([9]). Let G be a graph, and let X ⊆ V (G). Thenmax(MG) = max(MG ∗̄ X ) if the right-hand
side is defined (i.e., det(G + X)[X] = 1).

While the result min(M) = min(M+X) (in Theorem 19)may be relevant for arbitrary set systems,
the result is trivial when restricted to graphs. Indeed, for a graph Gwe havemin(MG) = {∅} and since
MG + X represents a graph (it is the graph G + X) we have min(MG + X) = {∅}.
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Fig. 4. Dual pivot ∗̄ {r} on graph G from the upper left corner of Fig. 2.

Fig. 5. Verification of the applicability of ∗{u, v} + {u} ∗ {u} ∗ {v} + {u} ∗ {u} + {u} to any graph F having an edge {u, v} with
both u and v non-loop vertices.

Example 22. Set system M of Example 20 corresponds to graph G on the upper left corner of Fig. 2.
For X = {r}, det(G + X)[X] = 1 holds as {r} is a loop in G + {r}. Graphs G and G ∗̄ {r} are given in
Fig. 4.

The proof of Corollary 21 in [9] relies heavily on the fact that the elements of max(MG) are all of
cardinality equal to the rank of (the adjacency matrix of) G, a consequence of the Strong Principal
Minor Theorem; see [15, Theorem 2.9]. This property of max(MG) turns out to be irrelevant for
Corollary 21 as its generalization, Theorem 19, holds for set systems in general where this property of
max(MG) of course does not hold.

In [9] it was also noted that the kernel (null space) of a graph is invariant under dual pivot. It
is straightforward to verify now using Theorem 16 that this holds for arbitrary matrices over F2: if
A(x1, y1)T = (0, 0), then A ∗̄ X(x1 + 0, y1)T = (0, 0). Therefore, A ∗̄ X(x1, y1)T = (0, 0). The converse
holds as dual pivot is an involution (operation of order 2). In particular, the rank of A is invariant w.r.t.
the dual pivot.

As observed in [9], as a graph transformation operation, the dual pivot is similar to the (regular)
pivot. More precisely, the elementary dual pivots G ∗̄ X are either of the form (1) X = {u} where u
does not have a loop in G or of the form (2) X = {u, v} where {u, v} is an edge of G where both u
and v have loops. The effect of the elementary pivot ∗̄ {u} is the same as that of ∗{u}, complementing
its neighbourhood. And similarly for the elementary pivot ∗̄ {u, v}. Only the conditions for applying
elementary dual pivots are different compared to those for (regular) elementary pivots: the effect of
the operation is the same.

8. Consequences for simple graphs

In this section we consider simple graphs, i.e., undirected graphs without loops or parallel edges.
Local complementation was first studied on simple graphs [16]: local complementation on a vertex
u, by abuse of notation denoted by ∗{u}, complements the edges in the neighbourhood of u. Thus
it is the same operation as for graphs (loops allowed) except that applicability is not dependent on
the presence of a loop on u, and neither are loops added or removed in the neighbourhood. Also edge
complementation ∗{u, v} on an edge {u, v} for simple graphs is defined as for graphs, inverting certain
sets of edges (cf. Fig. 1), but again the absence of loops is not an (explicit) requirement for applicability.

The ‘‘curious’’ identity ∗{u, v} = ∗{u} ∗ {v} ∗ {u} for simple graphs shown by Bouchet
[5, Corollary 8.2] and found in standard textbooks (see, e.g., [14, Theorem 8.10.2]) can be proven by
a straightforward (but slightly tedious) case analysis involving u, v and all possible combinations of
their neighbours. Here it is obtained (cf. Proposition 23) as a consequence of Theorem 11.
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Fig. 6. Verification of applicability of (∗{u} ∗ {v} + {u, v})3 to a graph G having an edge {u, v} with a loop on vertex u.

Proposition 23. Let H be a simple graph having an edge {u, v}. We have H∗{u, v} = H∗{u}∗{v}∗{u} =

H ∗ {v} ∗ {u} ∗ {v}.
Proof. LetM be a set system, and u and v two distinct elements from its domain. Define ϕ = ∗{u, v}

+ {u} ∗ {u} ∗ {v} + {u} ∗ {u} + {u}. Recall that for set systems we have ∗{u, v} = ∗{u} ∗ {v} and
that the operations on different elements commute; e.g. ∗{v} + {u} = +{u} ∗ {v}. We have therefore
ϕ = ∗{u} ∗ {v} + {u} ∗ {u} ∗ {v} + {u} ∗ {u} + {u} = ∗{u} + {u} ∗ {u} + {u} ∗ {u} + {u} = id, where
in the last equality we used Theorem 11. Therefore, Mϕ = M for any set system M having u and v in
its domain.

Hence, for any graph G for which ϕ is applicable to G, we have Gϕ = G. Assume now that G is a
graph (allowing loops) having the edge {u, v} where both u and v do not have a loop. By Fig. 5 we see
that ϕ is applicable to G, and therefore Gϕ = G.

Now, modulo loops, i.e., considering simple graphs H , we no longer worry about the presence of
loops, and we may omit the loop complementation operations from ϕ. Hence ∗{u, v} ∗ {u} ∗ {v} ∗ {u}
is the identity on simple graphs, and therefore ∗{u, v} = ∗{u} ∗ {v} ∗ {u}. By symmetry of the ∗{u, v}

operation we also have that ∗{u, v} = ∗{v} ∗ {u} ∗ {v}. �

Thus, for set systems we have the decomposition ∗{u, v} = ∗{u} ∗ {v}, whereas for simple
graphs the decomposition of edge complementation into local complementation takes the form
∗{u, v} = ∗{u} ∗ {v} ∗ {u}. The rationale behind this last equality is hidden, as in fact the equality
∗{u, v} = +{u} ∗ {u} + {u} ∗ {v} ∗ {u} + {u} is demonstrated for graphs (loops allowed) (see
the proof of Proposition 23). The fact that the equality of Proposition 23 does not hold for graphs
(with loops allowed) is a consequence of the added requirement of applicability of the operations.
Applicability depends on the presence or absence of loops, and it is curious that loops are necessary
to fully understand these operations for simple graphs (which are loopless by definition)!

A second remark concerns Fig. 5 and its role in the proof. Following the operations around the
loop in the diagram, starting and ending at the same point, we obtain the identity operation (on
set systems). The diagram in the figure does not show that the identity holds; it merely concerns
the applicability of the operations (in graphs). It is possible to graphically verify that composing the
operations around the cycle forms the identity: one has to add several ‘‘generic’’ vertices q each
representing a specific case of whether or not u and whether or not v is in the neighbourhood of q.
However, the number of vertices q grows exponentially in the number of vertices of the subgraph (in
this case an edge consisting of vertices u and v) under consideration. Here, verifying the applicability
of ϕ on the subgraph induced by u and v suffices.

Incidentally, the equality ∗{u} ∗ {v} ∗ {u} = ∗{v} ∗ {u} ∗ {v} can also be verified directly by using
Fig. 6 instead of Fig. 5 in the proof of Proposition 23, and observing that (∗{u} ∗ {v} + {u, v})3 is the
identity (in set systems). This does not show the equality to ∗{u, v} in simple graphs.

In addition to providing a new proof for Proposition 23, the method presented allows one to
obtainmanymore curious equalities involving local complementation and/or edge complementation.
The steps are as follows. One starts with an identity for set systems, involving pivot and loop
complementation. Then one shows applicability for (general) graphs for the sequence of operations.
Finally one drops the loop complementation operations to obtain an identity for simple graphs.

We illustrate this by stating one such equality. Proposition 23 considers the casewhereu, v ∈ V (H)
is such that the subgraph of H induced by {u, v} is a complete graph (i.e., {u, v} is an edge in H). We
now deduce an equality where three vertices induce a complete graph.
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Fig. 7. Verification of applicability of a sequence of local and loop complementations from Corollary 24 to a graph G where
G[{u, v, w}] is the leftmost graph in the figure.

Corollary 24. Let H be a simple graph, and let u, v, w ∈ V (H) be such that the subgraph of H induced
by {u, v, w} is a complete graph. Then H(∗{u} ∗ {v} ∗ {w})2 = H ∗ {v}.

Proof. The proof of this lemma is very similar to the proof of Proposition 23. We have ∗{u} ∗ {v} ∗

{w} + {v} ∗ {u} ∗ {v} ∗ {w} = ∗{v} + {v} ∗ {v} as pivot and loop complementation on disjoint sets
commute. Moreover, ∗{v} + {v} ∗ {v} = +{v} ∗ {v} + {v} by Theorem 11.

By Fig. 7 we see that both ∗{u} ∗ {v} ∗ {w} + {v} ∗ {u} ∗ {v} ∗ {w} and +{v} ∗ {v} + {v} are
applicable to any graph Gwhere G[{u, v, w}] (the leftmost graph in the figure) has loop {u} and edges
{u, v}, {u, w}, and {v, w}. The result followsby considering the equalitymodulo loops, i.e., ‘‘forgetting’’
about loops. �

Remark 25. Sabidussi [19] studies local complementation on simple graphs with bicoloured vertices.
Local complementation on a vertex u then also toggles the colours of the vertices adjacent to u. By
modelling the two colours by the existence or nonexistence of loops, we find that this operation is
exactly local complementation in graphs, where we additionally allow local complementation to be
applied on non-looped vertices. Let us denote this operation on a vertex u by ∗̃{u}. Hence, ∗̃{u} is equal
to ∗{u} if u has a loop and equal to ∗̄ {u} if u has a no loop.

In this context, we may reconsider the equality G(∗{u} ∗ {v} + {u, v})3 = G from Fig. 6 where G
has an edge {u, v} with u and v non-looped vertices. We have that ∗̃{u} and +{u} commute as a loop
is of no consequence for applicability of ∗̃ (or more formally, as ∗{u} + {u} = +{u} ∗̄ {u}). We infer
that G(∗̃{u}∗̃{v})3 = G + {u, v}, and obtain in this way [19, Lemma 1].

Similarly the equality G∗ {u} ∗ {v} ∗ {w}+{v} ∗ {u} ∗ {v} ∗ {w} = G+{v} ∗ {v}+{v}where G has a
triangle, as proved in Corollary 24 (see Fig. 7), reduces to G∗̃{v}(∗̃{w}∗̃{v}∗̃{u})2 = G + {v}. Thus we
have also obtained in this way [19, Lemma 2].

Together these two results form the core of the central result of [19] that any bicoloured simple
graph may be colour reversed by a linear number of local complementation operations. Equivalently,
G + V can be obtained from G by a sequence of ∗̃ operations (of length linear in |V |).

In the next result, Theorem 27, we go back and forth between the notions of simple graph and
graph. To avoid confusion, we explicitly formalize these transitions. For a simple graph H , we define
i(H) to be H regarded as a graph (i.e., a symmetric matrix over F2) having no loops. Similarly, for
graph G, we define π(G) to be the simple graph obtained from G by removing the loops. Thus, i(H)
is the obvious injection from the set of simple graphs to the set of graphs, while π(G) is the obvious
projection from the set of graphs to the set of simple graphs. We will use the following identities.

Lemma 26. For simple graph H, π(i(H)) = H. For graph G and the elementary pivot G ∗ X (hence ∗X is
either local or edge complementation),π(G∗X) = π(G)∗X. Moreover, for Y ⊆ V (G), π(G+Y ) = π(G).
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If ϕ is a sequence of edge complementation operations applicable to graph G, then ϕ(G) = G ∗ Y
for some Y ⊆ V (G); see [8] (or alternatively, it may deduced from [6, Section 2], [4], and observing
that the matrix operation considered in these papers is, modulo F2, equal to the principal pivot
transform). The converse also holds: if graph G does not have loops, then G∗Y is applicable iff Y can be
decomposed into a sequence of applicable edge complementation operations (i.e., all elementary pivot
operations are edge complementations). Similarly, as a consequence of Theorem 12, the following
result characterizes the effect of sequences of local complementations on simple graphs.

Theorem 27. Let H be a simple graph, and let ϕ be a sequence of local complementation operations
applicable to H. Then Hϕ = π(i(H) + X ∗ Y ) for some X, Y ⊆ V with X ⊆ Y .

Conversely, for graph G, if G + X ∗ Y is defined for some X, Y ⊆ V , then there is a sequence ϕ of local
complementation operations applicable to π(G) such that π(G)ϕ = π(G + X ∗ Y ).

Proof. We first prove the first statement of the theorem. Let ϕ = ∗{v1}, . . . , ∗{vn}. We have, for any
graph G and u ∈ V (G), either G ∗ {u} is defined or G+ {u} ∗ {u} is defined (but not both). Thus there is
a (unique) ϕ′

= ϕ′

1ϕ
′

2, . . . , ϕ
′
n, where ϕ′

i is either ∗{vi} or +{vi} ∗ {vi} for all i ∈ {1, . . . , n}, such that
ϕ′ is defined on (applicable to) i(H). By Corollary 15, i(H)ϕ′

= i(H) + X ∗ Y + Z for some X, Y , Z ⊆ V
with X ⊆ Y . By Lemma 26, π(i(H) + X ∗ Y ) = π(i(H) + X ∗ Y + Z) = π(i(H)ϕ′) = Hϕ and we have
the first statement of the theorem.

Now assume that G + X ∗ Y is defined for some X, Y ⊆ V . Partition Y = Y1 ∪ · · · ∪ Yn such
that G + X ∗ Y = G + X ∗ Y1, . . . , ∗Yn is a sequence of elementary pivots on G + X . By Lemma 26,
π(G+X∗Y ) = π(G+X∗Y1, . . . , ∗Yn) = π(G)∗Y1, . . . , ∗Yn. By replacing each edge complementation
∗Yi with Yi = {ui, vi} by either sequence ∗{ui} ∗ {vi} ∗ {ui} or sequence ∗{vi} ∗ {ui} ∗ {vi} (see
Proposition 23), we have a desired sequence ϕ of local complementations applicable to π(G) with
π(G)ϕ = π(G + X ∗ Y ). �

9. Discussion

We have considered loop complementation +X , pivot ∗X , and dual pivot ∗̄ X on both set systems
and graphs, and have shown that they can be seen as elements of order 2 in the permutation
group S3. This group structure, in addition to the commutation property in Lemma 5, leads to the
identity (+X ∗ X)3 = id (cf. Theorem 11) and to a normal form w.r.t. sequences of pivots and loop
complementation (cf. Theorem 12).

Although the three operations are equivalent as elements of S3, they are quite different for set
systems and graphs. Indeed, for set systems, the definition of pivot is much less involved than
the (symmetrical) definitions of loop complementation and dual pivot. In contrast, for graphs, the
definition of loop complementation is much less involved than the (symmetrical) definitions of pivot
and dual pivot. As a direct consequence of the definitions of loop complementation and dual pivot on
set systems we notice that these operations retain the minimal and maximal elements, respectively,
of the set system.

Moreover, we obtain as a special case ‘‘modulo loops’’ a classic relation involving local and edge
complementation on simple graphs (cf. Proposition 23). Other relations may be easily deduced (cf.
Corollary 24).

Since the notions of binary matrix and set system are incomparable w.r.t. M(·), the operations of
pivot and loop complementation for binarymatrices and set systems are also incomparable. It remains
open whether or not one may combine and generalize the two notions and its operations of pivot and
loop complementation in a natural way.
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