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Contrasting Linkage-Disequilibrium Patterns between Cases and Controls
as a Novel Association-Mapping Method
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Identification and description of genetic variation underlying disease susceptibility, efficacy, and adverse reactions
to drugs remains a difficult problem. One of the important steps in the analysis of variation in a candidate region
is the characterization of linkage disequilibrium (LD). In a region of genetic association, the extent of LD varies
between the case and the control groups. Separate plots of pairwise standardized measures of LD (e.g., ) for′D
cases and controls are often presented for a candidate region, to graphically convey case-control differences in LD.
However, the observed graphic differences lack statistical support. Therefore, we suggest the “LD contrast” test
to compare whole matrices of disequilibrium between two samples. A common technique of assessing LD when
the haplotype phase is unobserved is the expectation-maximization algorithm, with the likelihood incorporating
the assumption of Hardy-Weinberg equilibrium (HWE). This approach presents a potential problem in that, in the
region of genetic association, the HWE assumption may not hold when samples are selected on the basis of phenotypes.
Here, we present a computationally feasible approach that does not assume HWE, along with graphic displays and
a statistical comparison of pairwise matrices of LD between case and control samples. LD-contrast tests provide
a useful addition to existing tools of finding and characterizing genetic associations. Although haplotype association
tests are expected to provide superior power when susceptibilities are primarily determined by haplotypes, the LD-
contrast tests demonstrate substantially higher power under certain haplotype-driven disease models.
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There has been considerable progress in designing tech-
niques that go beyond sequential testing of SNPs. These
methods are particularly important for the analysis of
multiple SNPs that jointly represent variation within
common transcripts and other functional regions, such
as promoters. Methods for detection of association be-
tween traits and interacting genetic polymorphisms are
being rapidly developed. Many approaches have con-
sidered important situations in which haplotypes of con-
secutive markers can be defined and tested for associa-
tion with the trait. Methods have been designed to in-
corporate various sampling designs as well as the hap-
lotype phase uncertainty.1–7

It has been noted that the extent of linkage disequi-
librium (LD) can be different between the case and the
control groups in a region of genetic association, and
the case-control LD comparison can aid the analysis in
a region of putative association.8 Contrasting pairwise
LD matrices between cases and controls via graphic dis-
play provides a direct visual comparison.9 However, the
observed graphic difference is subject to sampling var-
iation and lacks statistical support. Therefore, a statis-
tical test is desirable. In the context of association map-
ping, Nielsen et al. presented a directLD comparison ap-
proach involving two diallelic loci and noted that, in
certain situations, a test that directly compares LD extent

between the case and the control groups can be a pow-
erful alternative to either haplotype-based or single-
marker approaches.10 A test comparing the LD extent
will include only a single LD parameter that results in
a 1-df test, whereas a haplotype test will include four
haplotypes with 3 df. Nielsen et al. considered the case
of unambiguous haplotype phase. When the haplotype
phase is unknown, the expectation-maximization (EM)
algorithm is used to infer frequencies of haplotypes and,
ultimately, to assess LD. The likelihood is constructed
by assuming HWE on the level of haplotypes. With two
diallelic markers, there are four haplotypes, and the
usual assumption is that the two-locus haplotypes are
in HWE. Checking that each SNP is in HWE is not
sufficient to ensure HWE at the haplotypic level. Fur-
thermore, in the region of association, the HWE is gen-
erally expected to be distorted in case and control sam-
ples.11,12 Therefore, the EM computation, although a val-
uable tool for evaluating LD in a sample of population
controls, is not strictly appropriate for comparing LD
levels in samples of cases and controls or for samples
otherwise selected on the basis of phenotype.

Recently, Schaid13 and Zaykin14 showed that LD es-
timation with use of the composite disequilibrium ap-
proach, discussed below, provides results similar to those
of the EM-based method under HWE, is computation-
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ally simpler, and avoids the assumption of haplotypic
HWE. Hamilton and Cole15 and Zaykin14 gave bounds
and proposed normalization for LD based on the com-
posite definition. Zaykin showed that this normalization
is robust to departures from HWE. Therefore, we pro-
pose use of the composite coefficient and its normali-
zation for characterizing the LD in case-control samples.
This leads to efficient methods of comparing and testing
the difference of pairwise LD matrices between the case
and control samples. We show that certain disease mod-
els result in high power of the LD-contrast test in com-
parison with the haplotypic test, even under situations
when susceptibilities are largely determined by haplo-
types. In such situations, the LD contrast test outper-
forms both the haplotype-based test and multilocus tests
based on comparison of SNP scores.

Methods

A test for comparing two single LD coefficients (“LD contrast”
test) was described by Nielsen et al. for the case of known
phase—that is, when four haplotype classes are directly ob-
served.10 A x2 test statistic has the form

2
cases controlsˆ ˆ( )D � DAB AB

2x p , (1)
cases controlsˆ ˆ( ) ( )Var D �Var DAB AB

with the variances given by Weir.16(p113) The LD coefficient,
, is equal to , where is the frequency of hap-D P � p p PAB AB A B AB

lotype carrying alleles A and B and pA and pB are the corre-
sponding allele frequencies. A log-linear framework for com-
paring disequilibria coefficients at one and two loci has been
provided by Huttley and Wilson.17 There is only a single LD
parameter describing dependence among the four haplotypes
and the corresponding allele frequencies. Therefore, this LD-
contrast test has an advantage of being a 1-df test, whereas a
haplotypic test with all four haplotypes has 3 df. Nielsen et
al. found empirically that this test can have higher power than
either a haplotypic or a single-marker test when the pairwise
LD between a functional site and two tested markers is low.
When the haplotype phase is unknown, the above test can be
extended to compare two composite LD coefficients with a test
analogous to equation (1), with the variances provided by
Weir.16 Furthermore, comparison of standardized coefficients
may be of interest when single-locus genotypic frequencies dif-
fer. One of the commonly used standardized measures of
LD is the coefficient , suggested by Lewontin,18 where′DAB

is the maximum possible absolute value ofmax(D )AB

DABD pAB max(D )AB

given allele frequencies, also described in a nongenetic context
by Yule,19 as

[ ]min p p , (1 � p )(1 � p ) ; if D ! 0A B A B ABmaxD p .AB { }[ ]min (1 � p )p , p (1 � p ) ; if D 1 0A B A B AB

Weir20 discussed the correlation between alleles A and B, given
as

DABR p ,AB �p (1 � p )p (1 � p )A A B B

which has the range that depends on allele frequencies. Weir20

and Peduzzi et al.21 gave the bounds for .RAB

Whereas allele counts are directly observed, haplotype phase
is often ambiguous; therefore, cannot be estimated as aPAB

proportion of AB haplotypes among all haplotypes in a2n
sample. The maximum-likelihood estimate and, correspon-P̂AB

dingly, and can be obtained. However, this approach′ˆ ˆD DAB AB

usually requires the assumption of HWE—that is, the dilo-
cus genotype frequencies are given by the products of fre-
quencies of haplotypes. Weir and Cockerham22 suggested es-
timating the composite LD coefficient instead, defined as

, with the composite correlationD p P � P � 2p pAB AB A/B A B

DABr p , (2)AB �[p (1 � p ) � D ][p (1 � p ) � D ]A A A B B B

where DA and DB are the Hardy-Weinberg disequilibrium co-
efficients at two loci and is the joint frequency of allelesPA/B

A and B at two different gametes. This coefficient is directly
estimated from dilocus counts16 and, under HWE, corresponds
to . Weir20 and Schaid13 investigated statistical propertiesDAB

of the composite LD estimator and made comparisons of the
composite ( ) and the maximum-likelihood ( ) estimators.ˆD̂ DAB AB

The composite estimator appears to perform well, since it is
robust with respect to the HWE assumption.

The maximum and minimum possible values for , givenDAB

genotypic frequencies at two loci, were reported by Hamilton
and Cole15 and Zaykin.14 These values correspond to bounds
on covariance between two trinary variables that take values
�1, 0, and 1. Equation 4 in the work by Zaykin14 gives the
bounds for succinctly asabs(D )AB

d � s 1
maxD p � (1 � 2p )(1 � 2p )AB A B2 2 , D ! 0 ,{ } AB

where d p min (P ,P ) �min (P ,P )AA bb aa BB

d � s 1
maxD p � (1 � 2p )(1 � 2p )AB A B2 2 , D 1 0 ,{ } AB

where d p min (P ,P ) �min (P ,P )AA BB aa bb

and s p 1 � d �min (1 � d,P � P ) . (3)Aa Bb
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The standardized composite measure of LD with the range �1
to 1 is computed as

DAB′D p .AB maxDAB

The standardization with use of equation (3) takes into account
composite LD dependency on genotype frequencies and holds
the promise for association-mapping applications. Cases and
controls generally have different extents of gametic as well as
nongametic disequilibria around a region of genetic associa-
tion,10,14 which is captured by the composite LD.

Such a test is extended here to the comparison of whole ma-
trices of standardized coefficients between the case and the
control groups, to aid in identification of effects due to inter-
actions among SNPs. The matrix of nonstandardized coef-D̂

ficients is nonnegative definite, by virtue of being a variance-
covariance matrix. Therefore, one can compute statistics on
the basis of eigenvalue-eigenvector (spectral) decomposition of
the LD matrix. Elsewhere, we proposed the use of spectral
decomposition of the composite-LD matrix for selection of a
subset of markers that optimize the information retained in a
genomic region, using samples of population controls.23 The
matrix of standardized composite LD is not necessarily positive
definite, which limits the application of the spectral decom-
position-based statistic. Another statistic used in this study is
based on the overall LD difference ( ).Z2

We define the standardized composite-LD matrices as and′DY

and matrices of the composite LD correlation (eq. 2) for′DN

the case and the control groups as and . In both cases,r rY N

diagonal entries of the matrices are equal to 1. Composite-LD
matrices have spectral decompositions

L

Tr̂ p l e e�Y iFY iFY iFY
ip1

and

L

Tr̂ p l e e ,�N iFN iFN iFN
ip1

where are sample composite LD eigenvalues and ei-{l ,e }iFN iFN

genvectors (for the control, N, or for the case, Y, group), and
T denotes the matrix transpose. Spectral decompositions based
on the composite-LD covariance matrices and are de-D DY N

fined similarly.
We define matrices of first k column case and control ei-

genvectors by and , respectively. The two statistics areE EY N

T T[ ]Z p trace E E E E1 Y N N Y

and

Tˆ ˆ ˆ ˆ[ ]Z p trace (r � r ) (r � r ) .2 Y N Y N

We suggest that the statistic should take a slightly differentZ2

form when computed using the standardized LD:

′ ′ T ′ ′[ ]trace (D � D ) (D � D )Y N Y N

Z p .2 4L(L � 1)

In these equations, L is the number of markers and k � L
is the number of principal components. The denominator,

, is the upper bound for the numerator of . The4L(L � 1) Z2

denominator does not affect the magnitude of the resulting P
value because it is invariant under permutations.

The statistic measures the difference between two spacesZ1

(sum of squared cosines of the angles between the eigenvectors)
defined by the first k eigenvectors and ranges between k and
0 (maximum difference). Krzanowski described this statistic and
the corresponding permutation-based tests (where the pheno-
type value is randomly shuffled among individuals) for com-
parison of two sets of principal components.24,25

The value k must be specified in advance. Krzanowski25 sug-
gested using the value of k that is the largest integer smaller
than . This ensures that the “important” components areL/2
represented, whereas values will cause the subspacesk � L/2
defined by the two sets of eigenvectors to intersect in at least
one dimension.

The sum-of-squared-differences statistic measures theZ2

overall difference in the corresponding pairwise LD. This sta-
tistic is also appropriate for comparing and . Note that,′ ′D DY N

for the standardized LD, the range of is , withZ 0 � Z � 12 2

1 giving the maximum difference.
Both and definitions can be covariance based ratherZ Z1 2

than correlation based. However, results for the covariance-
based tests are not reported here because these tests showed
consistently inferior power when compared with the correlation-
based tests. We also performed a preliminary examination of
several statistics based specifically on the comparison of corre-
sponding LD eigenvectors as well as eigenvalues (e.g., sum of
squared differences) between the case and the control groups.
These tests did not show prominent power characteristics, and
the results are not reported here. Nevertheless, detailed study of
utility of such tests may warrant further investigation.

The generalized test was applied in the association-map-2T
ping context by Xiong et al.26 This test employs the composite-
LD matrix as part of the test statistic. The test compares2T
mean vectors of SNP values in cases and controls, where SNP
values are obtained by recoding genotypes as ,AA r 1 Aa r

, and . The variance part of the test statistic is20 aa r �1 T
the pooled variance-covariance matrix for the recoded values.
It follows that, under the hypothesis of no association, the off-
diagonal elements of this matrix are estimates of twice the
composite LD coefficients, and the diagonal entries are twice
the estimates of the variances of allele frequencies. Therefore,
the generalized test indirectly uses the composite LD in the2T
variance part of the statistic.

Results

To evaluate performance of the proposed tests, we com-
pared methods that are designed to detect either single-
SNP effects or SNP interactions when the effects are as-
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Figure 1 LD ellipse plots for the CYP2D6 data. Left, versus . Right, versus .′ ′ˆ ˆˆ ˆr r D DY N Y N

sociated with entire haplotypes. The test is expected2T
to have good power in the presence of several SNPs
contributing to the association. In contrast, the min(P)
test27 is most sensitive to a single associated SNP while
accounting for correlation between SNPs due to LD. This
test evaluates significance of the most extreme associa-
tion test statistic (Armitage’s trend test in the present
study). The significance is evaluated via permutations,
preserving dependencies among SNPs. To detect haplo-
typic effects, we employed the “Haplotype Trend Regres-
sion” method of Zaykin et al.2 Methods used for power
comparisons in this study are merely providing a refer-
ence point of comparison under different models. It is un-
likely that a single “best” method can be recommended
for the discovery of genetic associations, because the
power obtained for the different methods will vary with
the disease models assumed.

Pharmacogenetic Association-Mapping Example:
CYP2D6

Identification of individual genetic differences in re-
sponse to medicine has potential for reducing side effects
and improving efficacy of drugs. The cytochrome p450
gene, CYP2D6, is involved in metabolism of ∼20% of
marketed drugs.27 Hosking et al.28 described the associa-
tion of SNP and haplotype polymorphisms with the poor
drug-metabolizer phenotype in a region around the
CYP2D6 gene. The data set consisted of 41 “poor me-
tabolizer” cases and 977 controls. SNPs from the middle
of the region show very high levels of association, which
would be strongly supported by any of the tests discussed
here. To illustrate an application of our technique, we

identified six 5′-flanking consecutive SNPs. Missing ge-
notypes were imputed with the package MICE.29 Further
details of the data set are given in the work of Hosking
et al.

We found pronounced differences in LD between the
case and the control groups. Figure 1 is a graphic pre-
sentation of the differences in LD and displays the LD
matrices by use of ellipses whose shape reflects the mag-
nitude of LD and whose direction reflects the sign of the
disequilibrium: 45�-oriented ellipses reflect the positive
sign of LD, whereas the more circular shape of an ellipse
reflects a low degree of LD. Murdoch and Chow30 sug-
gested the use of such graphs to display correlation ma-
trices. Evidently, there are large observed differences, since
some of the coefficients are reversed in sign. The values
of r (left graph) and (right graph) are similar to each′D

other.
The difference in correlation is significant at the 5%

level: for the test, , although the ′Z (r) P p .033 Z (D )2 2

test P value of .061 does not reach significance (all tests
except the asymptotic are based on 50,000 permuta-2T
tions). The test comparing the first two correlation-based
principal components, , gave a significant PZ (k p 2)1

value, .026. Statistics based on resulted in Pk p 1,3
values of .232 and .283, respectively. There is a multiple-
testing issue involved with evaluating statistics that are
based on the different numbers of principal components,

. Nevertheless, we note that the valuek p 1,2,3 k p 2
corresponds to Krzanowski’s recommendation and could
be set as the default value. The test gave the P value2T
equal to .337, reflecting the apparent absence of detect-
able effects associated with individual SNPs. Neither the
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Table 1

Population Case-Control Matrix for the 6-SNP Haplotype′D̂AB

Heterogeneity Model (Simulation I)

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6

SNP1 .127 .192 .193 .128 �.181
SNP2 .055 .185 .104 .236 �.048
SNP3 .143 .089 .185 �.138 .268
SNP4 .077 .005 .133 .193 .055
SNP5 .042 .187 �.208 .085 -�.085
SNP6 �.229 �.108 .160 .045 �.118

NOTE.—Above the diagonal of the matrix, among the cases.′D̂AB

Below the diagonal of the matrix, among the controls.′D̂AB

allelic trend test nor the test comparing genotypic fre-
quencies at individual SNPs was significant. The overall
haplotypic test was not significant ( ). Thus, theP p .168
application of the LD-contrast test to this particular data
set shows that the method is successful in detecting the
case-control LD difference, which supports visual differ-
ences in the LD patterns conveyed by figure 1.

Simulation I: 5-SNP and 6-SNP Haplotypes

A more extensive evaluation of the tests based on the
and statistics was performed using simulations.Z Z1 2

When susceptibilities are driven mainly by haplotypes
(i.e., there are pronounced haplotype effects but no in-
teraction between haplotypes), it is expected that hap-
lotypic tests should have optimal power. Nevertheless,
there are notable exceptions to this rule. For two mark-
ers, Nielsen et al.10 showed that there are scenarios in
which a test comparing LD coefficients is more powerful
than is a single-locus or a haplotypic test. One situation
in which this is the case is when multilocus susceptibil-
ities induce an “orthogonal”-like distribution of dilocus
haplotypes between the case and the control groups. By
“orthogonal,” we mean the situation when high-suscep-
tibility haplotypes tend to be defined by different SNPs.
Culverhouse et al.31 considered epistatic models of this
type.

To mimic this scenario, a set of simulations was con-
structed, under a haplotype-driven model common for
all simulations. Haplotype frequencies were drawn from
the Dirichlet(1,…,1) distribution. Effect sizes were drawn
from the Gamma(1) distribution and were inspected to
ensure that two large effect sizes ( ) are allocated to thehi

most-distinct 6-SNP haplotypes—111111 and 222222—
corresponding to a situation of two independent muta-
tions in high LD with two very distinct haplotypes. To
form an individual, a pair of haplotypes in these sim-
ulations was sampled from the population with the Di-
richlet-derived haplotype frequencies. To obtain the bi-
nary outcome, the continuous phenotype values (Y pijk

)—where —and were di-2h � h � e e ∼ N(0,j ) j p 7.5i j k k

chotomized around two different threshold values, de-
termined by the 0.05 and 0.5 population quantiles of Y.
The population values of among the cases and among′D

the controls are listed in table 1. The correlation LD
values followed the same pattern and were similar in
values to the values of . The largest difference between′D

the corresponding r and coefficients was 0.06. The′D

population LD values were small, which may correspond
to a situation in which a set of SNPs in a candidate gene
is selected on the basis of redundancy reduction.23 The
largest case-control LD difference (0.116) was between
the (1,4) and (4,1) entries of the LD matrix, the mini-
mum difference was 0.009, and the mean difference was
0.07. For this set of simulations, 250 cases and 250

controls were sampled for each of 10,000 simulation
runs.

Tests based on and statistics (with use of bothZ Z1 2

- and r-based versions of ) were performed, and P′D Z2

values were recorded. Results of these simulations for
the two values of population prevalence are shown in
table 2. The results show that the LD-contrast test that
is based on the squared difference statistic ( ) has theZ2

largest power with use of both the and the correlation-′D

based definitions.
The power of the haplotype-based test2 was substan-

tially lower, and the power of both and min(P) (single-2T
SNP permutation-based trend allelic test) was low. The
power of the principal components-based test ( ) wasZ1

lower then the power of the test based on the statistic.Z2

However, in this model, it was higher than the power of
the , min(P), and the haplotypic tests (at the value of2T

). Dichotomization around the populationk ! L/2 p 2
mean to produce the binary outcome yielded results sim-
ilar to the quantile-defined thresholds just described (data
not shown). In addition to these results with fixed param-
eters, we conducted a set of 5-SNP simulations in which
samples of haplotypes were obtained using the forward
evolutionary model of drift with recombination.32 The
simulations are “forward” to distinguish them from a
popular coalescent approximation of this process, which
operates “backwards” in time. These forward simulations
are a typical implementation of a genetic drift with ad-
mixture population-genetic model and with nonover-
lapping generations and recombination modeled as a
Poisson process. A very similar model was used by Zay-
kin et al.2 The effects that determine susceptibilities were
sampled from a template that induces pairwise ortho-
gonality, with added normal variability. In contrast to
the simulation just described, all population parameters
were sampled anew prior to each simulation. This al-
lowed averaging across a variety of models. The power
is not necessarily expected to be reduced in this setup.
In general, larger variance associated with haplotype ef-
fects would result in higher power values of the tests. In
addition, the induced “marginal effects” at the level of
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Table 2

Power Values for the 6-SNP Haplotype Heterogeneity Model (Simulation I)

Prevalence Haplotype Test 2T ( )Z k p 11 ( )Z k p 21 (Correlation)Z2 ( )′Z D2 min(P)

.05 .388 .081 .365 .417 .663 .654 .073

.50 .251 .081 .196 .301 .454 .443 .073

NOTE.— for the test corresponds to ∼15% of variation accounted by principal components.k p 1 Z1

for the test corresponds to ∼25% of variation accounted by principal components. min(P) pk p 2 Z1

single-SNP permutation-based trend (allelic) test.

SNPs and dilocus haplotypes are dependent on both the
susceptibility values and the population frequencies.

In these simulations, we observed that the com-5 # 5
posite-LD matrix comparison tests ( ) still had higherZ2

power on average (88% power for the correlation and
75% for ) than either the generalized (55% power)′ 2D T
or the haplotype-specific test (60% power). Thus, these
simulations confirmed that the power of the LD-contrast
tests is still the highest, as was found to be the case for
the fixed set of effects and frequencies.

Simulation II: 15- and 30-SNP Haplotypes

An evaluation of the tests in which the trait variation
is determined by the diploid pairs of haplotypes (diplo-
types) was performed using simulations. For this model,
we used much larger—15-SNP and 30-SNP—haplotypes
sampled from a population generated by the forward evo-
lutionary model of drift with recombination.32 The phe-
notype model was similar to the one described above.
We considered a more general, diplotype-driven model,
in which normally distributed diplotype, rather than hap-
lotype, effects were added to the trait value, together with
the common normal error. New diplotype effects were
sampled prior to each simulation. In this set of simu-
lations, the trait values have been dichotomized around
the mean to produce a binary trait. The LD-contrast
tests were verified to have the correct type I error by
setting the population genetic effects to zero and ex-
amining quantiles of the resulting P value distribution.

This set of simulations generated relatively high pair-
wise LD. The two middle quartiles for the population
LD distribution (measured by ) were estimated to berAB

0.413 and 0.975, with the median value of 0.735. One
of the 30-SNP samples from this simulation study was
used to produce an illustrative graphic plot of pairwise
LD (fig. 2). The plot illustrates LD differences between
the upper (cases) and the lower (controls) samples. For
example, there is a region of high LD around the marker
pair (21,8) in the cases, whereas this region has relatively
low LD in the controls. Nonetheless, statistical tests, as
described here, are needed to assess the extent to which
these LD differences can be attributed to the sampling
variation.

As before, we assumed haplotypic phase to be un-
known. Many published haplotype association–mapping

algorithms would not be computationally feasible, given
the large number of SNPs. The generalized test26 was2T
used for the comparison, as was the single SNP–based
“min(P)” shuffling test, in which the significance of the
allelic trend test with the maximum value of x2 is ob-
tained via permutations.33,34

It should be noted that the test has high power2T
when alleles of multiple SNPs independently contribute
to the trait, because the test compares means of SNP
scores between the case and the control groups. In both
15-SNP and 30-SNP settings, we observed similar power
for the and tests.2T Z2

For the 15-SNP data, the power was 0.71 for and2T
, when was based on the correlation LD matrixZ Z2 2

(table 3). The power for the test based on the stan-Z2

dardized matrix was lower, 0.62. The power of the sin-
gle-SNP permutation-based trend (allelic) test was 0.57.
Thus, despite taking into account the correlation be-
tween SNPs, single-marker tests had relatively lower
power. We computed the eigenvector statistic for val-Z1

ues of k required to account for various proportions of
the variance ( ), as can be determined by the0.5,0.75,0.9
cumulative sum of eigenvalues (such an approach has
been employed elsewhere by Meng et al.23). The maxi-
mum value of k was set to 7. This resulted in k equal
to 1–3 ( ) for 0.5 of the variance, k equal to 1–k̄ p 1.27
6 ( ) for 0.75 of the variance, and k equal tok̄ p 3.97
6–7 ( ) for 0.9 of the variance. Fixed values ofk̄ p 6.99
k have been tried as well; however, we could not achieve
power comparable to that of the test based on . Be-Z2

cause of higher LD in this set of simulations, the best
power was observed at intermediate values of k.

Similar relative power was observed for the 30-SNP
data. When was based on the correlation LD matrix,Z2

the power was 0.82 for the test, 0.85 for the test,2T Z2

and 0.77 for the test based on the standardized LDZ2

( ). The eigenvector statistic–based test ( ) had highest′D Z1

power, 0.62, at the proportion of the variance equal to
0.75, which corresponded to ( ). The¯k p 2–8 k p 5.71
single-SNP permutation-based trend test had very low
power, 0.17.

Although the LD-matrix comparison test was found
to have power similar to the generalized , our results2T
suggest that these tests tend to identify essentially dif-
ferent attributes of genetic association in a region. The
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Figure 2 Composite LD color plot (sample data set from Simulation II with 29 SNPs). Above the diagonal, . Below the diagonal,′D̂Y

. -based LD difference . The scale of colors from blue (lower values) to red (higher values) corresponds to the increase in′ ′ �3D̂ D P ! 1 # 10N

.′abs(D )

left graph of figure 3 shows a plot of P values obtained
from the test versus the corresponding P values of2T

(15-SNP simulation). The correlation between the twoZ2

tests was quite low (0.36), and over half of test P2T
values 1.05 were !.05 when evaluated with . On theZ2

other hand, the right graph for the correspondence be-
tween and statistics shows very large correlationZ Z1 2

(0.91). The test for the difference between the caseZ1

group and the control group principal components had
lower power than the test based on , which shiftedZ2

points up from the diagonal on the second graph.

Discussion

Genetic association studies typically report characteriza-
tion of LD in candidate regions with LD plots—that
is, using graphic representation of LD matrices.9 These
plots are usually given for population control samples,
although LD plots for case samples are reported and are
compared (visually) with the LD pattern in control sam-
ples. Rubio et al.35 compared graphic plots of LD be-
tween multiple sclerosis case and control samples in the

human leukocyte antigen region and concluded that
values appeared slightly higher in the case sample.′D

Suarez et al.36 compared specifically composite LD co-
efficients between samples of alcoholics and nonalco-
holics and concluded that there was similarity in the
pattern of LD, “although there is the suggestion of less
disequilibria in the alcoholic sample than among the
controls” (p. 14). We suggest that such comparisons be
complemented by a statistical procedure. Moreover, we
found that the power of comparing LD patterns is com-
parable to that of traditional mapping techniques, or is
even superior in certain situations.

The standardized LD coefficient remains a popu-′D
lar measure that accounts for dependence of the LD
range on allele frequencies. However, one of the prob-
lems with an EM-based estimator is the requirement of
the random union of haplotypes (haplotypic HWE). We
resolve this problem by accommodating results of Ham-
ilton and Cole15 and Zaykin,14 and we suggest that the
plots can be based on the standardized composite co-
efficient. Straightforward definitions of the composite
and standardized composite LD, as well as the efficiency
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Table 3

Power Values for the Diplotype-Driven Model with 15 and 30 SNPs (Simulation II)

SNPs 2T (50% Variation)Z1 (75% Variation)Z1 (90% Variation)Z1 (Correlation)Z2 ( )′Z D2 min(P)a

15 .707 .478 .423 .407 .711 .617 .569
30 .818 .563 .621 .488 .847 .773 .171

a min(P) p single-SNP permutation-based trend (allelic) test.

of the computations, make it easy to compare LD plots
between samples of cases and controls. Such comparisons
can be done “by eye,” but a statistical procedure is de-
sirable. An asymptotic test to compare two LD (i.e., co-
variance) matrices can be constructed; however, such tests
are rather sensitive to distributional assumptions.37,38 In
addition, the distribution theory and inference become
much more complicated once normalizations of covari-
ance (e.g., correlation) are considered.25 Because of these
concerns, we adopted the permutational framework to
provide comparison of LD matrices based on the com-
posite coefficient and its standardized version.

Statistical approaches specifically tailored for identifi-
cation of haplotype effects are being rapidly developed.39

There is strong biological evidence that entire haplotypes
rather than single SNPs are important in determining
the trait variation. Therefore, identification and estima-
tion of haplotype effects are important issues. Still, the
multiplicity of haplotypes and phase uncertainty ad-
versely affect statistical power. Multilocus “scoring” ap-
proaches that capitalize on marginal effects of individual
SNPs are being developed as well. These approaches in-
directly take into account the interaction between SNPs
while adjusting for LD.26,40

In particular, these approaches are expected to have
good power under models that induce substantial mar-
ginal SNP effects and strong LD. Although haplotype-
based approaches and scoring methods, such as the gen-
eralized test, provide relatively high power in the2T
respective situations, it has been noted that the extent
of LD can be markedly different between the case and
the control groups in a region of genetic association.8

Therefore, a case-control LD comparison appears to be
a promising addition to existing methods of charac-
terizing multilocus associations. Further, Nielsen et al.10

examined a two-SNP situation and found that a test
comparing LD coefficients can be more powerful than
a single-locus or a haplotypic test.

We extend these results to the case of multiple SNPs.
The LD-contrast test, like any other method, would not
be expected to have superior power across all suscep-
tibility models. One virtue of the LD-contrast test is the
reduced number of parameters (e.g., there is only a single
LD coefficient in the two-SNP case, although there are
four haplotypes), and, as we discuss here, there are cer-
tain models that may result in good power of the LD-

contrast test. A prominent example is when multilocus
susceptibilities induce orthogonal-like distribution of di-
locus haplotypes in cases and controls. Heterogeneity
models in which mutations are associated with haplo-
types that are distinct, with respect to a large proportion
of the alleles that they carry, may result in such ortho-
gonality for some of the dilocus pairs. To illustrate why
the LD contrast test can work well under these scenarios,
denote two alleles at either of two loci by 1 and 2:

. The disequilibrium co-A { 1, B { 1, a { 2, b { 2c
efficient can be written in terms of the haplotype fre-
quencies as . The disequilib-D { D p P P � P PAB 11 11 22 12 21

rium is large in a particular sample if the haplotypes 11
and 22 are overrepresented compared with the two other
types. Therefore, the ratio tends to deviatecases controlsD /DAB AB

from 1 when the orthogonal haplotypes 11 and 22 are
overrepresented in one of the groups. A similar situation
holds with the composite LD definition, because the
value of the sum increases with . More-D � D DAB A/B AB

over, we found that, whereas the test and the LD2T
contrast test provide similar power under a general dip-
lotype-driven model, the correlation between P values
of the two tests is low (left graph of fig. 3), which sug-
gests that these approaches distinguish between different
aspects of association. That is, the LD comparison tests
are more sensitive to interactions that tend to induce
small marginal effects associated with individual SNPs.
The magnitude of marginal effects is largely unpredict-
able in practice, since it is determined by both multilocus
susceptibility values and the corresponding population
frequencies. Therefore, it would vary from population to
population, given the same penetrance configuration.

The question remains: which measure, or the cor-′D

relation r, is more appropriate for the comparison of
patterns of LD? Two samples can have equal LD cor-
relation values even when the standardized LD coeffi-
cients are unequal, and vice versa,41 making the a priori
choice of the statistic somewhat difficult. An appealing
feature of the standardization by the LD bounds (“di-
prime-ization”) in that it makes the measure indepen-
dent of single locus frequencies. The independence is in
the sense of the range that the coefficient can take. The
allele frequencies very much remain a part of that def-
inition,42,43 and it would be a mistake to interpret the
standardized coefficient as being free of dependencies on
the allele or genotype frequencies. On the other hand,
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Figure 3 Correspondence between P values (Simulation II with 15 SNPs). Left, Plot of versus �log of P values (low correlation).2T Z2

Right, Plot of versus �log of P values (high correlation).Z Z1 2

the correlation coefficient enjoys well-defined statistical
and population-genetic properties and gives a straight-
forward extension to the principal components–based
inference. The simulations (Simulation II) show some-
what higher power of the tests based on the correla-
tion, and the CYP2D6 data set considered here pro-
vides an example in which the test based on the cor-
relation provides slightly stronger evidence of associa-
tion ( vs. ), although both results canP p .033 P p .061
be considered indicative of association. In the absence
of a specific hypothesis, it seems reasonable to employ
the correlation-based analysis and to reserve the -based′D

LD comparisons for more-detailed characterizations of
LD. Nevertheless, the correlation and the -based com-′D

parisons address different hypotheses, and both tests have
their value. Our choice of a particular simulation design
might have favored greater deviations from the equality
of correlations. The orthogonal model (Simulation I), in
which the correlation and the values were almost iden-′D

tical, showed similar power of the two tests.
In our simulations, we found that the squared differ-

ence–based statistic has better power than the statistic
based on the comparison of the principal components,
although the correlation between P values obtained for
these tests is high. The squared difference is more of an
omnibus test. For example, if the amount of LD is pro-

portionally higher among the cases for all pairs of mark-
ers, the principal-components test will lack power. In
addition, there is uncertainty about the number of com-
ponents to use. Still, such tests can provide a description
of the multivariate structure of LD. The principal com-
ponent–based analysis seems to be most valuable at the
descriptive stage once the association is established. The
default value for the number of principal components
(k) can be set to Krzanowski’s recommendation25 to use
the largest integer k that is smaller than .L/2

In summary, we suggest that statistical approaches to
compare pairwise LD matrices between the case and the
control samples are useful additions to already-available
statistical-mapping tools. As with single-marker case-con-
trol analysis, population heterogeneity is an issue. Further
research should emphasize extending these methods to
accommodate family data and to provide methods robust
to population stratification and admixture.
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