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a b s t r a c t

It is well known that the two simple algorithms for the classic bin packing problem,NF and
WF both have an approximation ratio of 2. However, WF seems to be a more reasonable
algorithm, since it never opens a new bin if an existing bin can still be used.
Using resource augmented analysis, where the output of an approximation algorithm,

which can use bins of size b > 1, is compared to an optimal packing into bins of size 1, we
give a complete analysis of the asymptotic approximation ratio ofWF and of NF, and use it
to show thatWF is strictly better than NF for any 1 < b < 2, while they have the same
asymptotic performance guarantee for all b ≥ 2, and for b = 1.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Bin packing has been extensively studied in both the offline and the online environments and has numerous applications
[8,11,7,4,3]. In the basic problem, the goal is to pack a sequence of items of sizes s1, s2, . . ., where si ∈ (0, 1], into aminimum
number of unit-capacity blocks, called bins, such that the total size of the items in each bin does not exceed 1. An item is
identified with its index, and for a set of items X ⊆ {1, 2, . . .}, we denote s(X) =

∑
j∈X sj. Thus X can be packed in a bin if

s(X) ≤ 1. If the problem is online, then the items must be packed irrevocably one by one, while future items are unknown
at the time of packing. The goal is to minimize the number of bins containing at least one item, also called used bins. The
operation of assigning a first item to a new bin is called opening a new bin.
For an algorithmA, we denote its cost, i.e., the number of used bins in its packing, on an input I , byA(I) (or simplyA).

The cost of an optimal solution Opt, for the same input, is denoted by Opt(I) (or Opt). The asymptotic approximation ratio
allows comparison of the costs for inputs for which the optimal cost is sufficiently large. The asymptotic approximation ratio
ofA,RA is defined as follows.

RA = lim
N→∞

(
sup

I:Opt(I)≥N

Alg(I)
Opt(I)

)
.

In this paperweonly consider the asymptotic approximation ratio,which is the commonmeasure for bin packing algorithms.
Thus we use the term approximation ratio throughout the paper, with the meaning of asymptotic approximation ratio.
In the early days of the study of bin packing, several natural algorithms were introduced. Two such algorithms are Next

Fit (NF) andWorst Fit (WF) [7]. The two algorithms were presented as offline heuristics, but are in fact online algorithms
which process the items as a list. NF keeps a single active bin at each time. If the next unpacked item cannot be packed into
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the current active bin, then it is closed and never used again, while a new active bin is opened in order to accommodate
the item.WF packs the next item in a previously opened bin with the minimum total packed size of items if such a bin can
accommodate this item as well. Only if no such bin exists is a new bin opened in order to accommodate the item. ThusWF
is intuitively the better algorithm, though NF is more efficient; it is a bounded space algorithm. In fact, Worst Fit is provably
better than Next Fit. The following result (see also [2]) actually applies to Next Fit compared to any Any Fit algorithm.
Proposition 1. On any sequence of items, I, NF will use at least as many bins asWF.
Proof. Let BNF(i) denote the bin number whereNF places the item thatWF places as the first in bin i. We show by induction
on i that BNF(i) ≥ i for all i. Both values are 1 for i = 1. Suppose it holds for some value t . ThenWF opens a new bin, t ,
with item j and NF places j in some bin t ′ ≥ t . Consider the item, k, whereWF opens bin t + 1. If NF has not already opened
bin t ′ + 1, it has packed all items between items j and k in bin t ′.WF cannot have put more items in bin t , so bin t ′ in NF’s
packing is at least as full as bin t inWF’s packing. Thus,NFmust open bin t ′+1 if it has not already done so. Since BNF(i) ≥ i
for all i, NF uses at least as many bins asWF. �

However, both WF and NF have approximation ratios of 2 [7], so the standard measure does not distinguish between
these two algorithms.
We use resource augmentation [9,5] in order to analyze the two algorithms and compare their behavior. In resource

augmentation, an approximation (or online) algorithm is equippedwith resources which are larger than those of an optimal
algorithmwhich is it compared to. For bin packing, resource augmentationwith a ratio b > 1means that the approximation
algorithm may use bins which are b times larger than those of the optimal algorithm [5]. Specifically, we assume that the
algorithm uses bins of size 1, while, an optimal algorithm uses a bin of size 1b . Clearly, all item sizes are in (0,

1
b ].

Our results. We show that the approximation ratio ofWF,RWF(b), is:

RWF(b) =

{ 2b
3b−2 , for b ∈ [1, 2]

1
b−1 , for b ∈ [2,∞).

We show that the approximation ratio of NF,RNF(b), is:

2t2b b− 2t
2
b − 4tb + 2+ 2btb

t2b b+ 2btb − t
2
b − 3tb − 2+ 2b

,

where tb = b 1b−1c. Thus, for b > 2, tb = 0 and the ratio becomes
1
b−1 . If tb =

1
b−1 , i.e., b = 1+

1
k for some integer k ≥ 1, the

ratio becomes 2b . Moreover, in the case tb = 1, i.e.,
3
2 < b ≤ 2, we get the ratio

4b−4
5b−6 , for tb = 2, i.e.,

4
3 < b ≤

3
2 , we get the

ratio 6b−75b−6 , for tb = 3, i.e.,
5
4 < b ≤

4
3 , we get the ratio

24b−28
17b−20 etc. In the case b = 1 we have tb = ∞, and the approximation

ratio is 2.
For the analysis we use weight functions, which are related to the weight function originally introduced for the analysis

of First Fit (FF) [8,11]. We use clever generalizations of this type of weight function to achieve tight bounds for all values of
b.
Previouswork. Resource augmentation for bin packingwas studied by Csirik andWoeginger [5]. They have studied bounded
space bin packing, where a constant number of bins can be available at any time to receive new items (active bins). If the
maximum number of open bins is reached, and a new bin needs to be used, one of the active bins must be closed and never
used again. They defined a function ρ(b), and extended the Harmonic algorithms of [10] for the case of b > 1. The worst
case ratio of this algorithm comes arbitrary close to a certain bound ρ(b). They also proved that no online bounded space
algorithm can have an approximation ratio smaller than ρ(b) in the worst case. Unbounded space resource augmented
bin packing was studied in [6], where improved algorithms are designed, and lower bounds for general online bin packing
algorithms are proved.

2. Some easy cases for the analysis of NF and WF

In this section, we show some simple bounds on the approximation ratio of the two algorithms. These bounds are in fact
tight in a part of the intervals. The more difficult cases are discussed later.
Lemma 2. The approximation ratios of NF andWF are at most 1

b−1 , and at most
2
b for b ≤ 2.

Proof. Since no item has a size of more than 1b , every bin except for possibly the last opened bin has a total size of items of
at least 1 − 1

b =
b−1
b . Since a bin of an optimal packing can contain a total of at most

1
b , an approximation ratio of at most

1
b−1 follows.
On the other hand, since for bothWF andNF, the sum of items in two consecutive bins ismore than 1, if q bins are opened,

the total size of items is more than q−12 , so these items require more than
b(q−1)
2 bins in a packing into bins of size 1b , that is,

at least bq2 for b ≤ 2, and an approximation ratio of at most
2
b follows. �

We next show that in the case b ≥ 2, bothWF andNF have an approximation ratio of exactly 1
b−1 , i.e., the approximation

ratio for b = 2 is 1, it is monotonically decreasing, and tends to zero as b grows.
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Theorem 3. Let b ≥ 2. The approximation ratio of both NF andWF is 1
b−1 .

Proof. By Lemma 2, we only need to prove a lower bound. The following lower bound construction is valid for both
algorithms for b ≥ 2. Let N be a large integer. Let p = b(b − 2)Nc + 1. Then (b − 2)N < p ≤ (b − 2)N + 1 or 2 + p

N > b
and pN ≤ b− 2+

1
N .

The sequence consists of N batches of p + 1 items, each of which contains an item of size 1b , followed by p items of size
1
Nb . The total size of the items of one batch is

1
b +

p
Nb . A new item of size

1
b cannot be added to a bin which contains all items

of one batch since the total size would be at least 2b +
p
Nb > 1.

BothWF andNF need to open a new bin for every large item, and then all small items are packed together with the larger
item.
In an optimal packing into a bins of size 1b ,N bins are completely filledwith items of size

1
b . Each bin can receiveN smaller

items, thus p additional bins are used. The approximation ratio is at least N
N+p ≥

1
1+b−2+ 1N

=
1

b−1+ 1N
, which tends to 1

b−1 for

large N . �

We next consider the approximation ratio of NF for cases where b = 1+ 1
t , for some integer t ≥ 2.

Theorem 4. Let b = 1+ 1
t for an integer t ≥ 2. The approximation ratio of NF is exactly

2
b .

Proof. Let N > t be a large integer and consider an input with Nt batches of four jobs, of the sizes t
t+1 ,

t
(t+1)N ,

1
t+1 ,

t
(t+1)N .

We claim thatNF uses two new bins for each batch, and these bins have a total packed size of tN+t
(t+1)N and

N+t
(t+1)N , respectively.

For N > t , both of these total packed sizes are less than 1. Indeed, the third item cannot be packed into a bin of the first type
since tN+t

(t+1)N +
N

N(t+1) > 1, and the first item cannot be packed into a bin of the second type since
N+t
(t+1)N +

tN
(t+1)N > 1 as

well. Thus 2Nt bins are used.
An optimal packing into bins of size 1b =

t
t+1 uses Nt bins for the items of the first type, N bins for the items of the third

type, and 2t bins for the other items.
Thus, the approximation ratio is at least 2Nt

Nt+2t+N , which tends to
2t
t+1 =

2
b for large N . �

3. A complete analysis of Next Fit

In this section, we analyze NF for values of b which satisfy t+2t+1 < b < t+1
t , for some integer t ≥ 1. An alternative

definition of t is t = b 1b−1c. These are the missing cases for NF.
We define the following weight function of the items. In both the analysis of NF and the analysis ofWF for the additional

cases, we use piecewise linear functions defined on (0, 1b ]. Thus the weight of an item is only based on its size. For a set
X ⊆ {1, 2, . . .}, and any function g : (0, 1b ] → R, we let g(X) =

∑
i∈X g(si).

Let Ii, for 0 ≤ i ≤ t be defined as

Ii =
(
i
(
1−

1
b

)
,
t − i+ 1
b

− (t − i)
]
,

and let Ji, for 1 ≤ i ≤ t be defined as

Ji =
(
t − i+ 2
b

− (t − i+ 1), i
(
1−

1
b

)]
.

Note that for any i, i(1− 1
b ) <

t−i+1
b − (t− i) holds since b <

t+1
t , and

t−i+2
b − (t− i+1) < i(1−

1
b ) holds since b >

t+2
t+1 .

For i ≥ 1, Ji ∪ Ii = ( t−i+2b − (t − i+ 1),
t−i+1
b − (t − i)], and I0 = (0,

t+1
b − t], therefore

⋃
1≤i≤t Ji ∪

⋃
0≤i≤t Ii = (0,

1
b ].

We define the weight functionw as follows.

w(x) =
{
x+ i

(
(t + 1)− t+2

b

)
, for x ∈ Ii, 0 ≤ i ≤ t

2x− i
( t+1
b − t

)
, for x ∈ Ji, 1 ≤ i ≤ t .

In the proofs of Claim 5 and Lemma 7, the breakpoints between the I ’s and J ’s are considered. We let p2i denote the point
i(1 − 1

b ) for 0 ≤ i ≤ t and p2i+1 is
t−i+1
b − (t − i), for 0 ≤ i ≤ t . These breakpoints are pj for 1 ≤ j ≤ 2t , while p0 and

p2t+1 are the boundaries of the domain of the function w. Note that by definition, 1 − p2i = p2(t−i+1)+1, for 1 ≤ i ≤ t , and
1−p2i+1 = p2(t−i+1), for 1 ≤ i ≤ t . We analogously define p2t+2 = (t+1)(1− 1b ) and p2t+3 =

t−(t+1)+1
b − (t− (t+1)) = 1.

We have p2t+3 + p0 = 1 and p2t+2 + p1 = 1, and thus pj + p2t+3−j = 1 for any 0 ≤ j ≤ 2t + 3. We also letw(0) = 0.

Claim 5. The functionw is continuous and monotonically increasing in (0, 1b ].
Proof. Sincew is piecewise linear, with positive slopes, it is sufficient to prove that it is continuous at breakpoints.
The value of the function for p2i = i(1− 1

b ) for 1 ≤ i ≤ t is

2i
(
1−

1
b

)
− i

(
t + 1
b
− t
)
= i

(
t + 2−

t + 3
b

)
,
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while the value for p2i + ε, for a sufficiently small value of ε, is

i
(
1−

1
b

)
+ ε + i

(
(t + 1)−

t + 2
b

)
= i

(
t + 2−

t + 3
b

)
+ ε.

In the second case, the value of the function for p2i+1 for 0 ≤ i ≤ t − 1 is

t − i+ 1
b

− (t − i)+ i
(
(t + 1)−

t + 2
b

)
= i

(
t + 2−

t + 3
b

)
+
t + 1
b
− t

while the value for p2i+1 + ε, for a sufficiently small value of ε, is

2
(
t − i+ 1
b

− (t − i)+ ε
)
− (i+ 1)

(
t + 1
b
− t
)
= i

(
t + 2−

t + 3
b

)
+
t + 1
b
− t + 2ε.

Thus the function is continuous and therefore, monotonically increasing. �

Lemma 6. Let X be a set of items such that s(X) ≤ 1
b , thenw(X) ≤

t2b+tb−t2−2t+1
b .

Proof. Consider a set X . We first show that we can assume without loss of generality that all items come from the intervals
I0, I1 and J1.
Consider an item j of Ii for i > 1. Replace this item with i items of size

sj
i . The resulting items have a size in(

1−
1
b
,
t − i+ 1
bi

−
t − i
i

]
⊆ I1,

since t−i+1bi −
t−i
i ≤

t
b − (t − 1) is equivalent to t − i + 1 − bt ≤ ti − tbi or bt(i − 1) ≤ ti − t + i − 1 = (t + 1)(i − 1).

Using i > 1, we get that this is equivalent to b ≤ t+1
t which clearly holds. The total weight of the new items is therefore

i · ( sji + t + 1−
t+2
b ), which is equal to the weight of the original item.

Consider an item j of Ji for i > 1. Replace this item with i items of size sj
i . The resulting items have a size in

( t−i+2bi −
t−i+1
i , 1 − 1

b ] ⊆ J1, since
t−i+2
bi −

t−i+1
i ≥

t+1
b − t is equivalent to t − i + 2 − bt + ib − b ≥ ti + i − tbi

or

b(t + 1)(i− 1) ≥ ti− t + 2i− 2 = (t + 2)(i− 1).

Using i > 1, we get that this is equivalent to b ≥ t+2
t+1 which clearly holds. The total weight of the new items is therefore

i · (2 sji − (
t+1
b − t)), which is equal to the weight of the original item.

Let KJ and KI denote the subsets of items in X , of sizes in J1 and in I1, respectively, and let kJ = |KJ | and kI = |KI |.

w(X) =
∑
j∈X

sj +
∑
j∈KJ

sj − kJ

(
t + 1
b
− t
)
+ kI

(
(t + 1)−

t + 2
b

)
.

Clearly,
∑
j∈KJ
sj ≤ 1

b −
∑
j∈KI
sj ≤ 1

b − kI(1−
1
b ) and

∑
j∈KJ
sj ≤ kJ(1− 1

b ).

We consider two cases. If 1b − kI(1−
1
b ) ≤ kJ(1−

1
b ), we have kI + kJ ≥

1
b−1 , and since kI and kJ are integers and

1
b−1 is

not, we get kI + kJ ≥ d 1b−1e = t + 1. Thus using
∑
j∈X sj ≤

1
b we get,

w(X) ≤
1
b
+
1
b
− kI

(
1−

1
b

)
− kJ

(
t + 1
b
− t
)
+ kI

(
(t + 1)−

t + 2
b

)
=
2
b
− (kI + kJ)

(
t + 1
b
− t
)
≤
2
b
− (t + 1)

(
t + 1
b
− t
)
=
t2b+ tb− t2 − 2t + 1

b
.

If 1b − kI(1−
1
b ) ≥ kJ(1−

1
b ), we have kI + kJ ≤

1
b−1 , and since kI and kJ are integers, we get kI + kJ ≤ b

1
b−1c = t . Thus

w(X) ≤
1
b
+ kJ

(
1−

1
b

)
− kJ

(
t + 1
b
− t
)
+ kI

(
(t + 1)−

t + 2
b

)
=
1
b
+ (kI + kJ)

(
(t + 1)−

t + 2
b

)
≤
1
b
+ t

(
(t + 1)−

t + 2
b

)
=
t2b+ tb− t2 − 2t + 1

b
. �

We next analyze the weight in bins of NF. For that, we define a modified weight function w′ by w′(x) = w(x) − w̃(x),
where w̃(x) = x. Denote the bins used by NF by B1, B2, . . . , Bk′ , where k′ = NF, that is, Bi is the set of items packed into the
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ith bin. For a bin Bi let γi = s(Bi) denote the total size of items in Bi, and let τi denote the size of the first item ever packed
into Bi. For a bin Bi (i < k′) we define a new weight

f (Bi) = w̃(Bi)+ w′(τi+1) = s(Bi)+ w′(τi+1).

If k′ is odd then let k = k′− 1 and otherwise k = k′− 2. Thus k is even and NF ≤ k+ 2. Let n denote the number of items
in the input. Clearly,

k∑
i=1

f (Bi) <
n∑
j=1

w̃(sj)+
n∑
j=1

w′(sj) =
n∑
j=1

w(sj).

Lemma 7. Let i < k. Then f (Bi)+ f (Bi+1) ≥ t2 + 2t + 2− (t+1)(t+2)
b .

Proof. Recall the breakpoints pi of the weight function w. Let Y , Z be such that s(Bi) ∈ Y = (py, py+1] and s(Bi+1) ∈ Z =
(pz, pz+1], where y, z ≤ 2t + 2. Note that i + 1 < k′, thus the bin Bi+1 is not the last bin, and an item was packed into bin
Bi+2, so τi+2 is well defined. We have τi+1 > 1− s(Bi) and τi+2 > 1− s(Bi+1).
By definition, 1 − s(Bi) ∈ [p2t+2−y, p2t+3−y) and 1 − s(Bi+1) ∈ [p2t+2−z, p2t+3−z). We next show y + z ≥ 2t + 2. Using

s(Bi)+ s(Bi+1) > 1, we get py+1+ pz+1 > 1. Since py+1 = 1− p2t+2−y, we get pz+1 > p2t+2−y. Therefore, z+ 1 > 2t+ 2− y
or z + y > 2t + 1. Since z, y are integers, then z + y ≥ 2t + 2. If one of z and y is odd and the other one is even, then
z + y ≥ 2t + 3.
We next calculate

f (Bi)+ f (Bi+1) = s(Bi)+ s(Bi+1)+ w′(τi+1)+ w′(τi+2).

Consider a bin B`, where ` ∈ {i, i + 1}, and s(B`) ∈ (pv, pv+1] (hence v ∈ {y, z}). Note that since w′ is a continuous
piecewise linear function whose slopes are non-negative, we conclude that w′ is monotonically non-decreasing function,
and hence f (B`) = s(B`)+ w′(τ`+1) ≥ s(B`)+ w′(1− s(B`)). We next obtain a lower bound on f (B`), this bound depends
on the parity of v.

• If v is even, thenw′(1− s(B`)) = 2t+2−v
2 (t + 1− t+2

b ), and

s(B`)+ w′(1− s(B`)) ≥
v

2

(
1−

1
b

)
+
2t + 2− v

2

(
t + 1−

t + 2
b

)
= (t + 1)

(
t + 1−

t + 2
b

)
+
v

2

(
t + 1
b
− t
)
.

• If v is odd, then

s(B`)+ w′(1− s(B`)) ≥ s(B`)+ 1− s(B`)−
2t + 3− v

2

(
t + 1
b
− t
)
= 1−

2t + 3− v
2

(
t + 1
b
− t
)
.

We consider three cases depending on the parity of y and z, and in each of these cases, we show that f (Bi) + f (Bi+1) ≥
t2 + 2t + 2− (t+2)(t+1)

b .

• Both y and z are odd. In this case, using t+1b − t > 0 and y+ z ≥ 2t + 2,

f (Bi)+ f (Bi+1) ≥ 1−
2t + 3− y

2

(
t + 1
b
− t
)
+ 1−

2t + 3− z
2

(
t + 1
b
− t
)

= 2+
y+ z − 4t − 6

2

(
t + 1
b
− t
)

≥ 2− (t + 2)
(
t + 1
b
− t
)
= t2 + 2t + 2−

(t + 2)(t + 1)
b

.

• The sum of y and z is odd. Consider the case where y is odd and z is even, the other case is symmetric. In this case we
have y+ z ≥ 2t + 3. Since t+1b − t > 0, we conclude the following:

f (Bi)+ f (Bi+1) ≥ 1−
2t + 3− y

2

(
t + 1
b
− t
)
+ (t + 1)

(
t + 1−

t + 2
b

)
+
z
2

(
t + 1
b
− t
)

= t2 + 2t + 2−
(t + 2)(t + 1)

b
+

(
y+ z − 2t − 3

2

)(
t + 1
b
− t
)

≥ t2 + 2t + 2−
(t + 2)(t + 1)

b
.

• Both y and z are even. If y+ z ≥ 2t + 4, then
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f (Bi)+ f (Bi+1) ≥ (t + 1)
(
t + 1−

t + 2
b

)
+
y
2

(
t + 1
b
− t
)
+ (t + 1)

(
t + 1−

t + 2
b

)
+
z
2

(
t + 1
b
− t
)

≥ 2t2 + 4t + 2−
2(t + 1)(t + 2)

b
+ (t + 2)

(
t + 1
b
− t
)
= t2 + 2t + 2−

(t + 1)(t + 2)
b

.

Otherwise, since the sum of z and y is even, and 2t + 2 ≤ y+ z ≤ 2t + 3, then y+ z = 2t + 2.

f (Bi)+ f (Bi+1) ≥ s(Bi)+ s(Bi+1)+
2t + 2− y

2

(
t + 1−

t + 2
b

)
+
2t + 2− z

2

(
t + 1−

t + 2
b

)
≥ 1+

4t + 4− y− z
2

(
t + 1−

t + 2
b

)
= 1+ (t + 1)

(
t + 1−

t + 2
b

)
= t2 + 2t + 2−

(t + 1)(t + 2)
b

. �

Theorem 8. The approximation ratio of NF for t+2t+1 < b <
t+1
t is exactly

2t2b− 2t2 − 4t + 2+ 2bt
t2b+ 2bt − t2 − 3t − 2+ 2b

.

Proof. Let D denote the set of items. By Lemma 6,w(D) ≤ t2b+tb−t2−2t+1
b Opt. By Lemma 7 and the definition of k,

w(D) ≥
k
2
·
t2b+ 2bt − t2 − 3t − 2+ 2b

b
≥ (NF− 2)

t2b+ 2bt − t2 − 3t − 2+ 2b
2b

.

Thus

NF ≤
2t2b− 2t2 − 4t + 2+ 2bt
t2b+ 2bt − t2 − 3t − 2+ 2b

Opt+ 2.

For the lower bound, let N be a large integer, divisible by t . Let ε = t+1− t+2b
4N . The input first contains N batches. Each of

these batches consists of four items of the following sizes: 1b , ε, 1 −
1
b , ε. Every bin will contain an item of size

1
b or 1 −

1
b ,

followed by an item of size ε.
Next, the following sequence of additional items is repeated b t+1−tb

t(tb+2b−t−3)Nc times (note that t + 1 − tb > 0 and
tb+ 2b− t − 3 > 0, by the definition of t and using b > 1).
These are one item of size 1b , 4N + 1 items of size ε, one item of size

t+1
b − t and an additional 4N + 1 items of size ε.

Note that t+1b − t > 0 and that (4N+1)ε = 4N
t+1− t+2b
4N +ε = t+1− t+2b +ε. Since

1
b +

t+1
b − t+ t+1−

t+2
b +ε = 1+ε,

each item of size t+1b − t or
1
b , including the first such item of this part of the input, starts a new bin.

The number of bins used by NF is at least 2N + 2 t+1−tb
t(tb+2b−t−3)N − 2.

Note that t+1−tb
t(tb+2b−t−3) <

1
t , since this is equivalent to tb + 2b − t − 3 + tb − t − 1 > 0 or to b(t + 1) > t + 2, which

holds by the definition of t .
Note that there are at most N + t+1−tb

t(tb+2b−t−3)N items of size
1
b , N items of size 1 −

1
b , at most

t+1−tb
t(tb+2b−t−3)N items of size

t+1
b − t , and at most 2N + 2(4N + 1)(

t+1−tb
t(tb+2b−t−3)N) items of size ε.

We next consider a packing into bins of size 1b . There are at most N +
t+1−tb

t(tb+2b−t−3)N bins with one item of size
1
b . Since

(1− 1
b )t ≤

1
b , t items of size 1−

1
b are packed into one bin, resulting in

N
t bins. Each such bin can either receive an item of

size 1b − t(1−
1
b ) =

t+1
b − t , or at least⌊

t+1
b − t
ε

⌋
=

 t+1
b − t
t+1− t+2b
4N

 ≥ 4N t + 1− bt
bt + b− t − 2

− 1

items of size ε.
Therefore, the total number of items of size ε which are combined into existing bins is at least(

N
t
−

t + 1− tb
t(tb+ 2b− t − 3)

N
)
·

(
4N

t + 1− bt
bt + b− t − 2

− 1
)

=
tb+ 2b− t − 3− t − 1+ tb

t(tb+ 2b− t − 3)
N ·

(
4N

t + 1− bt
bt + b− t − 2

− 1
)

=
2(tb+ b− t − 2)
t(tb+ 2b− t − 3)

N ·
(
4N

t + 1− bt
bt + b− t − 2

− 1
)
=
8N2(t + 1− bt)
t(bt + 2b− t − 3)

−
2(tb+ b− t − 2)
t(tb+ 2b− t − 3)

N.
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Therefore, the number of remaining items of size ε is at most 2N + 2 t+1−tb
t(tb+2b−t−3)N +

2(tb+b−t−2)
t(tb+2b−t−3)N .

We have t + 1 − tb < tb + 2b − t − 3 and tb + b − t − 2 < tb + 2b − t − 3, so the number of remaining items is at
most 2N + 4N

t < 6N , for any t ≥ 1. Since t + 1−
t+2
b < t + 1− t+2

(t+1)/t =
t2+2t+1−t2−2t

t+1 =
1
t+1 . Therefore, since

1
b ≥

1
t+1 ,

at least 4N items of size ε can share a bin, so two new bins are sufficient for the remaining items of size ε.

We get a ratio of at least
2N+2( t+1−tb

t(tb+2b−t−3)N)−2

N+ t+1−tb
t(tb+2b−t−3)N+

N
t +2
, which tends to 2t2b−2t2−4t+2+2bt

t2b+2bt−t2−3t−2+2b
for large enough values of N . �

4. A complete analysis ofWorst Fit

In order to complete the analysis ofWF, we need to consider the case 1 < b < 2. In this case, we will show a tight bound
of 2b
3b−2 on the approximation ratio. Thus it is monotonically decreasing in this case as well, and the approximation ratio as

a function of b is continuous at b = 2.

Theorem 9. For any 1 < b < 2, the approximation ratio ofWF is 2b
3b−2 .

Proof. We start with the lower bound. Let N be an even large integer. Let ε = 2−b
Nb . The input consists of N batches. Each

batch starts with an item of size 1b −
1
2 , which is followed by d2N

b−1
2−be + 1 items of size ε. The total size of the items in a

single batch is at least 1b −
1
2 + (2N

b−1
2−b + 1) ·

2−b
Nb =

1
b −

1
2 + 2−

2
b +

2−b
Nb >

3
2 −

1
b . For large enough N , this total size is

also less than 1. Thus each batch of d2N b−12−be + 2 items is packed into a separate bin (once a new bin is opened, the worst
fit of the next items of the batch is this new bin, and the total size of a batch together with the large item of the next batch
exceeds 1).
After these N batches, there are d 3b−22−b Ne additional pairs of items, each of which consists of items of sizes

1
2 and ε. Once

again,WF packs each pair of items into a dedicated bin.
The number of bins used byWF is at least N + d 3b−22−b Ne ≥ N +

3b−2
2−b N = N

2b
2−b .

Note that there are N items of size 1b −
1
2 , d

3b−2
2−b Ne items of size

1
2 , and at most N(2N

b−1
2−b + 2) +

3b−2
2−b N + 1 =

2N2 b−12−b + N
b+2
2−b + 1 items of size ε.

We next consider a packing into bins of size 1b . There are N bins with one item of size
1
b −

1
2 and one item of size

1
2 .

The other items of size 12 are packed into additional bins. A bin which already contains (only) an item of size
1
2 can receive

additional N2 items of size ε, since
1
2 +

2−b
Nb

N
2 =

1
b .

The number of items of size ε which can be packed with the remaining items of size 12 is at least (N
3b−2
2−b − N)

N
2 ≥

(N 4(b−1)2−b )
N
2 =

2(b−1)N2

2−b . Hence, only at most N b+22−b + 1 unpacked small items remain.
New bins are used for the remaining small items. One bin can hold at least b N2−bc items, since b

N
2−bc ·

2−b
Nb ≤

1
b . The

remaining items require at most
⌈
b+2
2−bN+1

b
N
2−b c

⌉
≤

⌈
b+2
2−bN+1
N
2−b−1

⌉
= d

(b+2)N+2−b
N−2+b e ≤

(b+2)N+2−b
N−2+b + 1 = (b+3)N

N−2+b ≤ 2(b + 3) ≤ 10

additional bins (since 1 < b < 2).

We get a ratio of at least
N 2b
2−b

3b−2
2−b N+10

, which tends to 2b
3b−2 for large enough values of N .

To prove the upper bound, we use a weight function. In order to define this function, we first define a threshold rule for
WF. Consider a set A, which contains items of a total size 1−α (for some α ≥ 0). The threshold rule forWF is that the largest
item in A, has a size of at least α.
The motivation for this threshold rule is that a bin is opened byWF for an item of size α, only if all previously opened

bins have a total packed size larger than 1− α. Note that in the results of [8] for FF, a threshold rule is used as well, only in
the case of FF, a similar situation implies that all items will have a size of at least α, while forWF this is not necessarily the
case.
We will consider a weight function for which the following three properties hold. The first property is that if the total

size of items in a set A is at least 1− α, and A satisfies the threshold rule, that is, the size of the largest item in A is at least α,
then w(A) ≥ 1. The second property is that if the total size of items is only 1− α − β (for some β > 0), but the threshold
rule is satisfied for α (that is, the size of the largest item in A is at least α, rather than α + β), thenw(A) ≥ 1− `β , where

` = sup
0<x≤ 1b

w(x)/x.

We only consider functionsw where ` is finite.
The last property which is required is that for any set B, which contains items of a total size of at most 1b , it holds that

w(B) ≤ R, whereR is the approximation ratio 2b
3b−2 .

Given a weight function w which satisfies the three properties, we consider only bins of weight strictly smaller than 1.
That is, we remove all bins with weight at least 1 and consider the remaining bins. We define the coarseness of bin i, ci, (see
the analysis of FF in [1]) as the maximum value such that there exists a bin j < i which has a total size of items of 1 − ci,
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that is, the maximum empty space in any preceding bin. We let c1 = 0. Since all bins we consider have a total weight of
items smaller than 1, for bin i, the total size of items is some value 1− αi, where the largest item packed in bin i has a size
of αi − βi, for some βi > 0. We always have (αi − βi) > ci, as otherwiseWFwould pack this item in the bin j for which the
maximum in the definition of ci is achieved.
We have ci+1 ≥ αi > ci + βi. LetWi be the total weight of bin i, then we haveWi ≥ 1− `βi.
IfWF uses n bins, the total weight is

∑n
i=1Wi ≥ n− `(

∑n
i=1 βi).

We calculate
∑n
i=1 βi.

∑n
i=1 βi ≤ βn +

∑n−1
i=1 (ci+1 − ci) ≤ βn + cn ≤ αn < 1. The total weight of all bins is therefore at

leastWF− ` (note that this inequality holds even when we also consider the bins of weight at least 1, which were removed
earlier).
Assume that the third property is satisfied. Each of Opt’s bins is filled to at most 1b . Hence, the total weight in each of

Opt’s bins is at most 2b
3b−2 , so

2b
3b−2Opt is an upper bound on the total weight, andWF− ` ≤ 2b

3b−2Opt. Thus in order to prove
the theorem, it suffices to show a weight functionw for which the three properties hold, and the value of ` is bounded by a
fixed constant.
Define the following weight function:

w(x) =


2b
3b−2x, for x ∈

(
0, 1b −

1
2

]
4b
3b−2x−

2−b
3b−2 , for x ∈

( 1
b −

1
2 ,
1
2

]
1, for x ∈

( 1
2 ,
1
b

]
.

For x ≤ 1
2 ,w(x) ≥

2b
3b−2x, since 2bx ≥ 2−b for x ≥

1
b −

1
2 . The function is continuous andmonotonically non-decreasing.

We next show that this functionw satisfies the three required properties.

Lemma 10. Let A be a set of items of total size 1−α (α ≥ 0), where the largest item in A, i, has a size of at least α. Thenw(A) ≥ 1.

Proof. If si > 1
2 , we are done.

If si ≤ 1
b −

1
2 , then 1− α ≥ 1− si ≥

3
2 −

1
b =

3b−2
2b . All items belong to the first case of the weight function, so we get a

total weight of at least 2b
3b−2 ·

3b−2
2b = 1.

We are left with the case 1b −
1
2 < si ≤

1
2 . In this case, the total weight is at least

2b
3b−2 (1 − α − si) +

4b
3b−2 si −

2−b
3b−2 ≥

2b
3b−2 (1− 2si)+

4b
3b−2 si −

2−b
3b−2 = 1. �

Lemma 11. Let A be a set of items, of a total size 1 − α − β (for some β > 0), which satisfies the threshold rule for α. Then
w(A) ≥ 1− `β .

Proof. Add a dummy item of size β . The threshold rule forWF is still kept with α, and the new total size of items is 1− α.
LetW denote the total weight of original items, andW ′, the total weight after the modification. By Lemma 10,W ′ ≥ 1. We
haveW = W ′ − w(β). By the definition of `,w(β) ≤ `β , and the claim follows. �

Lemma 12. Let B be a set of items which can be packed into a bin of size 1b (i.e., s(B) ≤
1
b ). Thenw(B) ≤

2b
3b−2 .

Proof. If the bin contains an item of size y > 1
2 , let t ≤

1
b − y ≤

1
b −

1
2 =

2−b
2b be the total size of other items, each of which

has weight 2b
3b−2 times its size. The total weight is at most 1+ (

2b
3b−2 )(

2−b
2b ) =

2b
3b−2 .

Otherwise, if the bin contains exactly one item of size 1b −
1
2 < y ≤

1
2 , then the total weight is at most

4b
3b−2y −

2−b
3b−2 +

( 1b −y)
2b
3b−2 ≤

2b
3b−2−

2−b
3b−2+(

1
b −

1
2 )

2b
3b−2 =

2b
3b−2 , where the inequality holds since themaximum of the left side is obtained

for y = 1
2 .

Finally, if the bin contains at least two items in the interval ( 1b −
1
2 ,
1
2 ], such that their total size is y, then the total weight

of B is at most 4b
3b−2 · y− 2 ·

2−b
3b−2 +

2b
3b−2 · (

1
b − y) =

2b
3b−2y−

4
3b−2 +

2b
3b−2 +

2
3b−2 ≤

2
3b−2 −

4
3b−2 +

2b
3b−2 +

2
3b−2 =

2b
3b−2 . �

The value of ` is 2, since 2b
3b−2 ≤ 2,

4b
3b−2x−

2−b
3b−2 ≤ 2x for any x ≤

1
2 , and clearly 1 < 2x for x >

1
2 . �
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