
Ain Shams Engineering Journal (2016) 7, 47–56

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Ain Shams University

Ain Shams Engineering Journal

www.elsevier.com/locate/asej
www.sciencedirect.com
CIVIL ENGINEERING
Forecasting of meteorological drought using Hidden

Markov Model (case study: The upper Blue Nile

river basin, Ethiopia)
* Tel.: +20 01069858309.

E-mail address: mosaad.khadr@f-eng.tanta.edu.eg

Peer review under responsibility of Ain Shams University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.asej.2015.11.005
2090-4479 � 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Mosaad Khadr *
Irrigation and Hydraulics Engineering Department, Faculty of Engineering, Tanta University, 31734 Tanta, Egypt
Received 12 June 2015; revised 10 October 2015; accepted 6 November 2015
Available online 10 December 2015
KEYWORDS

Drought;

Forecasting;

Stochastic modeling;

Blue Nile river basin
Abstract An improved drought management must rely on an accurate monitoring and forecasting

of the phenomenon in order to activate appropriate mitigation measures. In this study, several

homogenous Hidden Markov Models (HMMs) were developed to forecast droughts using the

Standardized Precipitation Index, SPI, at short-medium term. Validation of the developed models

was carried out with reference to precipitation series observed in 22 stations located in the upper

Blue Nile river basin. The performance of the HMM was measured using various forecast skill

criteria. Results indicate that Hidden Markov Model provides a fairly good agreement between

observed and forecasted values in terms of the SPI time series on various lead time. Results seem

to confirm the reliability of the proposed models to discriminate between events and non-events

relatively well, thus suggesting the suitability of the proposed procedure as a tool for drought

management and drought early warning.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Drought is considered by many researchers to be the most

complex but least understood of all natural hazards, affecting
more people than any other hazard [1]. Drought is one of the
major weather related disasters which is persisting over months

or years. It can affect large areas and may have serious
environmental, social and economic impacts. Globally, about
22% of the economic damage caused by natural disasters

and 33% of the damage in terms of the number of persons
affected can be attributed to drought [2]. These impacts
depend on the severity, duration, and spatial extent of the

precipitation deficit, as well as the socioeconomic and environ-
mental vulnerability of affected regions [3]. Unlike the effects
of a flood which can be immediately seen and felt, droughts
build up rather slowly, creeping and steadily growing [4].

Droughts are typically classified into four types: meteorologi-
cal, hydrological, agricultural and socioeconomic, and there
are many drought indicators associated with each drought type

[5,6]. Drought forecasting plays an important role in the
mitigation of impacts of drought on water resources systems
and water resources management [6–8].
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From a stochastic point of view, the problem of forecasting
future values of a random variable can be seen as the determi-
nation of the probability density function of future values con-

ditioned by past observations [9]. Yevjevich as reported in [10]
was among the first at attempting a prediction of properties of
droughts using the geometric probability distribution, defining

a drought of k years as k consecutive years when there are no
adequate water resources. Rao and Padmanabhan [11] investi-
gated the stochastic nature of yearly and monthly Palmer’s

drought index (PDI) series to characterize them via valid
stochastic models which may be used to forecast and to
simulate the PDI series. Sen [12] derived exact probability
distribution functions of critical droughts in stationary second

order Markov chains for finite sample lengths on the basis of
the enumeration technique and predicted the possible critical
drought durations that may result from any hydrological

phenomenon. Lohani and Loganathan [13] used PDI in a
non-homogenous Markov chain model to characterize the
stochastic behavior of drought and based on these drought

characterizations an early warning system was used for
drought management [14].

The main objective of this study is to build Hidden Markov

Models (HMMs) for meteorological drought forecasting at
short-medium term. The stochastic models presented in this
study are based on SPI developed by McKee et al. [15] as
drought index because there are a number of advantages arise

from the use of the SPI index [14,16,17]. The primary advan-
tage is that SPI is based on rainfall alone, so that drought
assessment is possible even if other hydro-meteorological mea-

surements are not available. The SPI is also not adversely
affected by topography, it is defined over various timescales
(3, 6, 9, . . ., 72 months) and this allows to use it as short, med-

ium and long-term drought index to describe drought condi-
tions over a range of meteorological, hydrological and
agricultural applications. In particular, analytical expressions

of SPI forecasts are derived as the expectation of future SPI
values conditioned on past monthly precipitation, under the
hypothesis of normally distributed precipitation aggregated
at different timescales k. Validation of the model was carried

out with reference to precipitation series observed in 22 sta-
tions located in the Upper Blue Nile River Basin (UBNRB),
Ethiopia. To the best of our knowledge, the issue on forecast-

ing of meteorological drought using Hidden Markov Model so
far has not been addressed. Some of the other studies about
using of Markov chain models to predict the transition from

a class of severity to another are listed in [18–20]. The
approach presented herein provides not only a stochastic
methodology to forecast the transition probability from a
drought class to another but also the magnitude and duration

of drought event. It is hoped that the proposed approach and
our findings obtained in this study are useful for further
research in the area of drought forecasting.

2. Methods and materials

2.1. Study region and data

The Blue Nile river, which starts its flow from Lake Tana and

ends at the Ethiopian–Sudan border, is the largest tributary of
the Nile river in terms of discharge and annually contributes
60–69% of runoff to the Nile river at Khartoum [21,22]. The
Blue Nile river originates in the highlands of Ethiopia, and
the Upper Blue Nile River Basin (UBNRB) is the part of the
watershed of the Blue Nile river basin which is under the

Ethiopian territory (Fig. 1). The altitude of the UBNRB
ranges from 511 m to 4052 m and the Blue Nile and its tribu-
taries have a general slope toward the northwest, however the

slopes are steeper in the east than in the west and northeast
areas of the UBNRB (Fig. 1).

Forty-eight years (January 1960 to December 2007) of daily

precipitation data from 22 meteorological stations in the upper
Blue Nile basin were used in this study to forecast drought
events. The selected stations represent a good spatial coverage
across the study region (Fig. 1). Daily precipitation records

were first processed in terms of data gaps using neighboring
stations to fill in missing precipitation values and then con-
verted to monthly values and after that homogeneity test

was applied to the data using several homogeneity tests
included absolute and relative homogeneity tests. The precipi-
tation over the Blue Nile basin varies from 1000 mm in the

north-eastern part to 1450–2100 mm over the south-western
part of the sub-basin [23].

The mean annual areal rainfall over the UBNRB, within

the studied period, is 1260 mm as shown in Fig. 2. The rainfall
distribution is highly variable both spatially – decreasing from
the southwest to the east and northeast – and temporally, i.e.
over the yearly seasons. Moreover, as the rainfall over the

UBRNB is highly seasonal, the Blue Nile river also possesses
a strongly-varying seasonal flood regime, whereby over 80%
of the annual discharge occurs during the four months from

July to October. The average annual flow of the Blue Nile at
the Sudan–Ethiopian border is about 48,660 million m3 which
represents more than 40% of Ethiopia’s total surface water

resources [24]. Hence, the UBNRB represents a substantial
water resource for Ethiopia and as well for the downstream
countries Sudan and Egypt.

2.2. Standardized Precipitation Index (SPI)

The Standardized Precipitation Index (SPI) is based on an
equi-probability transformation of aggregated monthly precip-

itation into a standard normal variable and recommended by
the World Meteorological Organization as a standard to char-
acterize meteorological droughts [15,25,26]. The calculation of

SPI requires that there are no missing data in the time series
and the data record length is required to be at least 30 years
[27,28]. McKee assumed an aggregated precipitation gamma

distributed and used a maximum likelihood method to
estimate the parameters of the distribution. In the most cases,
the Gamma distribution is the distribution that best models
observed precipitation data. Computation of the SPI involves

the fitting of a gamma probability density function to a given
frequency distribution of precipitation totals for a station
[14,29]. The alpha and beta parameters of the gamma

probability density function are estimated for each station,
for each timescale of interest (1 month, 3 months, 12 months,
48 months, etc.) and for each month of the year.

After estimating coefficient alpha and beta the density of
probability function is integrated with respect to, obtain an
expression for cumulative probability that a certain amount

of rain has been observed for a given month and for a specific
timescale. The cumulative probability is then transformed into
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Figure 1 DEM of the upper Blue Nile river basin with locations of meteorological stations.

Figure 2 Mean annual precipitation (mm) over the upper Blue

Nile river (1960–2007).
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a normal standardized distribution with null average and unit
variance from which we obtain the SPI index [30]. This

approach, however, is neither practically nor numerically sim-
ple to use if there are many grid points or many station on
which to calculate the SPI index. In this case, an alternative

method was described in [31] using the technique that converts
the cumulative probability into a standard. In addition, these
various timescales can be useful in assessing effects on different
components of the hydrological system (e.g., streamflow,

reservoir levels and groundwater levels). In the present study,
running series of total precipitation corresponding to 3, 6, 9,
and 12 months were used and the corresponding SPIs were cal-

culated: SPI 3, SPI 6, SPI 9, and SPI 12. The classification
system shown in Table 1 is used to define drought intensities
resulting from the SPI [32]. In this study SPI software

Package, developed by the author [33], was used to compute
time series of drought indices (SPI) for all stations.

2.3. Hidden Markov Model

The Markov chain is a probabilistic model used to represent
dependences between successive observations of a random
variable and it is based on the probability and statistics theory



Table 1 Weather classification based on the SPI index

following McKee [15].

SPI values Class

>2 Extremely wet

1.5 to 1.99 Very wet

1.0 to 1.49 Moderate wet

�0.99 to 0.99 Near normal

�1.0 to �1.49 Moderate dry

�1.5 to �1.99 Severely dry

<�2 Extremely dry
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[34]. The Hidden Markov Model is a finite set of states, each of
which is associated with a (generally multidimensional) proba-

bility distribution. Transitions among the states are governed
by a set of probabilities called transition probabilities. In a
particular state an outcome or observation can be generated,

according to the associated probability distribution. It is only
the outcome, not the state visible to an external observer and
therefore states are ‘‘hidden” to the outside, hence the name

Hidden Markov Model. The stochastic processes could be
called an observable Markov model, when the output of the
process is the set of states at each instant of time, where each
state corresponds to a physical (observable) event [35].

Hidden Markov Models include the case where the obser-
vation is a probabilistic function of the state i.e. the resulting
model is a doubly embedded stochastic process with an under-

lying stochastic process that is not observable (it is hidden),
but can only be observed through another set of stochastic
processes that produce the sequence of observations [36,37].

In Markov chain, the output at time t depends directly on
the output at time t � 1 however, in Hidden Markov Model
the outputs are conditionally independent. The HMM is a use-
ful tool to understand the statistics at local scale in terms of

large-scale atmospheric patterns [38]. The concept of the
HMM is an extension of that of the Markov chain and it con-
sisted of a triple observed probability parameters (A, B, p)
characterized by the following [39,40]:

(a) N, number of states, S1 S2, . . ., SN. Although the states

are hidden, for many applications from some physical
consideration these states can be observed.

(b) M, the number of distinct observation symbols per state.

(c) The state transition probability distribution.
A ¼ faijg ð1Þ

where
aij ¼ P½qtþ1 ¼ Sj=qt ¼ Sj� 1 � i; j � N ð2Þ

(d) The observation symbol probability distribution in state

j, B = {bj(k)}. B is named emission matrix where:
bjðkÞ ¼ P½vk at t=qt ¼ Sj� 1 �; j � N; 1 � k � M ð3Þ
V¼fv1;v2; . . . ;vmg which denote the individual symbols

ðobservationsÞ ð4Þ

(e) The initial state distribution:
pi ¼ P½q1 ¼ Si� 1 � i � N ð5Þ
An application of HMM requires specification of two
model parameters (N and M), and of the complete parameter
set of the model three probability measures which is given by

the following:

k ¼ ½A;B; p� ð6Þ

A trellis diagram for aHMM with 4 states, shown in Fig. 3,
could be used to visualize likelihood calculations of HMMs.

Each column in the trellis shows the possible states of the
weather at a certain time n. Each state in one column is con-
nected to each state in the adjacent columns by the transition

likelihood given by the elements ai,j of the transition matrix A
as shown for state 1 at time 1 in Fig. 3. At the bottom is the
observation sequence X = {x1, . . ., xN}. bi,k is the likelihood

of the observation xn = vk in state qn = si at time n.

2.4. Performance measures

Several measures of goodness of fit were used to evaluate the

forecast performance of all the aforementioned HMM models.
The measures that were used include the following: Mean
Absolute Deviations (MAD), the coefficient of determination

(R2), Root Mean Square Error (RMSE) and correlation
coefficient (Cr). To investigate whether there is a significant
difference between the mean from the observed and predicted

data for various lead time, a Z-test for the means was
employed in the analysis. The MAD measures the average
magnitude of the errors in a set of forecasts, without consider-

ing their direction. It measures accuracy for continuous
variables. Expressed MAD is calculated as follows:

MAD ¼
Pn

i¼1jSPIoi � SPIfij
n

ð7Þ

where SPIo is the observed value, SPIf is the forecasted value
and n is the number of data points.

In statistics, the coefficient of determination, R2 is used in

the context of statistical models whose main purpose is the pre-
diction of future outcomes on the basis of other related infor-
mation. The absolute fraction of variance, R2, is calculated as

follows:

R2 ¼ 1�
Pn

i¼1ðSPIoi � SPIfiÞ2Pn
i¼1ðSPIoiÞ2

ð8Þ

With the variables already having been defined, the RMSE

is the square root of the variance of the residuals. It indicates
the absolute fit of the model to the data – how close the
observed data points are to the model’s predicted values.
Whereas R-squared is a relative measure of fit, RMSE is an

absolute measure of fit. Lower values of RMSE indicate better
fit. RMSE is calculated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðSPIoi � SPIfiÞ2
n

s
ð9Þ

The correlation coefficient a concept from statistics is a
measure of how well trends in the forecasted values follow
trends in past actual values (historical releases). The correla-
tion coefficient is calculated as follows:



Figure 3 Trellis diagram shows the general architecture of four states HMM.

Table 2 2 * 2 contingency table for relative operating char-

acteristic (ROC) calculation.

Forecasted event

Yes No

Observed event Yes Hit (HT) Miss (MS)

No False alarm (FA) Correct rejection (CJ)
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Cr ¼
Pn

i¼1SPIoiSPIfi�
P

SPIoið Þ SPIfið Þ
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1SPI
2
oi
�

Pn

i¼1
SPIoið Þ2
n

� � Pn
i¼1SPI

2
fi�

Pn

i¼1
SPIfið Þ2
n

� �� �s

ð10Þ
The MAD and the RMSE can be used together to diagnose

the variation in the errors in a set of forecasts. To determine
the time error and the best time of the forecasting, three fol-

lowing criteria were used [41–43]:

Ei ¼ jSPIoi � SPIfij
SPIoi

ð11Þ

Fi ¼
Pn

i¼1Ei

i
ð12Þ

Cv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðEi � EÞ2

q� �
E

ð13Þ

where Ei is the relative error in month i, Fi is the average of

cumulative relative error in the month i, E is the average of rel-

ative error, and Cv is the variation coefficient of relative error.
Relative Operating Characteristic (ROC), which is a graph

that could be constructed for any event such as drought fore-

casting, was used to provide information on the hit rates and
false alarm rates that can be expected from use of different
probability thresholds to trigger advisory action. ROC is con-

ditioned on the observations, answering the question given
that an event Y occurred, what was the corresponding fore-
cast? It therefore measures the ability of the forecasting system
to discriminate between events and non-events, i.e. the resolu-

tion of the forecast. ROC is calculated by means of a 2 � 2
contingency table for each probability as in Table 2, which
counts the number of forecast hits (HT), the number of misses

(MS), the number of false alarms (FA) and the number of
correct rejections (CJ). ROC is then probability of detection
(PoD) as a function of the false alarm rate (FAR), where

PoD ¼ HT

HTþMS
ð14Þ
FAR ¼ FA

FAþHT
ð15Þ

A ROC curve is plotted as a curve joining the PoD as a

function of the FAR for all forecast probabilities. The area
under the ROC curve gives a measure of the skill of the
forecast.
3. Results and discussions

3.1. Computation of SPI at different timescales

The overall meteorological drought vulnerability in the

UBNRB was assessed by reconstructing historical occurrences
of droughts at varying time steps and drought categories with
the SPI approach. A sample figure (Fig. 4) describing the SPI
analysis is presented for Bahir Dar station which is situated on

the southern shore of Lake Tana. Since the SPI in a 1-month
timescale fluctuates between positive and negative values,
detection of the start and end of a drought event is improper.

Therefore, in this paper the SPI with 3, 6, 9, and 12-month
timescales was used to identify drought events. Fig. 4
shows the changes in drought characteristics in frequency

(time/month), duration (month) and magnitude of SPI for
Bahir Dar station. Two recognizable severe dry periods were
revealed, considering only the annual minimum spatially SPI
value. The first period occurred during 1965 is characterized

as an extreme drought event and the second period was during
the 1980s is characterized as a severe drought for the whole
area of UBNRB and reached its maximum value in 1984 [44].
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(a) SPI 3
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(b) SPI 6
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(c) SPI 9 
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(d) SPI 12

Figure 4 SPI time series based on the total monthly precipitation at Bahir Dar station (1960–2007). (a) SPI 3, (b) SPI 6, (c) SPI 9,

(d) SPI 12.
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3.2. Results of HMM

After the computation of the SPI index, drought and wet con-
ditions were identified for the desired station in every month of

every year on various timescale, then its relative frequency is
obtained, and finally, using the Hidden Markov Model,
drought was forecasted. One of significant advantages of

HMM is that it can be estimated from sequences, without hav-
ing to align the sequences first. The sequences used to estimate
or train the model are called the training sequences, and any
reserved sequences used to evaluate the model are called the

test sequences. The data set from 1960 to 1993 was used to esti-
mate model parameters, and the data set from 1994 to 2007
was used to validate the forecast using SPI 3, SPI 6, SPI 9,

and SPI 12. In this paper, the proposed forecast models for
SPI 3, SPI 6, SPI 9, and SPI 12 are presented for forecast lead
times of 1, 2, 3, and 4 months.

A difficult problem when using HMMs is that of specifying
the model in the first place. There are two parts to solve this
problem; firstly the design of the structure i.e. what states there

are and how they are connected, and secondly the assignment
of parameter values, the transition and emission probabilities.
Number of states of (SPI) S1, S2, . . ., S7 from hydrological
point of view are defined as follows: State 1 – Extremely wet,
State 2 – Very wet, State 3 – Moderate wet, State 4 – normal

state, State 5 – Moderate drought, State 6 – Severely
drought, State 7 – Extremely drought. The suggested algo-
rithm was tested on different models by varying the parameters
over suitable ranges and choosing the values that give the

minimum error between forecasted and actual SPI values.
The model estimation was done with the forward-backward
algorithm, also known as the Baum-Welch algorithm, which

is described in [45]. The models were forecast one time step
ahead and the subsequent result was used as an input in
another model and forecast one time step ahead. All calcula-

tions reported in this paper were performed using MATLAB.

Transition probability matrices that illustrate how HMM
can transfer from any one state to another, and emission

matrices, that illustrate the sequence of these states, were
calculated for each month based on the seven states of dry,
normal and wet conditions; and for all SPI time steps, i.e.
for SPI 3, SPI 6, SPI 9, and SPI 12. The final output time

series was either 1, 2, 3 or 4 months ahead of the original
time series. For each rainfall station, forecasts of SPI values
were made using HMM for the various lead times. As an

example, Fig. 5 shows the comparison between observed and
forecasted SPI values for one of the 22 stations, namely Bahir
Dar, for different combinations of the timescales.
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Figure 5 Model validation: comparison between observed and forecasted SPI for Bahir Dar station (1994–2007). (a) SPI 3, (b) SPI 6,

(c) SPI 9, (d) SPI 12.
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Table 3 shows the performance results for the set of SPI
forecasts and illustrates the variation of R2, RMSE, MAE

and Cr for forecasting of the SPI with lead times of
1–4 months during the forecasting period at Bahir Dar station.
The table shows that the forecasted values of the SPI, on var-

ious lead times, follow the calculated values very closely and
preserve the basic statistical properties of the observed series.
Table 3 indicates that the RMSE, for all models, is always lar-
ger or equal to the MAD which indicates that all the errors are

of the same magnitude and high correlation between observed
and forecasted values is obtained. For all models (SPI 3, SPI 6,
SPI 9 and SPI 12) and for one month ahead R2, RMSE is

approximately the same and around 0.96, 0.20 respectively.
All validation statistics in Table 3 show that, the more time-
scale is (3, 6, 9, and 12) the more accuracy in the higher lead

time as scores are expected to decrease as lead forecast time
increases. It is also known that the accuracy of weather fore-
casts decreases as the lead time increases to 2, 3, or 4 months.

The Z-test for the means was performed to investigate
whether there is a significant difference between the mean from
the calculated and forecasted SPI values on various lead times.
Results of Z-test show that, the value the test static, h, equals 0
for all SPI, (3, 6, 9, 12, and for all lead times 1, 2, 3, 4) as
presented in Table 3. The returned value of h = 0 indicates

that, Z-test does not reject the null hypothesis that the
observed and forecasted SPI come from a distribution with
the same mean, at the 5% significance level. In addition, all

calculated z values are between Z-critical values (±1.96 for
two-tailed at a 5% significance level).

In order to study the time changes of forecasting, the best
forecasting time for the models was obtained by using Eqs.

(11–13). Table 4 shows the minimum values of E and F indices,
the corresponding month of occurrence of these values and the
Cv index for forecasting period. Values of E F and Cv indexes

in Table 4 show that there is no significant difference between
SPI 3, SPI 6, SPI 9 and SPI 12 models. According to Table 4
and Fig. 6, the lowest rates of Fmin index were in the First July,

First June, First September and First July for SPI 3, SPI 6, SPI
9 and SPI 12 respectively. According to Fig. 6 and Table 4 it
can be said that the monthly SPI values could be forecasted

by HMM model about a 7 months ago with a good accuracy.
A ROC curve was plotted as a curve joining the PoD as a

function of the FAR for all forecast probabilities. The area
under the ROC curve gives a measure of the skill of the



Table 3 Comparison of statistical properties of the forecasted and observed data (1994–2007).

Time series Mean Std. Min. Max. R2 MAD RMSE Correl. Z test

h z

SPI 3 Observed SPI 0.091 1.047 �2.67 3.43 – – – – – –

1 month lead time 0.090 1.011 �2.749 2.801 0.965 0.137 0.196 0.982 0 0.002

2 month lead time 0.116 0.967 �2.748 2.85 0.408 0.445 0.787 0.689 0 1.05

3 month lead time 0.051 0.828 �2.750 2.84 0.154 0.600 0.940 0.495 0 0.239

4 month lead time 0.163 0.852 �2.732 2.825 0.038 0.670 1.027 0.407 0 1.65

SPI 6 Observed SPI 0.107 1.072 �2.20 3.250 – – – – – –

1 month lead time 0.143 0.989 �2.80 2.80 0.955 0.136 0.2287 0.9791 0 �0.01

2 month lead time 0.127 0.975 �2.80 2.92 0.552 0.356 0.691 0.769 0 �1.26

3 month lead time 0.135 0.940 �2.80 2.85 0.532 0.420 0.707 0.753 0 �1.36

4 month lead time 0.096 0.931 �2.80 2.87 0.548 0.483 0.694 0.757 0 �0.86

SPI 9 Observed SPI 0.122 1.071 �2.460 3.390 – – – – – –

1 month lead time 0.134 1.009 �2.77 2.90 0.963 0.135 0.2056 0.9820 0 �0.21

2 month lead time 0.056 0.960 �2.76 2.80 0.809 0.298 0.455 0.900 0 �0.34

3 month lead time 0.077 0.966 �2.80 2.80 0.603 0.373 0.655 0.790 0 �0.60

4 month lead time 0.087 0.906 �2.80 2.80 0.573 0.475 0.680 0.766 0 �0.72

SPI 12 Observed SPI 0.131 1.022 �3.40 3.43 – – – – – –

1 month lead time 0.139 0.989 �2.752 2.800 0.970 0.128 0.179 0.985 0 0.004

2 month lead time 0.054 0.929 �2.751 2.750 0.814 0.307 0.437 0.902 0 �0.18

3 month lead time 0.099 0.974 �2.700 2.800 0.686 0.261 0.568 0.838 0 �0.74

4 month lead time 0.137 0.893 �2.700 2.756 0.388 0.424 0.792 0.665 0 �1.21

Table 4 The minimum of E and F indexes and month of occurrence of them in forecasting period.

Time series Emin Month E Fmin Month Cv

SPI 3 0.0009 Second December 0.2827 0.1243 First July 0.7419

SPI 6 0.0018 Fourth July 0.2657 0.0656 First June 0.7593

SPI 9 0.0019 Fifth October 0.2511 0.1134 First September 0.7004

SPI 12 0.0009 Second November 0.2847 0.1673 First July 0.7436
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Figure 6 F index changes of models in forecasting period.
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forecast. ROC curves for each threshold are shown in Fig. 7
for (a) SPI-3 and (b) SPI-6. For the SPI-3 and the SPI-6 for
all thresholds the ROC curves are well above the no skill line

indicating that the forecasting system does have some skill.
The areas under the ROC curves, shown in Table 5, are greater
than 0.5 indicating that the forecast has some skill. Table 5

indicates also that the SPI-6 forecast is more skillful than
the SPI-3 forecast and that the forecasting system has
potentially greater skill for the extreme events with more

extreme thresholds for SPI. The ROC statistics suggest that
the forecasting models are potentially skillful and able to
discriminate between events and non-events.
4. Conclusion

Drought monitoring and forecasting are essential tools for
implementing appropriate mitigation measures in order to

reduce negative impacts of drought. Drought forecasting
remains a difficult but vitally important task for hydrometeo-
rologists and water resources managers. The availability of

forecasts of drought indices, and the related confidence inter-
vals for a given site, could be a helpful tool to the decision
making process for drought mitigation. This paper described
the procedure for drought forecasting using the Hidden

Markov Model and its application in the upper Blue Nile river
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Table 5 Area under the relative operating characteristic

(ROC) curves for SPI 3 and SPI 6.

SPI < �1 SPI < �1.5 SPI < �2

SPI 3 0.7070 0.7492 0.7920

SPI 6 0.7936 0.8096 0.8574
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basin in Ethiopia. Seven underlying hidden states that emit the
visible observations were assumed using Standardized Precipi-
tation Index (SPI). Validation of the model was carried out by

comparing SPI values computed on precipitation observed in
22 stations in the upper Blue Nile river basin and the corre-
sponding forecasts. Standard verification measures for proba-

bilistic forecasts were used to assess the accuracy of the
forecasts. The results of models performance indicate that
the forecasted and observed data have similar characteristics

in terms of the SPI time series on various lead time however,
the accuracy of forecasting decreases as the lead time increases.
Validation statics also indicate that the monthly SPI values
could be forecasted by HMM model about a 7 months ago

with a good accuracy. The analysis of the relative operating
characteristics of the forecasting models showed that the
developed models are able to discriminate between events

and non-events relatively well. The overall conclusion of this
analysis is that Hidden Markov Models could be used to
forecast SPI time series of multiple timescales for more than
one month ahead and could be used as an essential tools
for medium-short term planning in the water resources

management.
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