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bivariate Charlier, Meixner, Kravchuk and Hahn orthogonal polynomials.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In last years, the role of univariate orthogonal polynomials on applications in mathematics, science, engineering or com-
putations has increased due to the deep knowledge both in the continuous and discrete settings [2,6,13,21,29]. The cases of
two and more variables orthogonal polynomials have been studied much less, although their main definitions and simplest
properties were considered more than 100 years ago [3,28]. A considerable number of results on the theory of orthogonal
polynomials in several variables has been published in last years (see e.g. [4,7–10,14,22,25,28,33,34] and references therein),
emphasizing the relationship between multivariate orthogonal polynomials and partial differential and difference equations.
In this multivariate situation it is possible to deal also with continuous or discrete weight functions for the corresponding
orthogonality relation.

From the classical point of view, the three-term recurrence relation is one of the keys in the analysis of orthogonal
polynomials, giving efficient algorithms for applying them to practical problems [5]. In the multivariate case the orthogonal
polynomials satisfy three-term recurrence relations [7, Chapter 3] and in the continuous case there exists an explicit way
for computing the recurrence matrices [4]. But, as far as we know, there exist no general formulae in order to compute the
matrices appearing in the recurrences in the multivariate discrete situation from the coefficients of the second-order partial
difference equation satisfied by the orthogonal polynomials. The significance of partial difference equations is well illustrated
in applications involving population dynamics with spatial migrations, chemical reactions, control systems, combinatorics or
finite difference schemes [12,18,27,32].
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So, let us consider a bivariate second-order partial difference equation [24,36]

σ11(x, y)�1∇1u(x, y) + σ12(x, y)�1∇2u(x, y) + σ21(x, y)�2∇1u(x, y)

+ σ22(x, y)�2∇2u(x, y) + τ1(x, y)�1u(x, y) + τ2(x, y)�2u(x, y) + λu(x, y) = 0, (1)

where σi j and τi are polynomials of at most total degree two and one, respectively. In a recent paper [24] we studied
the orthogonal polynomial solutions of a second-order partial difference equation of hypergeometric type of two variables
as (1). The Pearson systems for the orthogonality weight of the solutions and also for the difference derivatives of the
solutions were presented. The orthogonality property in subspaces was treated in detail, which lead to an analog of the
Rodrigues type formula for orthogonal polynomials of two discrete variables. A classification of the admissible equations
as well as some examples related with bivariate Hahn, Kravchuk, Meixner, and Charlier families, and their algebraic and
difference properties were explicitly given. The idea was to use the (column) vector representation [15,16]. Following [24],
let x = (x, y) ∈ R

2, and let xn (n ∈ N0) denote the column vector of the monomials xn−k yk , whose elements are arranged in
graded lexicographical order (see [7, p. 32]):

xn = (
xn−k yk), 0 � k � n, n ∈ N0. (2)

Let {Pn
n−k,k(x, y)} be a sequence of polynomials in the space Π2

n of all polynomials of total degree at most n in two variables,

x = (x, y), with real coefficients. Such polynomials are finite sums of terms of the form axn−k yk , where a ∈ R.
From now on Pn will denote the (column) polynomial vector

Pn = (
Pn

n,0(x, y), Pn
n−1,1(x, y), . . . , Pn

1,n−1(x, y), Pn
0,n(x, y)

)T
. (3)

Then, each polynomial vector Pn can be written in terms of the basis (2) as:

Pn = Gn,nxn + Gn,n−1xn−1 + · · · + Gn,0x0, (4)

where Gn, j are matrices of size (n + 1) × ( j + 1) and Gn,n is a nonsingular square matrix of size (n + 1) × (n + 1).
A polynomial vector P̂n is said to be monic if its leading matrix coefficient Ĝn,n is the identity matrix (of size (n + 1) ×

(n + 1)); i.e.:

P̂n = xn + Ĝn,n−1xn−1 + · · · + Ĝn,0x0. (5)

Then, each of its polynomial entries P̂ n
n−k,k(x, y) is of the form:

P̂ n
n−k,k(x, y) = xn−k yk + terms of lower total degree. (6)

In what follows the “hat” notation P̂n will represent monic polynomials.
The main aim of this paper is to give explicit formulae for computing the matrices in the three-term recurrence relations

satisfied by the monic orthogonal polynomial solutions of an admissible potentially self-adjoint second-order partial differ-
ence equation of hypergeometric type, using vector matrix notation. Moreover, we classify the possible partial difference
equations of this type, completing preliminary results [24,25] where the potentially self-adjointness was not considered in
the classification. Thus, we have analyzed a class of second-order partial difference equations for which it is possible to
compute a weight function � and a family of monic polynomials such that this family is orthogonal with respect to � in
a certain domain G . All of these, weight function, polynomials and domain of orthogonality are given explicitly in terms of
the coefficients of the second-order partial difference equation.

The existence of a recurrence relation for a vector of bivariate discrete orthogonal polynomial family can be established
in more general settings than those considered here [35]. The following existence theorem proved in [7] can be applied for
infinite or finite (n = 0,1, . . . , N) sequences of polynomials (see Examples 4.1 and 4.2 of [35]) since we are using graded
lexicographical order (2).

Theorem 1.1. Let L be a positive definite moment linear functional acting on the space Π2
n of all polynomials of total degree at most n

in two variables, and {Pn}n�0 be an orthogonal family with respect to L. Then, for n � 0, there exist unique matrices An, j of size
(n + 1) × (n + 2), Bn, j of size (n + 1) × (n + 1), and Cn, j of size (n + 1) × n, such that

x jPn = An, jPn+1 + Bn, jPn + Cn, jPn−1, j = 1,2, (7)

with the initial conditions P−1 = 0 and P0 = 1. Here the notation x1 = x, x2 = y is used.

In the aforementioned hypothesis for the partial difference equation (1), in this paper we give explicit expressions for
the matrices An, j , Bn, j and Cn, j appearing in the three-term recurrence relations (7), in terms of the coefficients of σi j
and τi in (1). These matrices allow us to compute the monic orthogonal polynomial solutions of an admissible potentially
self-adjoint second-order partial difference equation of hypergeometric type.

The structure of the paper is as follows. In Section 2 we give the background necessary for the results contained in this
paper. The classification of admissible potentially self-adjoint second-order partial difference equations of hypergeometric
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type is presented in Section 3. In Section 4 the explicit expressions for the matrix coefficients in the three-term recurrence
relations (5) are given in the monic case. Finally, in Section 5, we identify the examples of bivariate orthogonal polynomials
existing in the literature following our classification. In this way, monic bivariate Charlier, Meixner, Kravchuk and Hahn
orthogonal polynomials can be computed by using the explicit formulae given in Section 4.

2. Basic definitions and notations

Before beginning the analysis proper, in this section we review previous results already existing in the literature for this
bivariate discrete situation coming from [17,24,25].

2.1. Admissible partial difference equations of hypergeometric type

The forward and backward difference operators acting on a function of two variables are defined as

�1u(x) = u(x + 1, y) − u(x, y), �2u(x) = u(x, y + 1) − u(x, y),

∇1u(x) = u(x, y) − u(x − 1, y), ∇2u(x) = u(x, y) − u(x, y − 1).

Definition 2.1. Let σi j and τi be polynomials in x and y of at most total degree two and one, respectively. We say that
Eq. (1) belongs to the hypergeometric class if the difference derivatives uα(x) = �r

1�
s
2u(x) of the solutions u = u(x) of (1)

are also solutions of an equation of the same type as (1).

This concept was introduced by Lyskova as basic class in [1,19,20] in the multivariable continuous case. As a direct
consequence of the definition, we obtain the following result [24]:

Lemma 2.2. Eq. (1) belongs to the hypergeometric class if and only if

σ11(x, y) = σ11(x) = a11x2 + d11x + f11, σ22(x, y) = σ22(y) = b22 y2 + e22 y + f22,

σ12(x, y) = c12xy + d12x + e12 y + f12, σ21(x, y) = c21xy + d21x + e21 y + f21,

τ1(x, y) = τ1(x) = s11x + v11, τ2(x, y) = τ2(y) = t22 y + v22.

Note that when

λ = −r�1τ1(x) − s�2τ2(x) − rs�1�2
[
σ12(x) + σ21(x)

] − r(r − 1)

2
�2

1σ11(x) − s(s − 1)

2
�2

2σ22(x), (8)

the equation has a particular solution which is a polynomial of total degree r + s.

Definition 2.3. The difference equation (1) belonging to the hypergeometric class will be called admissible if there exists
a sequence {λn} (n = 0,1, . . .) such that for λ = λn , there are precisely n + 1 linearly independent solutions in the form of
polynomials of total degree n and are no non-trivial solutions in the set of polynomials whose total degree is less than n.

From [24, Theorem 3.1], we have that Eq. (1) is admissible if and only if the following conditions hold true

b22 = a11, t22 = s11, 2a11 − c12 − c21 = 0. (9)

Therefore,

λ	 = −	
(
(	 − 1)a11 + s11

)
, (10)

and the numbers a11 and s11 must satisfy the following condition

a11m + s11 �= 0,

for any non-negative integer m in order to be (1) an admissible equation.

Remark 1. It is possible to reduce the number of parameters in Eq. (1) after a translation in the x and y variables in order
to have f12 = f21 = 0, which shall be assumed in what follows.
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2.2. Potentially self-adjoint difference operators

Let us introduce the second-order partial difference operator

Du(x) = σ11(x)�1∇1u(x) + σ12(x)�1∇2u(x) + σ21(x)�2∇1u(x)

+ σ22(x)�2∇2u(x) + τ1(x)�1u(x) + τ2(x)�2u(x), (11)

which allows us to present Eq. (1) in the form

Du(x) + λu(x) = 0, (12)

where λ is a constant.
The adjoint operator D† of D is defined by

D†u = �1∇1(σ11u) + �1∇2(σ21u) + �2∇1(σ12u) + �2∇2(σ22u) − ∇1(τ1u) − ∇2(τ2u). (13)

The operator D is self-adjoint if D† = D.

Definition 2.4. The operator D is potentially self-adjoint in a domain G if there exists a positive real function �(x) = �(x, y)

in this domain such that the operator �(x)D is self-adjoint in the domain G .

In order that D be potentially self-adjoint, we multiply (1) through by a positive function �(x) in some domain G to be
chosen later. Then, the operator is self-adjoint provided [24, Section 4] a Pearson type system is satisfied by �(x), which
can be explicitly computed as

�(x, y) = κ

y−1∏
i=y0

G2(x, i)
x−1∏
j=x0

G1( j, y0), (14)

where κ is a constant, the functions Gi(x, y) are given by

G1(x, y) = �3(x, y)

�1(x + 1, y)
, G2(x, y) = �4(x, y)

�2(x, y + 1)
, (15)

and the polynomials �i(x, y) can be computed explicitly from the second-order partial difference equation (1) as

�1(x, y) = σ11(x, y) + σ21(x, y), �3(x, y) = σ11(x, y) + σ12(x, y) + τ1(x, y), (16)

�2(x, y) = σ22(x, y) + σ12(x, y), �4(x, y) = σ21(x, y) + σ22(x, y) + τ2(x, y). (17)

The expression (14) is the discrete analog of [28, (22), p. 134] and in order to obtain its expression, it is necessary to
introduce the domain G as the set of distinct points in R

2, where the functions G1(x, y) and G2(x, y) are non-negative, i.e.
G is a simply connected domain bounded by a piecewise smooth curve

Γ = {
(x, y) ∈ R

2
∣∣ G1(x, y) = G2(x, y) = 0

}
. (18)

The function �(x, y), is called the weight function in the domain G , which is determined up to a constant factor, and
from the Pearson system we obtain the following condition which must satisfy the polynomial coefficients of the partial
difference equation (1)

σ21(x + 1, y)
�3(x, y)

�1(x + 1, y)
+ σ21(x, y − 1)

�2(x, y)

�4(x, y − 1)

− σ12(x, y + 1)
�4(x, y)

�2(x, y + 1)
− σ12(x − 1, y)

�1(x, y)

�3(x − 1, y)
= 0, (19)

where the polynomials �i(x, y) are defined in (16)–(17).
As already analyzed in [24], in order to exist the weight function � it is necessary that the coefficients of the second-

order partial difference equation satisfy the coupling hypergeometric condition [24, Eq. (50)]

�1(x + 1, y)�2(x + 1, y + 1) = �1(x + 1, y + 1)�2(x, y + 1), (20)

and

G2(x, y)�2 G1(x, y) = G1(x, y)�1 G2(x, y), (21)

which is a discrete analogue of [19, Eq. (17)] and a consequence of the Pearson system for the weight function.
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Thus, in what follows we shall deal with a potentially self-adjoint admissible second-order partial difference equation of
hypergeometric type, i.e. Eq. (1) where the polynomials⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11(x, y) = σ11(x) = a11x2 + d11x + f11,

σ22(x, y) = σ22(y) = a11 y2 + e22 y + f22,

σ12(x, y) = c12xy + d12x + e12 y,

σ21(x, y) = c21xy + d21x + e21 y,

τ1(x, y) = τ1(x) = s11x + v11,

τ2(x, y) = τ2(y) = s11 y + v22,

(22)

satisfy (19), (20) and (21), the Pearson system [24] holds, with � computed from (14), λ = λ	 is defined in (10) and λ	 �= 0
for 	 > 0.

3. Classification of admissible potentially self-adjoint second-order partial difference equations of hypergeometric type

Let us analyze all the possible situations of admissible second-order partial difference equations of hypergeometric
type (1) in the above hypothesis. Some preliminary results about classification have been obtained in [24], which are com-
pleted in this paper, since in the previous results the potentially self-adjointness condition was not considered. By using (14)
it is possible to obtain appropriate weight functions in each case in a certain domain G which shall be presented in the
examples given in Section 5. In doing so, the following condition must hold in (22)

c21 = a11, (23)

which implies c12 = a11 by using (9), and the following four cases appear for an admissible potentially self-adjoint second-
order partial difference equations of hypergeometric type.

3.1. Case 1

If a11 = d12 = d21 = e21 = e12 = 0 in (22), then

σ11(x) = xd11 + f11, σ12(x, y) = 0, σ21(x, y) = 0, σ22(y) = ye22 + f22,

τ1(x) = xs11 + v11, τ2(y) = ys11 + v22, λ	 = −	s11.

Moreover, in this case the functions G1(x, y) and G2(x, y) defined in (15) are given by

G1(x, y) = x(d11 + s11) + f11 + v11

(x + 1)d11 + f11
, G2(x, y) = y(e22 + s11) + f22 + v22

(y + 1)e22 + f22
,

which allows us to construct the orthogonality weight function by using (14).

3.2. Case 2

If a11 = d12 = e21 = f11 = f22 = 0, d21 �= 0, e22 = d21 − s11, d11 = e12 − s11, and v11 = e12 v22/d21 in (22), then

σ11(x) = x(e12 − s11), σ22(y) = y(d21 − s11), σ12(x, y) = ye12, σ21(x, y) = xd21,

τ1(x) = xs11 + e12 v22/d21, τ2(y) = ys11 + v22, λ	 = −	s11,

and the functions G1(x, y) and G2(x, y) are given by

G1(x, y) = e12(d21(x + y) + v22)

(x + 1)d21(d21 + e12 − s11)
, G2(x, y) = d21(x + y) + v22

(y + 1)(d21 + e12 − s11)
.

3.3. Case 3

If a11 = d21 = e12 = 0, d12 �= 0, f11 = −e21 v22/d12, f22 = −v22, d11 = e21, v11 = e21 v22/d12, and e22 = d12, then

σ11(x) = e21

(
x − v22

d12

)
, σ12(x, y) = xd12, σ21(x, y) = ye21, σ22(y) = yd12 − v22,

τ1(x) = xs11 + e21 v22

d12
, τ2(y) = ys11 + v22, λ	 = −	s11,

and

G1(x, y) = d12x(d12 + e21 + s11)

e21(d12(x + y + 1) − v22)
, G2(x, y) = y(d12 + e21 + s11)

d12(x + y + 1) − v22
.
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3.4. Case 4

If a11 �= 0, d11 = −d12 − d21 + e12 + e21 + e22,

f11 = e21(−d12 + e12 + e22)

a11
, f22 = d12(−d12 + e12 + e22)

a11
,

v11 = e21(d12 − e22) + e12(e22 + s11 − d21)

a11
, v22 = d21(−d21 + e21 + e22 + s11)

a11
− f22,

and one of the following five conditions holds true

d12 = e21 = 0, or (24)

d21 = e12 = 0, or (25)

e21 = e12 = 0, or (26)

d21 = d12 = 0, or (27)

e12 = d21, e21 = d12, and d21 = a11 + d12, (28)

then

σ11(x) = x2a11 + x(−d12 − d21 + e12 + e21 + e22) + e21(−d12 + e12 + e22)

a11
,

σ12(x, y) = xya11 + xd12 + ye12,

σ21(x, y) = xya11 + xd21 + ye21,

σ22(y) = y2a11 + ye22 + d12(−d12 + e12 + e22)

a11
,

τ1(x) = s11x + e21(d12 − e22) + e12(e22 + s11) − d21e12

a11
,

τ2(y) = s11 y + d21(e21 + e22 + s11 − d21) − d12(e12 + e22 − d12)

a11
,

λ	 = −	
(
(	 − 1)a11 + s11

)
.

Thus, the functions G1(x, y) and G2(x, y) defined in (15) are given by

G1(x, y) = (a11x + e12)(a11(x + y) − d21 + e21 + e22 + s11)

((x + 1)a11 + e21)(a11(x + y + 1) − d12 + e12 + e22)
,

G2(x, y) = (a11 y + d21)(a11(x + y) − d21 + e21 + e22 + s11)

((y + 1)a11 + d12)(a11(x + y + 1) − d12 + e12 + e22)
.

Remark 2. It is important to mention here that in comparison with [24] we have now added the condition (19) in the
classification process.

4. Explicit expressions for the coefficients in the three-term recurrence relations: monic case

Let us consider a monic vector polynomial family {̂Pn}n∈N0 solution of (1) and orthogonal with respect to the weight (14)

∑
(x,y)∈G

∑
xm

P̂
T
n �(x, y) =

{
0 ∈ M(m+1,n+1), if n > m,

Hn ∈ M(n+1,n+1), if m = n,
(29)

where Hn (of size (n + 1) × (n + 1)) is nonsingular, in an appropriate domain G ⊂ R
2.

Let us first introduce the matrices Ln, j of size (n + 1) × (n + 2)

Ln,1 =
⎛
⎝ 1 � 0

. . .
...

� 1 0

⎞
⎠ and Ln,2 =

⎛
⎝0 1 �

...
. . .

0 � 1

⎞
⎠ , (30)

so that

xxn = Ln,1xn+1, yxn = Ln,2xn+1. (31)
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Let us observe that

x2xn = Ln,1Ln+1,1xn+2, y2xn = Ln,2Ln+1,2xn+2,

Ln,2Ln+1,1 = Ln,1Ln+1,2, (32)

and for j = 1,2,

Ln, j L
T
n, j = In+1, (33)

where In+1 denotes the identity matrix of size n + 1.
From the definition of the forward and backward difference operators � and ∇ , we obtain

� jx
n =

n∑
k=1

E
k
n, jx

n−k, ∇ jx
n =

n∑
k=1

(−1)k+1
E

k
n, jx

n−k,

where the entries of the matrices E
r
n, j = (er

p,q, j) of size (n + 1) × (n − r) are given by

er
p,q,1(n) =

{(n−p
r

)
, p = q,

0, p �= q,
er

p,q,2(n) =
{(p

r

)
, p = q + r,

0, p �= q + r.

If we substitute the expansion (5) in (1), by equating the coefficients in xn−1 and xn−2 we obtain the following explicit
expressions for the matrices Ĝn,n−1 and Ĝn,n−2:

Ĝn,n−1 = SnF
−1
n−1(λn), (34)

Ĝn,n−2 = (Tn + Ĝn,n−1Sn−1)F
−1
n−2(λn), (35)

where the nonsingular matrix Fn(λ	) is given by

Fn(λ	) = (λn − λ	)In+1, (36)

λn is given in (10), In+1 denotes the identity matrix of size (n + 1) × (n + 1), and the matrix Sn of size (n + 1) × n is given
in terms of the coefficients of the polynomials σi j and τi of the partial difference equation (1) given in (22) by

Sn =

⎛
⎜⎜⎜⎜⎜⎜⎝

s1,1 �
s2,1 s2,2

. . .
. . .

sn−1,n−2 sn−1,n−1
sn,n−1 sn,n

� 0 sn+1,n

⎞
⎟⎟⎟⎟⎟⎟⎠

(n � 1), (37)

where, for 1 � i � n,

si,i = (−i + n + 1)

(
(n − i)

(
d11 + s11

2

)
+ (i − 1)(e12 + e21) + v11

)
,

si+1,i = i(d12 + d21)(n − i) + (i − 1)i

(
e22 + s11

2

)
+ iv22.

Moreover, the matrix Tn of size (n + 1) × (n − 1) is given by

Tn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1,1 �
t2,1 t2,2
t3,1 t3,2 t3,3

. . .
. . .

. . .
. . .

. . .
. . .

tn−1,n−3 tn−1,n−2 tn−1,n−1
� tn,n−2 tn,n−1

0 tn+1,n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(n � 2), (38)

where, for 1 � i � n − 1,
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ti,i = − 1

12
(i − n − 1)(i − n)

(
a11(i − n + 1)(3i + n − 6) + 2

(
3(i − 1)(e21 − e12) − 6 f11 + s11(i − n + 1) − 3v11

))
,

ti+1,i = −1

2
i(i − n)

(
(i − n + 1)

(
(i − 1)a11 − d12 + d21

) + (1 − i)(e12 − e21)
)
,

ti+2,i = 1

12
i
((

i2 − 1
)(

a11(−3i + 4n − 6) + 2s11
) + 6(i + 1)

(
(d12 − d21)(i − n + 1) + 2 f22 + v22

))
.

Now, in this monic situation, it is possible to generalize the well-known explicit expressions for the coefficients in the
three-term recurrence relation in the one variable case [21, p. 14] to the bivariate discrete case. This is done with the help of
the auxiliary matrices Ln, j defined in (30)–(31) and the following result proved in [4] in the continuous bivariate situation,
which is also valid in the bivariate discrete situation since it is a consequence of the three-term recurrence relations (7).

Theorem 4.1. In the monic case, the explicit expressions of the matrices An, j , Bn, j and Cn, j ( j = 1,2) appearing in (7) in terms of the
values of the leading coefficients Ĝn,n−1 and Ĝn,n−2 , obtained in (34) and (35) respectively, are given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩

An, j = Ln, j, n � 0,

B0, j = −L0, j Ĝ1,0, Bn, j = Ĝn,n−1Ln−1, j − Ln, j Ĝn+1,n, n � 1,

C1, j = −(L1, j Ĝ2,0 + B1, j Ĝ1,0),

Cn, j = Ĝn,n−2Ln−2, j − Ln, j Ĝn+1,n−1 − Bn, j Ĝn,n−1, n � 2,

(39)

where the matrices Ln, j have been introduced in (30).

It has some interest to remark here that, as described in [7], since

rank(Ln, j) = n + 1 = rank(Cn+1, j), j = 1,2, n � 0, (40)

the columns of the joint matrices

Ln = (
LT

n,1, LT
n,2

)T
and Cn = (

C T
n,1, C T

n,2

)T
,

of size (2n + 2) × (n + 2) and (2n + 2) × n respectively, are linearly independent, i.e.

rank(Ln) = n + 2, rank(Cn) = n. (41)

Therefore, the matrix Ln has full rank so that there exists a unique matrix D†
n of size (n+2)×(2n+2), called the generalized

inverse of Ln:

D†
n = (Dn,1|Dn,2) = (

LT
n Ln

)−1
LT

n , (42)

such that

D†
n Ln = In+2.

Moreover, using the left inverse D†
n of the joint matrix Ln

D†
n =

⎛
⎜⎜⎜⎜⎝

1 0
1/2 © 1/2 ©

. . .
. . .

© 1/2 © 1/2
0 1

⎞
⎟⎟⎟⎟⎠ ,

we can write a recursive formula for the monic orthogonal polynomials

P̂n+1 = D†
n

[(
x
y

)
⊗ In+1 − Bn

]
P̂n − D†

nCnP̂n−1, n � 0, (43)

with the initial conditions P̂−1 = 0, P̂0 = 1, where ⊗ denotes the Kronecker product and

Bn = (
BT

n,1, BT
n,2

)T
, Cn = (

C T
n,1, C T

n,2

)T
, (44)

are matrices of size (2n + 2) × (n + 1) and (2n + 2) × n, respectively. This recurrence (43) gives another presentation of
[7, (3.2.10)], already presented in the bivariate discrete case in [25].

Therefore, from (43) it is possible to compute a monic orthogonal polynomial solution of a potentially self-adjoint ad-
missible second-order partial difference equation of hypergeometric type (1).

Next we give the entries of the matrices Sn and Tn introduced in (37) and (38) respectively, in the four possible cases
of the classification presented in Section 3.
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4.1. Case 1

In this case, the coefficients of the matrices Sn defined in (37) are given by

si,i = (−i + n + 1)

(
(n − i)

(
d11 + s11

2

)
+ v11

)
,

si+1,i = i

(
(i − 1)

(
e22 + s11

2

)
+ v22

)
,

and the coefficients of the matrices Tn defined in (38) are given by

ti,i = 1

6
(i − n − 1)(n − i)

(−6 f11 + s11(i − n + 1) − 3v11
)
,

ti+1,i = 0,

ti+2,i = 1

6
i(i + 1)

(
6 f22 + (i − 1)s11 + 3v22

)
.

4.2. Case 2

In this case, the coefficients of the matrices Sn defined in (37) are given by

si,i = (−i + n + 1)

(
e12

(
v22

d21
+ n − 1

)
+ 1

2
s11(i − n)

)
,

si+1,i = 1

2
i
(
2(n − 1)d21 − (i − 1)s11 + 2v22

)
,

and the coefficients of the matrices Tn defined in (38) are given by

ti,i = 1

6
(i − n − 1)(i − n)

(
3e12

(
v22

d21
+ i − 1

)
+ s11(−i + n − 1)

)
,

ti+1,i = 1

2
i(i − n)

(
d21(−i + n − 1) + (i − 1)e12

)
,

ti+2,i = 1

6
i(i + 1)

(−3d21(i − n + 1) + (i − 1)s11 + 3v22
)
.

4.3. Case 3

In this case, the coefficients of the matrices Sn defined in (37) are given by

si,i = (−i + n + 1)

(
e21

(
v22

d12
+ n − 1

)
+ 1

2
s11(n − i)

)
,

si+1,i = 1

2
i
(
2(n − 1)d12 + (i − 1)s11 + 2v22

)
,

and the coefficients of the matrices Tn defined in (38) are given by

ti,i = (i − n − 1)(n − i)(d12(3(i − 1)e21 + s11(i − n + 1)) + 3e21 v22)

6d12
,

ti+1,i = 1

2
i(i − n)

(
d12(i − n + 1) − (i − 1)e21

)
,

ti+2,i = 1

6
i(i + 1)

(
3d12(i − n + 1) + (i − 1)s11 − 3v22

)
.

4.4. Case 4

Let us assume that one of the five conditions (24)–(28) holds true. In this case, the coefficients of the matrices Sn defined
in (37) are given by
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si,i = (n − i + 1)

(
(n − i)

(
e12 + e21 + e22 − d12 − d21 + s11

2

)
+ (i − 1)(e12 + e21)

+ f22 + e12(s11 − d21) − d12(−d12 + e12 − e21 + e22) + (e12 − e21)e22

a11

)
,

si+1,i = i

(
(d12 + d21)(n − i) + (i − 1)

(
e22 + s11

2

)
− f22 + d21(e21 + e22 − d21 + s11)

a11

)
,

and the coefficients of the matrices Tn defined in (38) are given by

ti,i = 1

12
(i − n − 1)(i − n)

(
6(e12(2e21 + e22 − d12 − d21 + s11) + (d12 − e21)(d12 − e22))

a11

+ (n − i − 1)
(
a11(3i + n − 6) + 2s11

) + 6
(
(i − 1)e12 − (i − 1)e21 + f22

))
,

ti+1,i = i(i − n)

(
d12(e12 + e22 − d12)

a11
+ f22

+ 1

2

(
(n − i)

(
(i − 1)a11 − d12 + d21

) + (i − 1)(−a11 + e12 − e21) + d12 − d21
))

,

ti+2,i = 1

12
i(i + 1)

(
6d21(e21 + e22 − d21 + s11)

a11

+ (i − 1)
(
2s11 − a11(3i − 4n + 6)

) + 6
(
(d12 − d21)(i − n + 1) + f22

))
.

5. Examples

There exist different families of bivariate discrete orthogonal polynomials in the literature, introduced from the general-
ized Kampé de Fériet hypergeometric series [26] or as product of univariate orthogonal polynomials of a discrete variable
(Charlier, Kravchuk, Meixner and Hahn [13]). In this section we summarize these families and we show that in the lattices
considered in this paper all of them are solution of an admissible potentially self-adjoint second-order partial difference
equation of hypergeometric type. Moreover, the monic polynomials can be computed from (43) by using the matrices ex-
plicitly given in Section 4.

5.1. Case 1

Let us consider

σ11(x) = x, σ12 = σ21 = 0, σ22(y) = y, τ1(x) = a1 − x, τ2(y) = a2 − y.

In this situation, it is known that Eq. (1) has two orthogonal polynomial family solutions. On one hand, the family introduced
by Tratnik [31] as a product of Meixner and Charlier polynomials

ũn1,n2(x, y) = Mn1(x; x − y,−a1/a2)Cn2(x + y − n1;a1 + a2), 0 � n1 + n2, (45)

is solution of (1). Moreover, it is simple to prove that the monic family obtained as a product of two monic Charlier
polynomials

v̂n1,n2(x, y) = Ĉn1(x;a1 )̂Cn2(y;a2), 0 � n1 + n2, (46)

is another polynomial solution of the same equation, belonging to Case 1 of the classification done in Section 3. Both
families (45) and (46) are orthogonal with respect to the weight function which can be computed from (14)

�a1,a2(x, y) = ax
1ay

2

Γ (x + 1)Γ (y + 1)
,

in the domain G defined by x � 0 and y � 0, assuming that a1 > 0 and a2 > 0.

5.2. Case 2

In this case, it is possible to obtain orthogonal families in a bounded or unbounded domain.
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5.2.1. Meixner type
Let us first consider

σ11(x) = (1 − a2)x, σ12(x, y) = a1 y, σ21(x, y) = a2x, σ22(y) = (1 − a1)y,

τ1(x) = (a1 + a2 − 1)x + βa1, τ2(y) = (a1 + a2 − 1)y + βa2.

This choice in (1) implies that this equation belongs uniquely to the second case according to Section 3. There exist at least
three polynomial solutions of the above equation. The non-monic bivariate Meixner polynomials [31] defined in terms of
generalized Kampé de Fériet hypergeometric series

Mβ,a1,a2
n1,n2 (x, y) = (x + y + β)n1+n2

× F 0:2;2
1:0;0

( − : −n1,−x;−n2,−y
−n1 − n2 − x − y − β + 1 : −;− a−1

1 ,a−1
2

)
, 0 � n1 + n2, (47)

the non-monic bivariate Meixner polynomials [31] defined in terms of a product of Meixner polynomials

M̃β,a1,a2
n1,n2 (x, y) = Mn1(x;−x − y,−a1/a2)Mn2(x + y − n1;β + n1,a1 + a2), 0 � n1 + n2, (48)

and the monic bivariate Meixner polynomials [31] defined in terms of generalized Kampé de Fériet hypergeometric series

M̂β,a1,a2
n1,n2 (x, y) = an1

1 an2
2

(a1 + a2 − 1)n1+n2
(β)n1+n2

× F 0:2;2
1:0;0

(− : −n1,−x;−n2,−y
β : −;−

a1 + a2 − 1

a1
,

a1 + a2 − 1

a2

)
, 0 � n1 + n2, (49)

are solutions of (1) [23–25]. The matrices of the recurrence relations of this later family (monic) can be easily computed
from Theorem 4.1.

We would like to emphasize that these three families of polynomials (47), (48) and (49) are orthogonal with respect to
the weight function computed from (14)

�β,a1,a2(x, y) = ax
1ay

2Γ (x + y + β)

Γ (x + 1)Γ (y + 1)Γ (β)
,

in the domain G defined by x � 0 and y � 0, assuming that a1 > 0, a2 > 0 and β > 0.

5.2.2. Kravchuk type
Let us also consider

σ11(x) = (p1 − 1)x, σ12(x, y) = p1 y, σ21(x, y) = p2x, σ22(y) = (p2 − 1)y,

τ1(x) = x − Np1, τ2(y) = y − Np2.

This choice in (1) implies that this equation belongs uniquely to the second case according to Section 3. There exist at least
three polynomial solutions of the above equation. For 0 � n1 + n2 � N the non-monic bivariate Kravchuk polynomials [31]

K p1,p2
n1,n2 (x, y; N) = (x + y − N)n1+n2

× F 0:2;2
1:0;0

( − : −n1,−x;−n2,−y
−n1 − n2 − x − y + N + 1 : −;−

p1 + p2 − 1

p1
,

p1 + p2 − 1

p2

)
, (50)

the non-monic bivariate Kravchuk polynomials [31] defined as a product of Kravchuk polynomials

K̃ p1,p2
n1,n2 (x, y; N) = (N − n1)!

N!(n1 − N)n2

× Kn1

(
x; p1/(p1 + p2), x + y

)
Kn2(x + y − n1; p1 + p2, N − n1), 0 � n1 + n2 � N, (51)

and the monic bivariate Kravchuk polynomials [31]

K̂ p1,p2
n1,n2 (x, y; N) = (−1)n1+n2 pn1

1 pn2
2 (N − n1 − n2 + 1)n1+n2

× F 0:2;2
1:0;0

(− : −n1,−x;−n2,−y
−N : −;−

1

p1
,

1

p2

)
, 0 � n1 + n2 � N, (52)

are solutions of (1) [23–25]. The explicit form of the matrices of the recurrence relations of this later family (monic bivariate
Kravchuk polynomials) can be easily computed from Theorem 4.1, and they coincide with the results already given in
[25, Section 4.2].
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These three families of polynomials (50), (51) and (52) are orthogonal with respect to the trinomial distribution obtained
from (14)

�N,p1,p2(x, y) = px
1 p y

2 (1 − p1 − p2)
N−x−yΓ (N + 1)

Γ (x + 1)Γ (y + 1)Γ (N − x − y + 1)
,

in the domain G defined by x � 0, y � 0, and 0 � x + y � N , where N is a positive integer and p1 and p2 are real numbers
satisfying

p1 > 0, p2 > 0, 0 < p1 + p2 < 1.

5.3. Case 3

This situation corresponds to symmetric situations of Case 2 with respect to the origin.
Let d12 = −a2, e21 = −a1, s11 = a1 + a2 − 1 and v22 = −a2β in (22). Thus,

σ11(x) = a1(β − x), σ12(x, y) = −a2x, σ21(x, y) = −a1 y, σ22(y) = a2(β − y),

τ1(x) = (a1 + a2 − 1)x − a1β, τ2(y) = (a1 + a2 − 1)y − a2β,

and Eq. (1) belongs uniquely to the third case according to Section 3. The polynomial families Mβ,a1,a2
n1,n2 (−x,−y),

M̃β,a1,a2
n1,n2 (−x,−y), and M̂β,a1,a2

n1,n2 (−x,−y), defined in (47), (48), and (49), respectively, are solution of this equation. A general
approach for symmetries of orthogonal families has been already presented in [30] from the hypergeometric representations
and without considering the partial difference equation satisfied by the polynomials.

On the other hand, if we set d12 = p2, e21 = p1, s11 = −1 and v22 = −Np2, we obtain

σ11(x, y) = p1(N + x), σ12(x, y) = p2x, σ21(x, y) = p1 y, σ22(x, y) = p2(N + y),

τ1(x, y) = −x − Np1, τ2(x, y) = −y − Np2

and Eq. (1) belongs uniquely to the third case according to Section 3. The polynomial families K p1,p2
n1,n2 (−x,−y; N),

K̃ p1,p2
n1,n2 (−x,−y; N), and K̂ p1,p2

n1,n2 (−x,−y; N), defined in (50), (51), and (52) respectively, are solution of this equation.

5.4. Case 4

Let us consider as polynomial coefficients of the partial difference equation (1)

σ11(x) = x(x − β − γ + M − 2), σ22(y) = y(y − α − γ + M − 2),

σ12(x, y) = y(α + x + 1), τ1(x) = x(α + β + γ + 3) + (α + 1)M,

σ21(x, y) = x(β + y + 1), τ2(y) = y(α + β + γ + 3) + (β + 1)M.

It is clear that this equation belongs uniquely to the fourth case according to Section 3. The above equation has a monic
orthogonal polynomial solution defined by means of

ûn,m(x, y) = (α + 1)n(β + 1)m(M)n+m

(n + m + α + β + γ + 2)n+m

× F 1:2;2
1:1;1

(
n + m + α + β + γ + 2 : −n,−x;−m,−y

M : α + 1;β + 1 1,1

)
. (53)

Let M = −N − 1, where N is a positive integer and 0 � n +m � N + 1. Then, the polynomials (53) defined in [31] as (monic)
Hahn polynomials are orthogonal with respect to

�(x, y) = Γ (x + α + 1)Γ (y + β + 1)

Γ (α + 1)Γ (β + 1)Γ (x + 1)Γ (y + 1)

(N + 2 − x − y)x+y

(N + c + 2 − x − y)x+y
, (54)

in the domain G defined by x � 0, y � 0, x + y � N + 1, assuming that α, β and γ are real parameters such that α > −1,
β > −1 and α + β + γ � −2. The matrices of the recurrence relations satisfied by these polynomials (53) can be computed
from Theorem 4.1 and they coincide with the matrices published in [25, Section 4.1].

Moreover, if we set M = N + 1 in the difference equation, where N is a positive integer, then we found in [24] that the
Hahn family introduced by Tratnik in [31]

un,m(x, y) = (−1)n(N + 1 + x + y)n+m

× F 1:2;2
1:1;1

( −n − m − γ : −n,−x;−m,−y
−n − m − N − x − y : α + 1;β + 1 1,1

)
, (55)
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is non-monic polynomial solutions of (1) orthogonal with respect to

�(x, y) = Γ (x + α + 1)Γ (y + β + 1)

Γ (α + 1)Γ (β + 1)Γ (x + 1)Γ (y + 1)

(N + 1)x+y

(N − c + 1)x+y
, (56)

in the domain G defined by x � 0, y � 0, assuming that α, β and γ are real parameters such that α > −1, β > −1 and
γ < 0.

Finally, if we set M = −N + 1 in the difference equation, then we have found in [23] that the Hahn polynomials intro-
duced by Karlin and McGregor [11] and Tratnik [31] as a product of Hahn polynomials

Hα,β,γ
n1,n2 (x, y; N) =

(x+y
n1

)
(N−1

n1

) Q n2(x + y − n1;α + β + 2n1 + 1, γ , N − n1)Q n1(x;α,β, x + y + 1) (57)

for 0 � n1 + n2 � N − 1, are non-monic solutions of (1). These polynomials are orthogonal with respect to the weight
function obtained from (14)

�(x, y) = Γ (N)Γ (α + x + 1)Γ (β + y + 1)Γ (α + β + γ + 3)Γ (γ + N − x − y)

Γ (x + 1)Γ (y + 1)Γ (α + 1)Γ (β + 1)Γ (γ + 1)Γ (N − x − y)Γ (α + β + γ + N + 2)
, (58)

in the domain G defined by x � 0, y � 0 and 0 � x + y � N − 1, assuming that α, β and γ are real parameters such that
α > −1, β > −1 and γ > −1.

Finally, we would like to mention here that our interest is not to compute the matrices for all the cases (due to the
length and since some of them have been previously published without giving a general approach), but to emphasize the
information contained in this class of partial difference equation.
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