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A Model for Segregation of Chromatin after Replication: Segregation
of Identical Flexible Chains in Solution

Ron Dockhorn™ and Jens-Uwe Sommer'™*

TLeibniz Institute of Polymer Research Dresden, Dresden, Germany; and ¥Technische Universitat Dresden, Institute for Theoretical Physics,
Dresden, Germany

ABSTRACT We study the segregation of two long chains from parallel but randomly twisted start conformations under good
solvent conditions using Monte Carlo simulations to mimic chromatin segregation after replication in eukaryotic cells in the end of
prophase. To measure the segregation process, we consider the center-of-mass separation between the two chains and the
average square distance between the monomers which were connected before segregation starts. We argue that segregation
is dominated by free diffusion of the chains, assuming that untwisting can be achieved by Rouse-like fluctuations on the length
scale of a twisted loop. Using scaling analysis, we find that chain dynamics is in very good agreement with the free diffusion
hypothesis, and segregation dynamics follows this scaling nearly. Long chains, however, show retardation effects that can
be described by a new (to us) dynamical exponent, which is slightly larger than the dynamical exponent for Rouse-like diffusion.
Our results indicate that nearly free diffusion of chains during a timescale of a few Rouse-times can lead to segregation of chains.
A main obstacle during segregation by free diffusion is random twists between daughter strands. We have calculated the number
of twists formed by the daughter strands in the start conformations, which turns out to be rather low and increases only with the

square-root of the chain length.

INTRODUCTION

One of the most important processes of Life is the replica-
tion of DNA. To distribute the daughter strands after
replication into the respective daughter cells, Nature has
to resolve a physical problem: How to separate two abso-
lutely identical, long-chain molecules. This is of particular
importance for eukaryotes, where very long DNA, compac-
tified as chromatin, have to be segregated faithfully. Here,
the process leads to the formation of mitotic chromosomes,
where the two strands are additionally compacted and held
together by a centromere region, waiting for final separation
by the spindle apparatus setup for cell-division.

The particular problem in eukaryotic cells during mitosis
or meiosis is that all DNA strands have to be segregated
perfectly, but stay together until cell-division starts. Failures
of segregation and distribution of DNA during the cell-divi-
sion are usually lethal for cells. It is important to stress that
the segregation process of the conformations of the daughter
chains takes place before cell-division starts, and mitotic
chromosomes are structures where DNA segregation has
been accomplished (1-4).

It is very likely that this segregation problem is solved
based on physical principles; there is no indication for the
operation of motor proteins which directionally pull the
daughter strands during the chromosome formation
(prophase). There is also no indication for a distinction of
the daughter strands—even histones (note that additional
histones have to be created during replication) which
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compact DNA into the chromatin fibers, using both old
and new histones, are randomly distributed among the
daughter strands (5,6).

Considering these facts, there remain the following
driving forces for segregation: the mutual repulsion between
the chain molecules, the excluded volume effect well known
in polymer physics, and the random diffusion dynamics.
The aim of this work is to study the segregation of two iden-
tical flexible chains starting from an identical conforma-
tional state under the action of undirected excluded
volume interactions under good solvent conditions. As a first
step, we simplify the actual problem by considering two
strands of chromatin in the end of the prophase and investi-
gate the properties of the segregation kinetics.

A similar problem has been addressed in the literature for
the case of DNA-segregation in bacteria (7-10). By assuming
that the radius of gyration of the unconstrained DNA mole-
cules is much larger than the diameter of the tube forming
the bacterial cell, a constant entropic driving force for segre-
gation of two overlapping chains can be derived. This argu-
ment is based on scaling concepts for confined chains
which are well established in the polymer literature (11,12)
and has been tested in computer simulations (13-17). When
the above noted ratio between free extension of DNA and
tube diameter is large, the gain of free energy by segregation
is large as compared to kg7, where kg denotes Boltzmann’s
constant and 7 is the absolute temperature. The cylindrical
shape directs the segregation process, and as a result the
two strands are located in opposite parts of the cell.

The situation is different during the prophase in eukary-
otic cells. Here, the cell shape is not supporting a simple
mechanism as assumed for tubelike prokaryotic cells.

doi: 10.1016/j.bpj.2011.03.053


https://core.ac.uk/display/82155852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dockhorn@ipfdd.de
http://dx.doi.org/10.1016/j.bpj.2011.03.053
http://dx.doi.org/10.1016/j.bpj.2011.03.053
http://dx.doi.org/10.1016/j.bpj.2011.03.053
http://dx.doi.org/10.1016/j.bpj.2011.03.053
http://dx.doi.org/10.1016/j.bpj.2011.03.053

2540

Moreover, several DNA strands have to be separated faith-
fully at the same time. The simplest solution is that segrega-
tion is still driven by excluded volume repulsion between
the two strands and geometric constraints may play a minor
role. However, considering the thermodynamics of polymer
solutions, we know that the gain in free energy between the
mixed state of two polymers and the segregated state is of
the order of kg7 only (11). Thus, only a very small driving
force can operate between two equilibrium states (mixed
and segregated state).

Simulation model and description of segregation
kinetics

We assume that the segregation dynamics of the two
daughter strands is driven by Brownian motion of the flexible
units (segments) of chromatin in the absence of hydrody-
namic interactions. This should give us a first insight into
the segregation processes. Hydrodynamic effects are compu-
tationally very demanding and could be considered in later
studies. Under physiological conditions (high salt content),
electrostatic interactions can be neglected on the length-
scale of the chromatin thickness (18-21). Therefore, we
consider the model of two flexible uncharged polymer chains
where the smallest relevant length scale is the Kuhn segment
of the chromatin fiber, which corresponds to the length scale
where conformational changes can be considered as uncorre-
lated. The Kuhn length can be related to the so-called persis-
tence length, which is defined by the decorrelation length of
two repeat units along the strand. In simplified models, the
Kuhn length is twice the persistence length (see Rubinstein
and Colby (22) for more information about chain models).

Before segregation starts, the two linear daughter chains
are connected by a rope-ladder-like structure. The daughter
chains correspond to chromatin fibers (thickness ~30 nm)
in the end of the prophase held together by cohesin (23—
25). The Kuhn length of chromatin has been estimated to
~300 nm = 30 kbp (26). Thus, 1000 repeat units of our
model correspond to ~30,000 kbp per chain. For comparison,
one human eukaryotic chromosome with 130,000 kbp (27)
would correspond to ~4000 repeat units of our model.

To simulate the segregation process we apply the bond
fluctuation method (28,29). In this coarse-grained model,
the repeat units are modeled as cubes occupying eight
corners on a simple cubic lattice (see Fig. 1). The connec-
tivity between the monomers is given by a set of 108
bond vectors out of permutations of six basic vectors which
enable a high flexibility in the conformational state. Monte
Carlo sampling is performed by successive jumps of
randomly selected monomers along a randomly selected
unit lattice vector by fulfilling the conditions that the tar-
geted place is not occupied (excluded volume) and the
new bond vector is within the allowed set.

The basic time unit is defined as one Monte Carlo step
(MCS), which corresponds to one attempted monomer
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FIGURE 1 Sketch of the bond-fluctuation-model (28,29) as Monte Carlo
method for simulating the chains. Repeat units are modeled as cubes occu-
pying eight corners on a simple cubic lattice (solid cubes) and the connec-
tivity between the monomers (solid cylinder) is given by a set of 108 bond
vectors out of permutations of six basic vectors. Successive jumps of
randomly selected monomers (shaded cubes) along a randomly selected
unit lattice vector are tested for excluded volume condition and if the
new bond vector is within the allowed set. The move is performed if the
conditions are fulfilled (left cube) or rejected (right cube with invalid bond).

move in average. The set of bond vectors is chosen to
preserve topological constraints during the random motion
of the chains (cut-avoiding). Note that the algorithm we
are using in this work corresponds to a Langevin-type
dynamics of the polymer chains which displays the charac-
teristic dynamical features of real chains in the absence of
hydrodynamic interactions.

The start conformation is defined by an equilibrium
conformation of two chains forming a rope ladder (connect-
ing each monomer in both strands by additional bonds repre-
senting cohesin units) in good solvent without confinement,
using periodic boundary condition for the lattice. The equi-
librium state of the double-strand formed by the two daughter
chains of chromatin corresponds to a self-avoiding random
walk on long scales, whereas on short scales both strands
are randomly twisted. The onset of the segregation process
is set to the instantaneous cleavage of all interchain bonds
(opening the cohesin bonds), and segregation is driven by
the excluded volume repulsion of the two chains and random
motion. Simulations of 100 independent runs up to 50 x 50°
MCS are performed in a 512 x 512 x 512 simulation box
with periodic boundary conditions applied in all three direc-
tions, and ensemble averaging is done with respect to the
onset of segregation: For all runs we have selected different
start conformations of the double-strand of chromatin.

In Fig. 2, we show snapshots taken during the segregation
process to illustrate the dynamics of the two chains. At the
beginning, both chains are intertwined due to the initial
rope-ladder-like structure. After cleavage of the interchain
bonds, segregation dynamics arises from excluded volume
repulsion and random motion of the chains. This process
is slowed down due to initial twists between daughter
strands (indicated by red arrows in Fig. 2). The random
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FIGURE 2 Snapshot of conformations of chains with N = 1000 at
different times during the segregation process. At the beginning, both
chains are intertwined. Segregation dynamics is slowed down due to twists
between daughter strands (indicated by red arrows). Successive unwinding
leads to two segregated strands (color online).

motion of both chains reduces the number of twists as segre-
gation continues. As a result, the unwinding leads to two
spatially separated strands in the end of the segregation
process.

Two quantities which characterize the size of a polymer
chain made of N repeat units are the mean squared end-to-
end distance R?, and the mean-squared radius of gyration
R?. They are defined as

R, = (Fy— 1) (1)

and

I,
R, = NZ;(V[ — Feom)’, @)

where Fcop denotes the position of the center-of-mass of an
individual chain and 7; denotes the position of the monomer .
All observables are averaged over independent runs (and start
conformations) of the segregation process. As seen in the
inset of Fig. 3 and Table 1, the start conformation is slightly
stretched because additional bonds between the strands
(rope-ladder-structure) increase the stiffness of the double-
chain as compared to individual chains. Both quantities
show a rapid initial decay due to the loss of this additional
stiffness, followed by a much slower relaxation process.

Insight into the segregation dynamics can be found by
analyzing the center-to-center vector between the two
chains, which we denote as A/ in the following:

=

Reac(t) = Teoms(t) — Feoma(t). 3)
Usually, the norm of the center-to-center vector

R(J2c = |]_é62(: |
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FIGURE 3 Center-to-center distance R.,. and metrics G for two chains
of length N = 1000 during segregation. (Inset) Ratios of end-to-end
distance R,., and radius of gyration Rzg, compared to an unconstrained
chain.

will be evaluated. The center-of-mass of a polymer chain is
defined by

S I«—vy |
Furthermore, we define the integral distance (metrics)
between the chains according to

G() = £ (Fal) ~ s 1)) @

The center-to-center distance R.,.(f) gives overall informa-
tion about the relative position of the two chains in space.
Different from that, the metrics G(¢) describes the averaged
distance of two initial adjacent monomers of different chains
and provides local information of the segregation process
by using the local position of two functions 74/5(?).
Formally, it corresponds to a distance in the metrical space
of chain conformations (3N-dimensional). An example for
the behavior of both quantities for chains of length N =
1000 is displayed in Fig. 3. At initial timescales ( < 3 X
10° MCS) there is a rapid increase of both observables due
to the instantaneous strong interchain repulsion (excluded
volume) of adjacent monomers of the daughter chains. We
note that this nonequilibrium effect is caused by the strong
entropic reduction which, in turn, is due to the strict parallel
alignment of the two daughter chains. Formally, it

TABLE 1 End-to-end distance R, radius of gyration Rf,, and
Rouse time 7z for a single linear chain (N = 1000) and a double-
strand (rope-ladder-structure with N = 1000 per strand) without
perturbations

Linear chain Double strand

R.. 159.98 = 1.61 201.50 + 3.58

R 4642.0 + 483 7797.62 + 2343

® 7.7 x 10° MCS + 1.43 x 10’ MCS =
1.2 x 10* MCS 1.9 x 10° MCS
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corresponds to the constraint of a narrow tube for one chain
(see also left part of Fig. 4). This rapid process is following
a slower but steady increase of both observables.

Calculation of twist number of double-strands

The twist number is a property of the initial starting confor-
mation before cleavage of the interchain bonds of the double
strand. To calculate the twist, we follow the method
proposed by White and Bauer (30). For calculating the twist
of strand A with respect to B, denoted by Tw(A, B), we
assume that both strands do not intersect, and every mono-
mer on A is uniquely linked to a corresponding monomer on
B. These prerequisites are fulfilled within the simulation
method due to the excluded-volume constraints, and the
interchain connections between the strands.

Next, we convert the discrete monomer position informa-
tion of the chains into smooth and differentiable curves by
interpolating with cubic splines. (For illustration of the
defined vectors, see Fig. 5.) Let Z 43 be the vector between
the point @ on A connecting to the corresponding point
b on curve B, and 74 the unit tangent vector of the curve
A at point a as evaluated by numerical differentiation.

Because of excluded volume constraints the vectors Z 45
and ?A are not collinear to each other, however, they are
necessarily orthogonal. Therefore, we define the unit vector
V 45 as the projected vector directed along the component of
74 that is perpendicular to 7 4. The change dv 45 of ¥ 45 is
evaluated numerically and the local contribution to the twist
at point a is given by

[?A X VAB] . d\_jAB.

The total twist of curve B about A in number of turns is
given by the formula (30)

1 - N -
Tw(A,B) = g/f‘[u X V5] * dV s &)
time

FIGURE 4 Sketch of the segregation process. Twisting is illustrated by
nodes which subdivide the chains into blobs comprising g segments. As
a consequence, the conformations are restricted to a tube of diameter &,
which corresponds to the correlation length of a blob formed by a part of
the chain according to g ~ £"””. As time proceeds, the blobs enlarge and
the driving force for segregation decreases.
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FIGURE 5 Scheme of vector definitions used for the calculation of the
twist number Tw(A, B). The vector Z' 45 connects the point a on A with
the corresponding point b on curve B. The symbol ¢"4 denotes the unit
tangent vector of the curve A at point a. The unit vector V 43 is the pro-
jected vector directed along the component of Z 45 that is perpendicular
to 7 4. Thus, the orthogonal basis 7 4, V 45, and [T4 X V4] contains
the geometrical information for calculating the twist Tw(A, B) of curve B
about A.

Due to the symmetry between the chains in our case, the
average twist of curve B about 4 equals the average twist
of curve A about BB, which is not necessarily fulfilled in
general. We define the average twist for different double-
strands in their equilibrium state according to

Tw(N) = /(Tw(A, B)). (6)

The results for our simulated double-strands are shown in
Fig. 6. If we consider the evolution of twists as a random
walk on a unit-circle, we expect

Tw*(N) = Dp,N, @)

where D7, denotes the intensity of random twisting. This
behavior is well observed in Fig. 6. The best fit to Eq. 7 is
indicated by a solid line. For the simulated system with
N = 1000, we found an average twist of 5.3 turns between
the initial conformations. By mapping this result back to
the biological units, we obtain ~5 turns for chromatin of
length =300 nm and ~11 turns for a human genome of
length of 1.3 mm. We note that the random twisting process
is universal in a sense that all chain models with the same
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FIGURE 6 Calculated averaged twist number Tw(N) for different chain
lengths N. (Solid line) Best fit to Eq. 7 with D5, = 0.028.

number of Kuhn segments display the same averaged
twisting number.

Kinetic models for chain segregation in good
solvent

The free segregation of the daughter chains in solution is
driven by excluded volume interactions and diffusion. At
the beginning of the process, after cleavage of the bonds
between the chains, every monomer interacts strongly
with its immediate counterpart on the other chain. When
separation is proceeding, interactions between monomers
decrease and thus the driving force for segregation. During
segregation, twisting of conformations restricts the free
motion of the chains. On the other hand, for chains in
good solvent, the number of entanglements shall be negli-
gible at the overlap concentration ¢*, which corresponds
to two chains sharing the same volume of gyration (11).

We note that, even under poor solvent conditions, the
pervaded volume as shared by only two chains is quite
different from a melt state, in which many chains (~N 172
share the same volume of gyration, causing a high number
of entanglements. Technically, two chains collapsed
together can be mapped into two Hamiltonian walks (occu-
pying space densely). It has been shown recently that segre-
gation effects of both chains can observed as well (31). Even
for poor solvent conditions, it is not clear whether signifi-
cant entanglement constraints between only two chains arise
and hinder the segregation process substantially.

Let us assume that, at a given stage of segregation, the
free energy of the both chains is given by a mutual confine-
ment to a size §, which indicates the average distance
between the chains according to

F(§) ~ ®)

N
8(&)’
where g(§) denotes the number of monomers within a blob
defined by g ~ £, where v = 3/5 is the Flory exponent
of flexible chains in good solvent (11). In Fig. 4, we illus-
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trate this by indicating the twists as nodes and the chain
parts in-between as loops. We assume energy units accord-
ing to kg7 = 1 in the following. We note that the free energy
excess per blob is of order unity (kg7). The driving force is
quickly decaying, according to f ~ £~ "7, Therefore, the
excluded volume repulsion has small impact on the fluctua-
tion dynamics of the loops. This is in marked contrast to the
segregation of chains in a tube (7,8), where the driving force
(and the blob size) is constant, leading to a constant segre-
gation velocity (under the condition of tubelike constraints
for all chain parts) which, in turn, exceeds diffusional
motion on longer timescales.

In this case, fluctuations of the loops can release the twists
and enlarge the length scale £. Let us assume that twists can be
disentangled without a cooperative motion of the whole
chain. To untwist a node, fluctuations of the loop of the order
of its own size are necessary. This corresponds to a time
Iy~ >, where we have used the dynamic exponent of free
chains in solution without hydrodynamic interactions. The
segregation (or untwisting) time of the chains is thus domi-
nated by the process to untwist the largest loop and is given by

ts ~ N7~ fp. )

Thus, the segregation time is proportional to the relaxation
time of the single chain in solution in the absence of hydro-
dynamic friction denoted as Rouse time, 7, in the following.
Hence, dynamic scaling for free chains should also hold for
segregation of chains in solution. This is a direct consequence
of our assumption that untwisting does not need a correlated
motion of nodes. The segregation dynamics for the metrics,
G, is then given by the dynamic scaling relation:

G(1) ~ R2 X fo(t/15) =5 /@) 011 (10)

Here, metrics G(¢) is assumed to be a function of time f5(#/t5)
and a function of a squared distance on the relevant length
scale that is the extension of the free chain Ry ~ N” in solution.
The function f5(#/ts) has to be a power law to fulfill the
condition that for times ¢ >> ¢ (segregation is complete),
the function G(r) behaves diffusively, and for times t << tg,
the incoherent movement of the nodes is independent
of the chain length N. Hence, dynamic scaling yields

G(t) ~ Ry x fg(t/ts) ~ N* x 1" x ;"
~ N2 5 5 N TS5 A0 xf(t).
Thus, the latter relation is fulfilled for

2v
m =
2r+1

~6/11

and yields Eq. 10. Following our model that unwinding is
controlled by Rouse-like dynamics, the center-of-mass
displacement of both chains scales as for single chains.
Hence we expect

Biophysical Journal 100(11) 2539-2547
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For the case of fully unconstrained segregation (no correla-
tions or additional friction effects), the metrics and the
displacement of the center-of-mass of both chains are
directly related to the single-chain displacement functions
defined as

N

&(0) = =S () - RO))
k=1 (12)

and

g3(t) = (Feou(t) =T g (O,

where the brackets denote the average over independent
start conformations. In Fig. 7, the relation between single-
chain and relative displacements of monomers is sketched.
If we denote an arbitrary displacement vector by x 45, we
obtain

(Fag) = 2(x%) = 2(xa * x8), (13)

where x refers to either chain by symmetry. For ideal segre-
gation, the center-of-mass diffusion of both chains is fully
uncorrelated and the following relation must hold for all
timescales:

Raelt) = 2 % g(1). (14)

The relation between G(7) and g;(¢) is less obvious because
the chains share exactly the same start conformation, which
impacts the relative motion due to the nonzero memory func-
tion of the monomer displacements. For Rouse dynamics
(without excluded volume effects), one obtains exactly

G(1) = gi(21). (15)

Moreover, single-chain displacement functions show
scaling behavior with a scaling function, f, according to

&()/Ry = fi(t/w), (16)

a property which is transferred to G(f) and R,.(¢) in the case
of ideal segregation. Effects of twisting (retardation of

FIGURE 7 Sketch of the single chain and relative displacements of
monomers during segregation.
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segregation) and excluded volume repulsion (acceleration
of segregation) will lead to deviations from these results.
As discussed above, the latter effect should only be impor-
tant on short timescales.

A comparison of the segregation process with the
dynamics of free chains is shown in Fig. 8. Here, we display
the metrics, the g;-functions of individual chains during
segregation, as well as the g;-function of a single chain in
good solvent (free). The relations for ideal segregation,
Egs. 15 and 16, are applied to rescale the data. As a reference
system, we used N = 1000 (for N = 1000 all time- and
length-scales correspond to the simulated time- and
length-scales). We note that all g;-functions obey perfect
scaling. Thus, segmental motion during segregation is
the same as in free solution. The dynamic exponents of
2v/(2v + 1) = 6/11 for t << tg, and of 1 for t >> tp, are
reproduced as indicated by the dashed-dotted lines in
Fig. 8. The crossing of both lines can be used to define
the segregation time fg, which coincides with a mean-
squared displacement of 4 x Rzg. We obtain

ts(N = 1000) ~ tx(N = 1000)=10* MCS.

Very good agreement between the metrics and single-
chain displacements according to Eq. 15 is obtained for
short chains, N = 25. Acceleration at very short times
(~100-1000 MCS in unscaled units), as compared to free
fluctuations, is obtained for all chain lengths. At early stages
of segregation, excluded volume repulsion between the
chains explains this behavior. Due to rescaling of the data
in Fig. 8, this effect is most visible for the shortest chains.
For longer chains, we observe a retardation in the Rouse-
regime ¢ < tg. Here, segregation dynamics is slowed down
as compared to free chain dynamics. Crossover to free

lo-o gi(25), free

1e+06 | m—a G (250)

| o -0 9,(250)

F|o-o 9,(250), free
+—+ G (500)

° 1le+05 El o < 9,(500)

=1000)
sl

x RN

2

g_‘ Flo—o g9,(500), free 3
E [|~—AG(ooO) | e ]
(=3 A -A g,(1000)
8 10000 s -
S E A-4 0,(1000), free E
2 Flo--- 4Rg2 3
Nv B
o
® 1000k __
X F =
o~ F 3
o F m
g . 4
[0} - v &
100 vinnd el v vl vl v
10000 1e+05 1e+06 1e+07 1e+08 1e+09 1e+10

tit,, x t(N=1000) [MCS]

FIGURE 8 Comparison of the metrics and single chain displacement
functions for various chain lengths. Rouse-scaling is applied with respect
to the reference system N = 1000 according to Eq. 16. The data for G(¢)
are shifted in time by a factor of two according to Eq. 15. (Dashed-dotted
lines) Expected slopes of 6/11 and 1, respectively. The segregation time and
the related Rouse time can be estimated by the crossing of the two lines.
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dynamics takes place in the range of tgz. For the longest
chains, N = 500, N = 1000, we clearly observe g > tz. We
note that the results for N = 1000 does not display a cross-
over to free diffusion up to the maximum simulation time.

Complementary to the monomer segregation described
by the metrics and shown in Fig. 9, we have plotted the
mean-square displacement between the center-of-mass of
both chains, R.,.(f), using Rouse-scaling with respect to
the reference system N = 1000. The data for free diffusion
are located on the dotted line and are not shown. The dashed
line indicates the ideal segregation dynamics as predicted in
Eq. 14. Again, the data for N = 25 displays good conver-
gence. The excluded volume-driven acceleration at the
beginning of the segregation process is more pronounced
as compared to the segmental motion in Fig. 8. The data
for long chains again display retardation effects in the
Rouse-regime. Here an effective slope of ~0.85 can be fitted
to the data for N = 500, 1000. This would indicate a subdif-
fusive behavior in some contrast to ideal segregation.

These observations of a retardation behavior for segre-
gating chains as compared to free chain dynamics might
suggest a new dynamical exponent related to segregation
of chains in good solvent. We generalized Eq. 9 to

tg ~ N, a7

where o denotes the new dynamical exponent. Dynamic
scaling according to Eq. 16 and independence of G(¢)
from the chain length for ¢+ << tg (which is well obeyed
for the unscaled data of Fig. 8) leads to

G(t) ~ 1*/*, (18)

Best fit for the data for long chains yields 2v/w = 0.5, and
thus, w = 4v. These results are tested in the scaling plot of
Fig. 10. Better agreement is achieved between the data for
long chains as compared to Figs. 8 and 9.
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FIGURE 9 Mean-square displacement of the center-of-mass of both
chains. Rouse-scaling is applied with respect to the reference system N =
1000. The data for free diffusion all coincide on the dotted line (not shown).
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FIGURE 10 Scaling plot using a dynamical scaling exponent w = 4v as
obtained from the effective slope of G(r).

The origin for nonideal segregation lies in the assumption
about uncorrelated untwisting which will be not fulfilled for
long chains. To resolve an overall twist of the chains, cooper-
ative untwisting events may be necessary which lead to
longer timescales. This process reminds us of the reptation
problem in polymer melts. In fact, sliding along the contour
of both chains could release the twisting constraints.
Howeyver, this is not observed in our simulation, and does
not fit to the natural process. In the latter, both daughter
strands are connected by the centromere at the final stage
of the segregation. The natural process might even suggest
that the central regions of both strands are not segregating.
Thus, the dynamical process which resolves twisting
constraints between two polymer chains, and which leads
to the deviation from ideal segregation behavior, might
correspond to what we consider a new type of polymer
dynamics.

CONCLUSIONS AND OUTLOOK

We have analyzed the segregation dynamics of two identical
flexible chains in good solvent. In particular, we have
considered the following simple argument: When the chains
are diluted in a good solvent, entanglement constraints
should be of minor importance. On the other hand, if two
chain conformations are very close, twisting can be a major
obstacle for segregation and has to be resolved. The average
time to untwist a chain on a length scale £ corresponds to
the (Rouse) time associated with random fluctuations on
that scale. On average, one fluctuation mode of length & is
necessary to untwist. However, it is assumed that no cooper-
ative motion is necessary to untwist the chains on larger
scales. This results exactly in the free diffusion scaling,
and the segregation functions should obey the correspond-
ing dynamic scaling.

To test our assumptions, we have considered two measures
for segregation: The metrics, G(f), which corresponds to the
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averaged monomer displacement function for single chain
dynamics; and the center-to-center displacement, R,
which corresponds to the center-of-mass displacement in
single chain dynamics.

‘We found that the free diffusion concept for chain segrega-
tion is obeyed for shorter chains and scaling using the Rouse
time is roughly obeyed. Moreover, the diffusion functions g,
and g3 of the individual chains during segregation do not
deviate from those of single chains in dilute solution.
Stronger deviations from the free diffusion behavior occur
for longer chains. Here, the concept of uncorrelated untwist-
ing of the chains may be not valid. Better agreement with the
simulation data is obtained if a new dynamical exponent,
© = 4y > 1 4 2y, is introduced. For the longest chains there
is a factor of ~3—4 between Rouse-time and the segregation
time predicted by the new dynamical exponent. Thus, segre-
gation time can be considered to be of the order of the Rouse
time for free diffusion. The average number of twists between
two chains of length 1000 is ~5—thus, not very high, and itis
growing with a square-root of the chain length only. There-
fore, twisting shall not be a major obstacle for segregation.

We shall note that dynamics of untwisting of two chains,
to the best of our knowledge, has not been considered theo-
retically before. The emergence of a new dynamical expo-
nent is thus not surprising. For a more quantitative and
analytical study, however, larger systems and longer time-
scales have to be studied.

The interesting question is whether in principle the Rouse
time could be the characteristic timescale for DNA-segrega-
tion in eukaryotes. Comparing the diffusion coefficient for
interphase chromosome of Drosophila spermatocytes (32)
and human chromatin (33) with the simulation time yields
a segregation time between several hours and a few days.
The total cell-cycle time in most animal cells often lasts
between 12 and 24 h with <1 h for the M-phase (1).
Thus, the segregation process seems to be quicker, although
the corresponding timescale is of the same order of magni-
tude as the Rouse time.

Even if the concept of free diffusion can nearly explain
the segregation process, there are still some open issues:

1. Segregation should be perfectly accomplished (not just
in average) even under the restriction that both
daughter-strands stay close to each other.

2. Therole of condensin has to be understood. Condensinis a
protein complex formed by SMC (structural maintenance
of chromosomes) ATPase subunits that can bind to DNA
and hydrolyze ATP. These evolutionary conserved
proteins are essential to compact chromatin fibers into
metaphase chromosomes, but the exact mechanism is still
unclear (23,34-36). It has been shown that condensin is
vital for the proper formation of chromosomes and
a successfully accomplished cell cycle.

3. A large amount of entropy is apparently wasted because
the strong conformation restrictions of both chains at the
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beginning is not used to control segregation. Here, the
role of another SMC protein complex, known as cohesin,
at the beginning of the segregation process is unclear. It
establishes sister chromatid cohesion during the S-phase
lasting until prometaphase and the final release at the
centromere region in late anaphase (36-38).

Further work is in progress to clarify some of these
issues.
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