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SUMMARY

While the role of mitochondrial Ca2+ homeostasis in
cell pathophysiology is widely accepted, the possi-
bility that cAMP regulates mitochondrial functions
has only recently received experimental support.
The site of cAMPproduction, its targets, and its func-
tions in the organelles remain uncertain. Using a va-
riety of genetic/pharmacological tools, we here
demonstrate that the mitochondrial inner membrane
is impermeable to cytosolic cAMP, while an autono-
mous cAMP signaling toolkit is expressed in the ma-
trix. We demonstrate that rises in matrix Ca2+ power-
fully stimulate cAMP increases within mitochondria
and that matrix cAMP levels regulate their ATP syn-
thesizing efficiency. In cardiomyocyte cultures, mito-
chondrial cAMP can be increased by treatments that
augment the frequency and amplitude of Ca2+ oscil-
lations within the cytosol and organelles, revealing
that mitochondria can integrate an oscillatory Ca2+

signal to increase cAMP in their matrix. The present
data reveal the existence, within mitochondria, of a
hitherto unknown crosstalk betweenCa2+ and cAMP.

INTRODUCTION

The discovery of the major role played by mitochondria in Ca2+

signaling, the understanding of their central role in cell death,

and the increasing awareness of the linkage between mitochon-

drial dysfunctions andmajor human diseases have all led to a re-

newed interest in these organelles.While the role ofmitochondria

in Ca2+ homeostasis has been extensively investigated, the other

major secondmessenger, cAMP, has remained formany years at

the periphery of the mitochondrial saga, and its role in mitochon-

drial pathophysiology was hardly considered until recently. In the

last years, however, the role of cAMP inmodulatingmitochondrial

functions has been re-evaluated. DiPilato and coworkers, using a

fluorescent cAMP sensor in live cells, concluded that cAMP pro-

duced in the cytoplasm diffuses rapidly into the mitochondrial

matrix (DiPilato et al., 2004); Acin-Perez and coworkers, on the
C

contrary, argued that the innermitochondrialmembrane is imper-

meable to cAMP and suggested that the organelles are endowed

with a cAMP signaling cascade wholly contained in their matrix

(Acin-Perez et al., 2009). They suggested that cAMP is generated

inside the matrix by a soluble form of adenylate cyclase (sAC)

(Chen et al., 2000) in response to bicarbonate; in turn, cAMP ac-

tivates a mitochondrial isoform of protein kinase A, PKA, leading

to the phosphorylation and activation of the respiratory chain

(Acin-Perez et al., 2009, 2011a). In addition, phosphoproteomic

studies revealed the presence of a number of mitochondrial

phosphoproteins (Balaban, 2010; Boja et al., 2009; Hopper

et al., 2006), some of which are potential targets of PKA (Zhao

et al., 2011). On the other hand, whereas it is now firmly estab-

lished that the outer (and possibly also the inner) mitochondrial

membrane is enriched in PKA anchoring proteins (Alto et al.,

2002; Carlucci et al., 2008; Chen et al., 1997; Huang et al.,

1999; Liu et al., 2003; Means et al., 2011) and that phosphoryla-

tion of outer membrane proteins by cytosolic PKA has important

functional effects in the organelles (Danial et al., 2003; Gomes

et al., 2011; Harada et al., 1999), no recognizable mitochondrial

signal sequence is present either in the R or C PKA subunits.

Hereweshow that changes in cAMPoccur insidemitochondria

of intact cells and that sAC is indeed the local cAMPsource, while

no diffusion of cytosolic cAMP takes place in healthy organelles.

We also demonstrate that cAMP is generated in the matrix not

only in response to changes in HCO3
� concentration, but also

upon increases in matrix Ca2+ levels. In cardiac myocytes in

culture, an increase in the frequency and amplitude of Ca2+ oscil-

lations, within cytoplasm and mitochondria, elicited by b-adren-

ergic stimulation or by the transmembrane AC (tmACs) activator

forskolin, results in a rapid reversible increase of matrix cAMP

level. Finally, we provide evidence that cAMP in the matrix con-

tributes to the regulation of mitochondrial ATP production. The

pharmacological sensitivity of the cAMP-dependent increase in

mitochondrial ATP only in part overlaps that of cytosolic PKA.

RESULTS

Sensors for Monitoring Mitochondrial cAMP
Generation of FRET-Based cAMP Sensors Selectively

Targeted to the Mitochondrial Matrix

DiPilato et al. suggested that cytosolic cAMP increases are par-

alleled by similar changes within the mitochondrial matrix
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Figure 1. Mitochondrial Localization of the cAMP Sensor and FRET Changes Caused by a Membrane-Permeable cAMP Analog

(A) Schematic representation of the matrix-targeted cAMP sensor 4mtH30. Four copies of the human COXVIII targeting sequence have been fused to the N

terminus of H30, which contains, between ECFP and EYFP, thewhole Epac1 protein, rendered catalytically inactive and deprived of themembrane-targeting DEP

domain.

(B) Left panel: Representative epifluorescence images of HeLa cells transiently expressing 4mtH30, 24 hr after transfection. The cAMP probe localizes pref-

erentially in rod-like elongated structures, though in some cells (see, for example, the upper cell) a significantmislocalization in the cytosol is evident. The sensors’

localization, however, becomes exclusively mitochondrial in almost all cells 48 hr after transfection. Right panel: Representative images of a HeLa cell co-

transfected with the cAMP sensor 4mtH30 (green) and the mitochondrial fluorescent protein mtRFP (red). The colocalization of 4mtH30 with mtRFP indicates a

very good overlapping between the two signals (yellow). Similar results were obtained in CHO cells.

(C) Left panel: Representative confocal image of the 4mtH30_E4 stable cell line indicating that these cells correctly express 4mtH30 within mitochondria, without

any appreciable cytosolic mistargeting. Middle panel: Representative kinetics ofDR/R0 recorded in several 4mtH30_E4 cells challenged, in the presence of IBMX

(100 mM), with Sp-8-pCPT-20-O-Me-cAMPS (100 mM), a highly membrane-permeable cAMP analog that selectively activates Epac. Right panel: Blue columns:

average percentage DR/R0 increases (mean ± SEM) observed upon addition of 10 or 100 mM Sp-8-pCPT-20-O-Me-cAMPS, in the presence of 100 mM IBMX, to

cells transiently expressing cytosolic H30. Number of cells (n) = 10 for each condition. Yellow columns: as above, but in 4mtH30_E4, i.e., the cell line stably

expressing the mitochondrial targeted probe, n = 12. In these and the following experiments the average values were obtained from at least three independent

experiments and the error bars in the columns represent SEM.
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(DiPilato et al., 2004). Using the very same sensor, we observed

that the probe is extensively missorted to the cytosol with only a

marginal accumulation in mitochondria (not shown). We thus

generated new cAMP sensors with improved mitochondrial tar-

geting (Filippin et al., 2005) by fusing repetitive (two or four

copies) targeting sequences from subunit VIII of the human cyto-

chrome oxidase (COX) at the N terminus of either the cAMP

sensor Epac1-camp (Nikolaev et al., 2004) (not shown) or CFP-

Epac(dDEP-CD)-YFP, named H30 (Ponsioen et al., 2004) (Fig-

ure 1A). Out of the different constructs generated, we selected

4mtH30, as it displays the largest dynamic changes in response

to cAMP variations. When cells transiently expressing 4mtH30

were analyzed 24 hr from transfection, the probe was in some

cells partially missorted to the cytosol (Figure 1B, left panel),

but it was almost exclusively mitochondrial after 48 hr (Figure 1B,
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right panel). The selective localization in the matrix was verified

as described in Supplemental Information (see also Giacomello

et al., 2010). A CHO cell line stably expressing the 4mtH30 probe

was generated. Confocal images of the 4mtH30_E4 stable line

(Figure 1C, left) indicate that 4mtH30 is correctly localized in

mitochondria, without any appreciable cytosolic mistargeting.

Changes in cAMP levels were assessed bymeasuring the 480/

540 nm emission ratio upon excitation at 430 nm and presented

as DR/R0, where R is the ratio at time t, R0 is the ratio at time 0,

andDR =R�R0. Typical kinetics ofDR/R0 in several 4mtH30_E4

cells challenged with Sp-8-pCPT-20-O-Me-cAMPS, a highly

membrane-permeable Epac selective cAMP analog, are pre-

sented in Figure 1C (middle panel). The right panel of

Figure 1C summarizes the maximal DR/R0 changes in cells ex-

pressing 4mtH30 or cytosolic H30, induced by 10 mM or



Figure 2. Mitochondria Are Impermeable to

Cytosolic Changes of cAMP

(A–D) Representative kinetics of DR/R0 changes

upon addition of forskolin (25 mM) followed by

IBMX (100 mM) recorded in: (A) a representative

HeLa cell transiently transfected with 4mtH30 and

expressing the sensor mistargeted to the cytosol,

(B) two representative HeLa cells transiently ex-

pressing 4mtH30 in the mitochondrial matrix, and

(C) four stably expressing 4mtH30_E4 cells. In the

insets of (A)–(C), the fluorescence pattern of the

probe distribution in the analyzed cells is pre-

sented. The average DR/R0 increases (mean ±

SEM) caused by forskolin and forskolin + IBMX are

presented in (D) in cells transiently expressing

cytosolic 4mtH30 (n = 8), 4mtH30 (n = 7), and in the

stable line 4mtH30_E4 (n = 20). IBMX caused

a very small but significant rise of DR/R0 in

the mitochondrial matrix of the stable line

4mtH30_E4, whether added alone (not shown) or

in the presence of forskolin: *p = 0.025, two-tailed

paired t test.
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100 mM Sp-8-pCPT-20-O-Me-cAMPS in the presence of the

PDE inhibitor IBMX (3-isobutyl-1-methylxanthine). The 4mtH30

sensor in the matrix environment displays a maximum DR com-

parable to that displayed by cytosolic H30.

cAMP Changes within the Mitochondrial Matrix
cAMPGenerated in theCytosol DoesNotDiffuse into the

Mitochondrial Matrix

We first tested whether cAMP generated in the cytosol could

enter the mitochondrial matrix. To this end, the classical tmACs

activator forskolin was used to induce a rise in cAMP. Figure 2A

shows a representative kinetic of DR/R0 changes in the cytosol,

recorded in a HeLa cell with a significant fraction of 4mtH30 mis-

targeted in the cytosol. Similar results were obtained in cells

transiently expressing cytosolic H30 (not shown). In both cases,

25 mM forskolin caused a clear rise in cAMP. On the contrary, in

HeLa cells transfected with 4mtH30 in which the probe is

correctly targeted to the mitochondria (Figure 2B), or in cells sta-

bly expressing 4mtH30 (4mtH30_E4) (Figure 2C), forskolin had

no effect on DR/R0. The generic PDE inhibitor IBMX, added after

forskolin, caused a dramatic further increase in cytosolic cAMP

(Figure 2A) and a very small but significant increase in mitochon-

drial cAMP (Figure 2B and 2C). This latter result suggests that

mitochondrial cAMP could be modulated by endogenous

PDEs. The average changes in cytosolic and matrix cAMP

upon addition of forskolin and IBMX are summarized in

Figure 2D.

Ca2+ Increases Induce cAMP Rises in the Mitochondrial

Matrix

Indirect evidence has been provided indicating that sAC, in addi-

tion to its cytosolic location, is also present in the mitochondrial
Cell Metabolism 17, 965–
matrix (Acin-Perez et al., 2009). The enzy-

matic activity of sAC is increased by

HCO3
� and Ca2+ in a synergistic or addi-

tive way (Jaiswal and Conti, 2003; Litvin

et al., 2003; Steegborn et al., 2005a,

2005b). To test whether Ca2+ could
modulate mitochondrial cAMP, cells were incubated in a Ca2+-

free medium and challenged first with the IP3-generating agonist

ATP in combination with tert-Butylhydroquinone (TBHQ), an in-

hibitor of the sarco-endoplasmic reticulum Ca2+ ATPase. This

protocol induces the release of Ca2+ from the ER; CaCl2 was

then reintroduced into the medium. Under these conditions ca-

pacitative Ca2+ influx (CCE) is maximally activated (Parekh and

Putney, 2005), resulting in a large and sustained increase in

Ca2+ entry from the medium (Putney, 2009) (Figure S1A).

We next measured, using the same protocol, the dynamics of

mitochondrial cAMP (mt-cAMP) in the 4mtH30_E4 cell line. Addi-

tion of extracellular ATP + TBHQ caused a transient, small, and

often unappreciable increase inmt-cAMP (Figure 3A). Ca2+ read-

dition caused, in almost all cells, a slow but marked increase in

mt-cAMP; the final HCO3
� administration induced a further in-

crease (Figure 3A). The small mt-cAMP response to ATP +

TBHQ increased in the presence of CGP 37157, a potent inhib-

itor of the mitochondrial Na+/Ca2+ exchanger (mNCX) (Figures

S1B–S1D).

It has been demonstrated that overexpression of the mito-

chondrial Ca2+ uniporter (MCU) (Baughman et al., 2011; De Ste-

fani et al., 2011) results in a substantial increase in the amplitude

of mitochondrial Ca2+ accumulation both in response to Ca2+

release from stores and to Ca2+ influx from the medium (De Ste-

fani et al., 2011).We thus repeated the experiment in 4mtH30_E4

cells transiently expressing a mCherry-tagged version of MCU.

In this case the amplitudes of the mt-cAMP rise in response to

ATP (Figure 3B) or CCE (Figure 3C) were substantially increased.

The percentage of ATP-responsive cells in the 4mtH30_E4 coex-

pressing MCU increased from 41% to 75%. The average mt-

cAMP increases caused by ATP + TBHQ followed by Ca2+ in
975, June 4, 2013 ª2013 Elsevier Inc. 967



Figure 3. Ca2+ Increases in the Mitochondrial Matrix Are Paralleled by Mitochondrial cAMP Rises

(A) Representative kinetics ofDR/R0 changes recorded in typical 4mtH30_E4 cells, stimulated, in sequence, with ATP (50 mM) + TBHQ (30 mM), CaCl2 (2 mM), and

NaHCO3 (50mM). The cells were first incubated in Ca2+-freemedium (containing 100 mMEGTA), and the perfusion buffer was changed, where indicated, with the

same medium supplemented with ATP and TBHQ, followed by medium containing CaCl2 +TBHQ and CaCl2+ TBHQ and HCO3
�.

(B and C) Representative kinetics of DR/R0 changes recorded in typical 4mtH30_E4 cells overexpressing amCherry-tagged version of MCU, stimulated with ATP

(50 mM) + TBHQ (30 mM) (B) followed by CaCl2 (2 mM) (C).

(D and E) Average amplitude of the cAMP responses to ATP and CCE (mean ± SEM), without (n = 15, *p = 0.019) and with MCU overexpression (n = 15, **p =

0.009).

(F) Average amplitude of the cAMP responses to ATP andCCE (mean ± SEM), in 4mtH30_E4 cells treatedwith a scrambled siRNA (n = 23) or with a siRNA forMCU

(n = 31); ***p = 0.001 for ATP and ***p = 2.6 3 10�6 for CCE. See also Figure S1.
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controls and MCU-overexpressing cells are summarized in Fig-

ures 3D and 3E. On the contrary, when performing RNA silencing

of MCU, both the responses to ATP and to CCE were signifi-

cantly decreased (Figure 3F).

HCO3
– Effect on Mitochondrial cAMP

The best-characterized activator of sAC is HCO3
� (Steegborn

et al., 2005b). The presence of 10 mM HCO3
� in the medium

increased both the number of ATP + TBHQ responsive cells

(from 41% to 80%) and the size of their response (Figures 4A

and 4B). The DR/R0 increase due to CCE, instead, was almost

unaffected by the presence of 10 mM HCO3
� in the medium

(not shown). Figure 4C shows representative kinetics of DR/R0

changes in 4mtH30_E4 cells treated only with 50 mM NaHCO3.

The kinetic of the response to HCO3
� was often biphasic, with

an initial transient rise phase followed by a lower but sustained

plateau (for over 30 min). The mean amplitude of the sustained

plateau phase is summarized in Figure 4D. The response to

HCO3
� was significantly decreased in cells pretreated with the

sAC inhibitor 2-hydroxy estradiol, 2-OHE (10 mM) (Figures 4C

and 4D). The classical sAC inhibitor KH7, instead, caused a par-

adoxical dramatic increase of the mitochondrial DR/R0, but it
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was accompanied by a complete collapse of mitochondrial

membrane potential (Figure S2) and DpH (not shown); accord-

ingly, KH7 was not further tested. The overexpression of MCU

had no effect on the cAMP response to HCO3
� (not shown).

The interpretation of the effect of HCO3
� and of the other treat-

ments on cAMP using GFP-based probes is complicated by the

possible influence of pH changes on the probe signal, as most

GFP mutants are sensitive to pH changes in the physiological

range (Abad et al., 2004; Llopis et al., 1998). To monitor the pH

of the mitochondrial matrix, we transfected CHO cells with

mtAlpHi, a genetically encoded mitochondrial pH indicator

(Abad et al., 2004). The details of these experiments are

presented in the Supplemental Information (Figure S3).

We conclude that treatment with IBMX, EHNA (erythro-9-(2-

hydroxy-3-nonyl)adenine), and 2-OHE had no appreciable effect

on matrix pH, while a small and variable transient alkalinization

was observed both upon ATP + TBHQandCCE activation. Given

that an alkalinization leads to an apparent decrease in cAMP, this

effect of mitochondrial Ca2+ uptake on matrix pH tends, if any-

thing, to slightly underestimate the DR/R0 increase. A significant

transient acidification was observed upon addition of 50 mM



Figure 4. HCO3
– Effect on Mitochondrial cAMP

(A) Representative kinetics of DR/R0 changes recorded in typical 4mtH30_E4 cells stimulated with ATP (50 mM) + TBHQ (30 mM), in the absence (black) or in the

presence (gray) of 10 mM HCO3
� in the medium.

(B) Average amplitude of the responses to ATP + TBHQ (mean ± SEM) in the absence or presence of HCO3
� (n = 61 and n = 12, respectively; ***p = 7.33 10�5).

(C) Representative kinetics of DR/R0 changes upon HCO3
� addition (50 mM) in 4mtH30_E4 cells pretreated for 30 min with DMSO (black traces) or with the sAC

inhibitor 2-hydroxy estradiol (2-OHE, 10 mM, gray trace).

(D) Average amplitude of the responses to HCO3
� (mean ± SEM) (n = 71 controls, n = 31 2-OHE treated; **p = 0.0049).

(E) Representative kinetics of DR/R0 changes upon addition of HCO3
� (50 mM) in CHO cells transiently expressing 4mtH90, pretreated for 30 min with DMSO

(gray trace) or 2-OHE (10 mM, white trace).

(F) Average amplitude of theDR/R0 changes (mean ± SEM) caused by HCO3
� (n = 23 and n = 21 for controls and 2-OHE treated, respectively; *p = 0.010). See also

Figures S2 and S3.
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NaHCO3 (Figures S3E and S3F). We thus measured FRET

changes in CHO cells transiently expressing a different cAMP

sensor, 4mtH90 (kind gift of Dr. A. Hofer and Dr. K. Lefkimmiatis),

much less pH sensitive than H30. Figure 4E shows typical ki-

netics of FRET changes in CHO cells expressing 4mtH90 and

challenged with 50 mM HCO3
�. The byphasic rise of DR/R0

was not observed, while the inhibitory effect of 2-OHEwasmain-

tained, as summarized in Figure 4F.

Mitochondrial cAMP IsGenerated by sACandModulated

by PDE

The above experiments and previous work (Acin-Perez et al.,

2009) suggest that sAC is the enzyme responsible for the gener-

ation of cAMP in the mitochondrial matrix. To verify this conclu-

sion, we performed genetic ablation of sAC by RNA silencing

(see also Figure S4). Themt-cAMP increase caused by CCE acti-

vation was strongly reduced in silenced cells (Figure 5A),

although the silencing of sAC had no effect on CCE (not shown).

The CCE-dependent rise in mt-cAMP was inhibited, as in the

case of HCO3
�, by 2-OHE (Figure 5B), whereas it was unaffected

by the carbonic anhydrase inhibitor acetazolamide (100 mM) and
C

by the classical tmACs inhibitor 20,30-dideoxyadenosine (ddAdo,

100 mM) (not shown). Next, we tested the effect of overexpress-

ing a mitochondria-targeted sAC. The 4mtH30_E4 cell line was

cotransfected with a mitochondrial version of sAC (mt_trsAC)

and with a cytosolic RFP, as a marker of transfection. Figure 5C

summarizes the results on mt-cAMP induced by CCE activation

in cells cotransfectedwithmt_trsAC andRFP. Overexpression of

mt_trsAC markedly increased the Ca2+-induced mt-cAMP pro-

duction, and also in this case 2-OHE reduced the cAMP

response to CCE (see Figure 5B). Finally, the absolute values

of R, a function of the resting mt-cAMP levels, were slightly,

but significantly, higher in unstimulated cells overexpressing

mt_trsAC compared to untransfected controls (0.504 ± 0.007,

n = 61 versus 0.486 ± 0.006, n = 97; p = 0.048).

In Figure 2 we showed that IBMX had a very small effect on

resting mt-cAMP. In order to further address the role of PDEs,

IBMX was added to cells whose cAMP was increased by either

HCO3
� or CCE. Figure 5D shows that IBMX caused in both cases

a much larger mt-cAMP rise, and its effect was potentiated by

overexpression of both MCU and mt_trsAC. It has been
ell Metabolism 17, 965–975, June 4, 2013 ª2013 Elsevier Inc. 969



Figure 5. sAC and PDE Activities Modulate

Mitochondrial cAMP

(A) Average (mean ± SEM) DR/R0 changes elicited

by CCE (with the protocol described in Figure 3) in

4mtH30_E4 control cells (n = 72), in cells treated

with the HMR1-MR2 siRNAs couple (n = 46), or

with a control siRNA (n = 83) (p = 0.27 ctrl versus

ctrl siRNA; ***p = 1.9 3 10�9 siRNA versus ctrl;

***p = 7.2 3 10�6 siRNA versus ctrl siRNA).

(B) Average (mean ± SEM) DR/R0 changes elicited

by CCE in 4mtH30_E4 control cells pretreated for

30 min with DMSO (n = 11) or with 2-OHE, 10 mM

(n = 70), ***p = 0.00018; average (mean ± SEM)

DR/R0 changes elicited by CCE in 4mtH30_E4

cells cotransfected with a cytosolic RFP and

mt_trsAC. Only cells coexpressing RFP were

considered. Cells were treated for 30 min with

DMSO (n = 15), with 2-OHE 10 mM (n = 24), or with

2-OHE 100 mM (n = 11). p = 0.11 for 2-OHE 10 mM

versus controls and ***p = 0.0001 for 2-OHE

100 mM versus controls.

(C) Average (mean ± SEM) DR/R0 changes elicited

by CCE in 4mtH30_E4 control cells (n = 19) and

cells cotransfected with a cytosolic RFP and

mt_trsAC (n = 43). Only cells coexpressing RFP

were considered. **p = 0.0094. Inset: Confocal

images of representatives CHO cells transfected

with a RFP-tagged version of mt_trsAC.

(D) Average (mean ± SEM) DR/R0 changes elicited

by the administration of IBMX (100 mM) on:

4mtH90-expressing cells previously stimulated

with 50 mM NaHCO3 (gray column; n = 23; ***p =

5.2 3 10�8 versus response to only NaHCO3);

4mtH30_E4 cells previously subjected to CCE

(black column; n = 26; **p = 0.0043 versus

response only to CCE); 4mtH30_E4 cells over-

expressing MCU and previously subjected to

CCE (white column; n = 21; **p = 0.0021 versus

response only to CCE); RFP-expressing

4mtH30_E4 cells transfected with RFP + mt_trsAC

subjected to CCE (black-striped column; n = 43;

**p = 0.0058 versus response only to CCE). The

gray-striped column refers to the effect of the

PDE2-selective inhibitor EHNA onRFP-expressing

4mtH30_E4 cells transfected with RFP + mt_trsAC

previously subjected to CCE (n = 7; **p = 0.008

versus response only to CCE; p = 0.67

versus response to CCE/IBMX). See also Figures

S3 and S4.
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suggested that the PDE isoform in the mitochondrial matrix is

PDE2A (Acin-Perez et al., 2011b). Indeed, administration of

10 mMEHNA, a PDE2-selective inhibitor, was almost as effective

as IBMX at increasing the mt-cAMP rise in response to CCE

(Figure 5D).
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Functional Significance of
Mitochondrial cAMP
Mitochondrial cAMP Modulates

[ATP]m
It has been proposed that a sAC-cAMP-

PKA signaling pathway, wholly contained

within mitochondria, modulates the respi-

ratory chain enzymes through PKA-
dependent phosphorylation (Acin-Perez et al., 2009, 2011a;

Papa et al., 2008).We thusmeasuredmitochondrial ATP concen-

tration, [ATP]m, in intact HeLa cells, making use of a matrix-tar-

geted luciferase, mtLUC. Similar results were obtained in CHO

cells. Figure 6 shows that the resting [ATP]m is increased �40%



Figure 6. Effect of sAC Activity, mt-cAMP

Increases, and PKA Inhibition/Activation

on [ATP]m
(A) Normalized (control = 1) average (mean ± SEM)

[ATP]m basal levels measured in HeLa cells

transfected with mtLUC alone or mtLUC +

mt_trsAC. n = 34 experiments, *p = 0.025. In these

and the following experiments, 30 min before

measurement the medium was substituted with a

HEPES-buffered Ringer-modified saline supple-

mented with luciferin (100 mM), and the cells were

incubated at room temperature (20�C–22�C). Each
condition was tested in triplicate in each experi-

ment, and the means are derived from three or

more independent experiments (as indicated). (A)–

(E): two-tailed paired t tests.

(B) Normalized average (mean ± SEM) [ATP]m
basal levels measured in cells cotransfected

with mtLUC (black) or mtLUC + mt_trsAC (gray).

Striped columns: The cells were incubated

with HMR1-MR2 siRNAs against trsAC, and the

basal luminescence measured was normalized to

luminescence measured in cells incubated with

control siRNA. Solid columns: the cells were

treated with 2-OHE, 10 mM or 100 mM, for 2 hr

before initiating the measurement, and the basal

luminescence measured was normalized to lumi-

nescence measured in untreated controls. Other

conditions as in (A). mtLUC_siRNA: n = 6, **p =

0.0071; mtLUC + mt_trsAC_siRNA: n = 3, *p =

0.022; mtLUC_2-OHE 10 mM: n = 4, *p = 0.036;

mtLUC_2-OHE 100 mM: n = 6, **p = 0.0035;

mtLUC + mt_trsAC_2-OHE 10 mM: n = 9, **p =

0.0096; mtLUC + mt_trsAC_2-OHE 100 mM: n = 4,

*p = 0.051.

(C) Normalized average (mean ± SEM) [ATP]m measured in cells transfected with mtLUC alone (black), mtLUC + mt_PKI (white), or mtLUC + mt_trsAC (gray).

Conditions as in (A). Striped columns: After initiating the [ATP]m measurement, the cells were treated with 100 mM IBMX for 15 min, and the final luminescence

values have been normalized to their initial values. mtLUC: n = 6, *p = 0.013; mtLUC + mt_trsAC: n = 5, *p = 0.028. Solid columns: After initiating the [ATP]m
measurement, CCE was initiated by addition of 2 mM CaCl2 (see also Figure S5). For each sample, the final luminescence values 2 hr after Ca2+ addition have

been normalized first to their initial values, then to values of untreated controls. In the case of mt_PKI, the transfection resulted in a reduction of the initial [ATP]m to

about 45%of the control level (see E), and accordingly, the initial [ATP]m of the controls (cells transfectedwithmt_PKI and not subjected to CCE) has been set to 1;

the CCE activation did not increase significantly this level. mtLUC: n = 3, *p = 0.013; mtLUC + mt_trsAC: n = 6, *p = 0.040; mtLUC + mt_PKI: n = 3, p = 0.33.

(D) Normalized average (mean ± SEM) [ATP]m measured in cells transfected with mtLUC. Conditions as in (A). After initiating the [ATP]m measurement, the cells

were treated with several membrane-permeable cAMP analogs for 2 hr, and the final luminescence values were normalized to the initial values. The obtained

values were then normalized to untreated controls. 8Br-cAMP (1mM): n = 6, p = 0.94; Sp-8-pCPT-20-O-Me-cAMPS (100 mM): n = 9, p = 0.18; 8-CPT-6-Phe-cAMP

(100mM): n=10, **p =0.0077; Rp-8-CPT-cAMP (100mMand1mM): n = 9and3, respectively; *p =0.038 and **p 0.0067, respectively; H89 (10mM): n=4, *p =0.011.

(E) Normalized average (mean ± SEM) [ATP]m basal levels measured in cells transfected with mtLUC +mt_PKI (black) or with mtLUC +mt_trsAC +mt_PKI (gray).

Conditions as in (A). The basal luminescence measured was normalized to luminescencemeasured in untransfected controls. mtLUC +mt_PKI: n = 7; *p = 0.035;

mtLUC + mt_trsAC + mt_PKI: n = 22; ***p = 0.00011. Inset: confocal image of CHO cells transfected with a mCherry-tagged version of mt_PKI. See also Figures

S5 and S6.
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by mt_sAC cotransfection (Figure 6A), while specific siRNA for

sAC reduced it both in mt_sAC-overexpressing and in control

cells (Figure 6B). 2-OHE significantly reduced [ATP]m, in a dose-

dependent manner (Figure 6B), while IBMX increased it (Fig-

ure 6C). The effect on [ATP]m of CCE activation was then tested.

Figure S5 shows typical changes in the kinetics of luciferase lumi-

nescence upon CCE activation, while in Figure 6C the average

percentage increases are summarized. In both mtLUC and

mtLUC + mt_trsAC transfected HeLa cells, both the rate and

extent of [ATP]m increase were augmented upon CCE activation.

Theeffect ofCCEon [ATP]mwasunaffected in thepresenceof the

carbonic anhydrase inhibitor acetazolamide (100mM,not shown).

Although the mechanism of PKA translocation into the mito-

chondrial matrix is still unknown, previous works suggest that
C

the intramitochondrial effects of cAMP are mediated through

the classical PKA pathway. We thus tested this hypothesis; to

inhibit PKA, we treated the cells either with Rp-8-CPT-cAMP, a

potent competitive inhibitor of cAMP binding to the PKA R sub-

unit, or with H89 (5-isoquinolinesulfonamide) that competes for

the ATP binding site of PKA C subunit. Both drugs clearly

reduced [ATP]m (Figure 6D). Alternatively, we generated a mito-

chondrial targeted version of the endogenous protein kinase in-

hibitor peptide (PKI) (Figure 6E, inset). As shown in Figure 6E,

mt_PKI overexpression reduced basal [ATP]m both in controls

and in mt_trsAC-transfected cells. As the overexpression of

mt_trsAC causes an increase of the basal [ATP]m, in absolute

terms the inhibition was comparable, reducing the basal

[ATP]m of both control cells and mt_trsAC-overexpressing cells
ell Metabolism 17, 965–975, June 4, 2013 ª2013 Elsevier Inc. 971



Figure 7. cAMP Is Elicited by Ca2+ Increases in the Mitochondrial Matrix of Neonatal Rat Cardiomyocytes

(A) Representative images of a primary cultured neonatal cardiomyocyte transfected with the cAMP sensor 4mtH30 (green) and stained with MitoTracker orange

(red). The colocalization of 4mtH30 with MitoTracker orange is shown in yellow.

(B and C) Representative kinetics of DR/R0 changes recorded in a rat neonatal cardiomyocyte cotransfected with 4mtH30 and the nuclear cAMP sensor

H30_NLS, stimulated, in sequence, with NE (10 mM) and forskolin (25 mM), in the presence (B) or in the absence (C) of CaCl2 in the medium. The Ca2+-freemedium

contained 100 mM EGTA and 30 mM TBQ.

(D) Average (mean ± SEM) DR/R0 changes recorded upon administration of NE (10 mM) and NE + forskolin (25 mM), in the presence or in the absence of CaCl2 in

the medium.DR/R0 changes have been recorded in the mitochondria of 4mtH30 (black columns; n = 9 in Ca2+ and n = 3 in Ca2+-free; p = 0.11 for NE and p = 0.19

for forskolin) and 4mtH30 + MCU_mCherry-expressing cardiomyocytes (yellow columns; n = 7 in Ca2+ and n = 3 in Ca2+-free; *p = 0.04 for NE and **p = 0.005 for

forskolin). 4mtH30 versus 4mtH30 + MCU_mCherry: *p = 0.04 for NE and *p = 0.01 for forskolin. See also Figure S7.
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to �50% of the controls’ basal [ATP]m. Furthermore, in HeLa

cells cotransfected with mtLUC and mt_PKI and subjected to

CCE (Figure 6C), the rise of [ATP]m was strongly reduced by

mt_PKI expression. We also tested Sp-8-pCPT-20-O-Me-

cAMPS (100 mM), the most permeable (�90 times more perme-

able than cAMP) of the Epac-selective cAMP analogs. Although

this compound clearly penetrates the mitochondrial matrix (see

Figure 1), it had no effect on [ATP]m (Figure 6D).

Taken as a whole, the above data appear consistent with the

suggestion that the target of mt-cAMP is indeed PKA. As a final

test, we investigated the effect on [ATP]m of two cAMP analogs,

8Br-cAMP (1 mM) and 8-CPT-6-Phe-cAMP (100 mM) (Figure 6D),

that are known potent activators of cytosolic PKA, though they

differ in termsofspecificityand inpermeabilityacrossmembranes.

Indeed, 8-CPT-6-Phe-cAMP is highly specific for PKA and 400-

fold more permeable than cAMP while 8Br-cAMP activates other

cAMP targets and is only twice as permeable as cAMP. Figure 6D
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shows that 8Br-cAMP had no effect on [ATP]m, while 8-CPT-6-

Phe-cAMP had a paradoxical effect, i.e., it decreased [ATP]m.

Yet 8Br-cAMP can reach the mitochondrial matrix and 8-CPT-6-

Phe-cAMP is effective in activating cytosolic PKA (Figure S6).

Increased Frequency and Amplitude of Mitochondrial

Ca2+ Oscillations Triggers Matrix cAMP Rises in

Neonatal Rat Cardiomyocytes

Maximally stimulatory doses of an IP3-generating agonist and

activation of CCE in cell lines represent useful experimental tools

to investigate the mechanism of cAMP control in mitochondria,

but bear little relevance for the physiological significance of

this pathway. To address the existence of a mitochondrial

Ca2+-cAMP crosstalk in a physiologically relevant model, we

measured the cAMP dynamics in the mitochondrial matrix of pri-

mary cultured neonatal rat cardiomyocytes transfected with

4mtH30. Confocal analysis of a 4mtH30-expressing cardiomyo-

cyte stained with MitoTracker is shown in Figure 7A. The sensor
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distribution nicely overlapped that of themitochondrial probeMi-

toTracker red, and only a very small missorting of the cAMP

probe in the cytosol was observed in some cells. In order to

follow in the same cells mitochondrial and cytosolic cAMP

changes, we made use of the cotransfection with a nuclear

version of the same sensor, H30_NLS (Terrin et al., 2006). The

fluorescent signal of the sensors in the nucleus andmitochondria

can be easily distinguished, and it has been shown previously

that nuclear cAMP concentration closely follows the changes

occurring in the cytoplasm. The cells, incubated either in Ca2+-

containing (Figure 7B) or Ca2+-free medium (Figure 7C), were

treated with 10 mM norepinephrine (NE), followed by 25 mM for-

skolin. The mitochondrial Ca2+ changes in these conditions are

exemplified in Figure S7 (see also Robert et al., 2001). Figure 7B

shows that, in the presence of 2 mMCa2+, both NE and forskolin

evoke reversible cAMP increases, both inside and outside mito-

chondria; on the contrary (Figure 7C), when the same stimuli

were applied in a Ca2+-free medium, the cAMP increases in

the nucleus were unaffected, whereas in the matrix they were

drastically reduced. Under these latter conditions, removing

the stimulus by perfusing with a Ca2+-containing medium results

in a rapid return of nuclear cAMP to basal level, while the mito-

chondrial level increased (Figure 7C). Most relevant, if the cells

were also cotransfected with a mCherry-tagged version of the

mitochondrial Ca2+ uniporter, MCU, which results in a substan-

tial increase in the amplitude ofmitochondrial Ca2+ accumulation

(Drago et al., 2012), the mt-cAMP increases in response to both

NE and forskolin were strongly potentiated in Ca2+-containing

medium; on the contrary, in the absence of Ca2+ the cAMP

response was dramatically reduced. No significant difference

in nuclear cAMP increases was observed depending on the

presence/absence of Ca2+ in the medium (Figure S7).

DISCUSSION

For many years, the general consensus was that cAMP had no

role within mitochondria, despite the existence of numerous po-

tential PKA targets within this organelle (Technikova-Dobrova

et al., 1994; Zhao et al., 2011). Among the most relevant argu-

ments against a role of cAMP within mitochondria were: (1)

cAMP is negatively charged and, due to the negative potential

across the inner mitochondrial membrane, would tend to be

excluded from the matrix; (2) no recognizable signal sequence

is present either in the R or C PKA subunits; (3) all tmACs iso-

forms are localized at the plasma membrane. However, in the

last years the existence of a soluble AC has been unraveled,

and proteins recognized by antibodies against the PKA subunits

have been found in the mitochondrial matrix (Schwoch et al.,

1990). In addition, proteins such as AKAPs, Epac, PDEs, and

sAC appear to be associated with mitochondria (Acin-Perez

et al., 2009, 2011b; Breckler et al., 2011; Feliciello et al., 2001;

Sardanelli et al., 2006). Finally, increasing evidence supports a

key role of cAMP on the surface or in the matrix of the organelles

(Acin-Perez et al., 2011a; Alto et al., 2002; Danial et al., 2003;

Gomes et al., 2011; Harada et al., 1999; Sardanelli et al., 2006).

A key, yet unsolved, issue is whether cytosolic cAMP can enter

themitochondrial matrix. Unlike the results of DiPilato et al. (DiPi-

lato et al., 2004), our data clearly demonstrate that even massive

increases of cytosolic cAMP do not result in any significant
C

change in mt-cAMP. Rather, our results indicate that mitochon-

dria are endowed with an intrinsic sAC that is activated by a

rise in matrix Ca2+ concentration and by HCO3
�, while it is in-

hibited by blockers of sAC. We show that overexpression of a

matrix-targeted sAC and sAC-silencing result in potentiation or

inhibition, respectively, of the mt-cAMP increases elicited by

HCO3
�, IBMX, and CCE; moreover, the effect of Ca2+ and

IBMX are potentiated by the presence of even low doses of

HCO3
�. A matrix-located PDE, inhibited by a specific PDE2

blocker, is responsible for local cAMP hydrolysis, as PDE inhibi-

tion causes in itself a very small increase in mt-cAMP of resting

cells, and this effect is amplified when added on top of stimuli

activating sAC. Of note, the Ca2+ responsible for the cAMP in-

crease in the matrix is clearly that occurring within mitochondria

and not the cytoplasmic one, as overexpression of MCU in-

creases both mt-cAMP and Ca2+ levels, but reduces the cyto-

solic Ca2+ rises (De Stefani et al., 2011); in addition, silencing of

MCU significantly decreases mt-cAMP. Importantly, we show

that a matrix Ca2+ rise is a powerful stimulus to the generation

of mt-cAMP in a physiologically relevant system as primary

neonatal cardiomyocytes. Overall, these data clearly demon-

strate that cAMP changes do occur in the mitochondrial matrix

of living cells, independently from the cytosolic ones, and that

these mitochondrial changes are due to the concerted action of

intramitochondrial sAC and PDE. Most relevant, we show that a

rise in matrix Ca2+ represents a potent stimulus for cAMP gener-

ation, in particular if it occurs in the presence of HCO3
�.

Of particular relevance appear the results in cardiomyocytes

stimulated with agents that, by activating tmACs, increase the

level of cytosolic cAMP, thus augmenting frequency and ampli-

tude of the spontaneous Ca2+ oscillations in the cytosolic and

mitochondrial compartment (Robert et al., 2001). In this physio-

logically relevant model, the mitochondrial cAMP increases do

not depend on the diffusion of the second messenger from the

cytosol to the matrix, but rather from an endogenous cAMP pro-

duction by the organelles, as in the cell lines model. This conclu-

sion is based on the following evidence: (1) the rise of mt-cAMP

is almost completely abolished by removal of extracellular Ca2+,

and (2) the mt-cAMP increase is augmented by increasing the

amplitude of the mitochondrial Ca2+ uptake, as induced by

MCU overexpression. Of note, the Ca2+ changes in the mito-

chondrial matrix are oscillatory, and each spike lasts 300–

500 ms, while the organelle cAMP increases take a few tens of

seconds to reach a new plateau level. Accordingly, this suggests

that the intramitochondrial cAMP homeostatic machinery is

capable of integrating an oscillatory Ca2+ signal in a prolonged

cAMP increase.

The key final questions concern the functional consequences

for mitochondrial metabolism of mt-cAMP changes and the

identification of the enzyme(s) that decode the cAMP level within

the organelle matrix. We show that the basal sAC activity modu-

lates [ATP]m, since increasing themitochondrial sAC level results

in a significant augmentation of mitochondrial ATP, while

reducing its activity or level, with drugs or siRNA, decreases

[ATP]m. Furthermore, the rise in mt-cAMP, obtained by blocking

PDEs or by activating CCE, increases [ATP]m. The interpretation

of the CCE effect on [ATP]m is, however, more complex, as the

rise of matrix Ca2+ also activates the NADH-linked dehydroge-

nases, and this in itself may be sufficient to increase respiration
ell Metabolism 17, 965–975, June 4, 2013 ª2013 Elsevier Inc. 973
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and ATP production (Jouaville et al., 1999; Wiederkehr et al.,

2011). Moreover, ATP itself has an inhibitory effect on sAC (Litvin

et al., 2003), and this substrate inhibition is relieved as the bicar-

bonate concentration increases. Therefore, Ca2+ could have a

further, indirect, effect on sAC, inasmuch as the dehydrogenase

activation increases respiration, and thus HCO3
� concentration,

and this could, through relieving the ATP inhibition, contribute to

a further sAC activation. We can speculate that the effects of

Ca2+ on the dehydrogenases and cAMP levels synergize to

insure an optimal flux of electrons in the respiratory chain and

an appropriate rate of ATP synthesis in stimulated cells.

As to the target of mt-cAMP, the most obvious candidate is

PKA. Indeed, evidence has been provided for the existence of

PKA within mitochondria (Sardanelli et al., 2006; Schwoch

et al., 1990; Acin-Perez et al., 2009), and we here show that

the effects of different agents on [ATP]m are inhibited not only

by the classical PKA inhibitor H89 (though its specificity is low)

or by Rp-8-CPT-cAMP, which competes with the cAMP binding

site of R-subunit, but also by a mitochondrial targeted PKI,

considered the most specific endogenous PKA inhibitor. We

can exclude that the effects on ATP are somehow mediated

through cytosolic cAMP, as neither 8Br-cAMP nor 8-CPT-6-

Phe-cAMP, potent activators of cytosolic PKA, increase

[ATP]m. On the contrary, 8-CPT-6-Phe-cAMP, which is consid-

ered the most specific activator of PKA, rather than stimulating

ATP production results in amodest reduction of ATP level. These

last unexpected pharmacological properties require further

investigation and suggest that the enzyme trapped in the mito-

chondrial matrix may possess unique properties compared to

canonical cytosolic PKA.

EXPERIMENTAL PROCEDURES

Fluorescence Resonance Energy Transfer Imaging

FRET imaging experiments were performed 24–48 hr after cell transfection or

in the stable line. Cells were maintained at room temperature (20�C–22�C) in
HEPES-buffered Ringer-modified saline (see Supplemental Information) sup-

plemented with CaCl2 (2 mM) or, alternatively, EGTA 100 mM (Ca2+-free condi-

tions) and imaged with an inverted microscope (Olympus IX50) equipped with

a CellR imaging system and a beam-splitter optical device (Multispec Micro-

imager; Optical Insights). Images were acquired every 5 s (10 s during the

TMRM experiments) with a 603, 1.4 NA oil-immersion objective (Olympus) us-

ing the CellR software and processed using ImageJ (http://rsb.info.nih.gov/ij/).

FRET changes were measured as changes in the background-subtracted 480/

545 nm fluorescence emission intensities upon excitation at 430 nm and ex-

pressed as DR/R0, where R is the ratio at time t and R0 is the ratio at time =

0 s; DR = R � R0.

Confocal Imaging

Confocal images were acquired 24–48 hr after transfection or in the stable cell

line by using the broadband confocal Leica TCS SP5 system (Leica Microsys-

tems) and a HCX PL APO 633, 1.4 NA oil-immersion objective. Cells were

maintained in HEPES-buffered Ringer-modified saline (see Supplemental

Information) supplemented with 2 mM CaCl2, at room temperature

(20�C–22�C), and excited using the 458 nm line of an argon laser for imaging

CFP and the 543 nm line of a helium-neon laser for imaging mRFP.

ATP Measurements

To measure mitochondrial ATP levels, HeLa cells grown on 24-well plates at

60%–70% confluence were transfected with mitochondria-targeted luciferase

(mtLUC) or cotransfectedwithmtLUC and other cDNAs and/or treatedwith the

siRNAs. At 24–48 hr after transfection, luminescence experiments were car-

ried out. Thirty minutes before measurement, the medium was substituted
974 Cell Metabolism 17, 965–975, June 4, 2013 ª2013 Elsevier Inc.
with a HEPES-buffered Ringer-modified saline (identical to that used in

FRET CCE experiments), without CaCl2 and supplemented with 100 mM

EGTA and 100 mM luciferin, and cells were incubated at room temperature

(20�C–22�C). Luminescence was measured at room temperature with a

FLUOstar OPTIMA (BMG Labtechologies, Inc.), acquiring the luminescence

value from each well every minute, in plate mode. A baseline was established

in 15–20 cycles, each consisting of a full plate reading of the luminescence

values. Cells were then treatedwith the different reagents, as indicated. Values

recorded from wells containing untransfected cells were used as background,

and subtracted from the values of transfected cells.

Statistical Tests

In each graph, unless noted, data represent mean ± SEM of the indicated

number (n) of independent experiments. Statistical significance has been

calculated by a two-tailed Student’s t test (or, when indicated, by a two-tailed

Student’s paired t test). P values are indicated in the figure legends.
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