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Traffic accident frequency has been decreasing in Japan in recent years. Nevertheless,

many accidents still occur on residential roads. Area-wide traffic calming measures

including Zone 30, which discourages traffic by setting a speed limit of 30 km/h in resi-

dential areas, have been implemented. However, no objective implementation method has

been established. Development of a model for traffic accident density estimation explained

by GIS data can enable the determination of dangerous areas objectively and easily, indi-

cating where area-wide traffic calming can be implemented preferentially. This study

examined the relations between traffic accidents and city characteristics, such as popu-

lation, road factors, and spatial factors. A model was developed to estimate traffic accident

density. Kernel density estimation (KDE) techniques were used to assess the relations

efficiently. Besides, 16 models were developed by combining accident locations, accident

types, and data types. By using them, the applicability of traffic accident density estimation

models was examined. Results obtained using Spearman rank correlation show high co-

efficients between the predicted number and the actual number. The model can indicate

the relative accident risk in cities. Results of this study can be used for objective deter-

mination of areas where area-wide traffic calming can be implemented preferentially, even

if sufficient traffic accident data are not available.

© 2016 Periodical Offices of Chang'an University. Production and hosting by Elsevier B.V. on

behalf of Owner. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Traffic accident frequency has been decreasing in Japan in

recent years. Nevertheless, many accidents still occur on

residential roads. Therefore, it is necessary to implement

measures for traffic calming on roads. Area-wide traffic

calming measures, including Zone 30 (Institute for Road

Safety Research, 2004), are especially effective and have

often been implemented throughout urban areas. However,

for implementation of these measures in Japan, it is

impossible to adopt a universal application methodology

that merely implements these measures in an entire urban

area because borders between urban and rural areas are ill-

defined in Japan. In contrast to foreign countries, urban

areas in Japan spread out throughout a city, because Japan is

an island nation. It has not been exposed to the threat of

different regional ethnic groups and it is also not necessary

to surround urban areas with walls. This urban feature

makes it easy to construct sprawling cities with ever-

increasing populations. Consequently, urban areas have

been constructed in Japan with ill-defined borders

separating urban and rural areas. Moreover, it is difficult to

implement measures quickly because of budget constraints.

Therefore, it is necessary to ascertain areas where

implementation is the most preferred.

Locations of traffic accidents are crucially important in-

formation for the implementation of traffic safety measures.

Location information of arterial roads is readily available

because traffic is typically heavy and traffic accidents often

occur on such roads. However, insufficient information is

available about such locations on residential roads because

traffic accidents occur rarely and incidentally on such roads.

Moreover, traffic accident data are difficult to obtain from

police departments of many Japanese cities. It is difficult to

ascertain the distribution of traffic accidents in all cities

including residential areas. Consequently, when area-wide

traffic calming measures are implemented in a city, deter-

mining which areas these measures should be implemented

preferentiallymust depend on an experience-based subjective

view.

The authors develop an estimative model of traffic acci-

dent density from GIS data, which are commonly available

data by the public and private sector, including population,

road factors, and spatial factors. The model enables objective

and easy determination of areas to implement area-wide

traffic calming preferentially, even if traffic accident data are

not available.

This study examined relations between traffic accidents

and city components of population, road factors, and spatial

factors. Then a model was developed to estimate traffic acci-

dent density.

A sufficient amount of traffic accident data must be accu-

mulated to develop the model because traffic accidents in

residential areas occur rarely and incidentally. The possibility

exists that analysis based on only a few years of data impairs

the predictive accuracy. Therefore, this study specifically uses

kernel density estimation (KDE) described by Silverman (1986),

which can deal with comprehensive estimation of the

distribution based on a finite data sample.
KDE has been used for traffic accident analysis and widely

as a visualization tool. For example, parameters of traffic ac-

cident prediction models have been estimated mainly based

not on KDE but on raw count data in Japan. Yu et al. (2014)

recently reported that KDE outperformed other hazardous

road segment identification methods. Therefore, the

accuracy of traffic accident prediction model might be

improved by using KDE.

This study aims to develop traffic accident density models

based on KDE as an explained variable. Additionally, the

contribution of these models is evaluated from practical and

academic perspectives. Regarding practicality, the applica-

bility of these models to other cities is examined. Academi-

cally speaking, this study examines the improvement in

applicability of using KDE as an explained variable instead of

using raw count data as an explained variable.

For this study, a model using KDE as an explained variable

is a KDE model. One using raw count data as an explained

variable is a raw count data model.
2. Literature review

This section presents a review of the literature about KDE

application to traffic accident analysis. As explained above,

traffic accidents occur rarely and incidentally in residential

areas. When traffic accident hotspots are analyzed based on

raw data, the possibility exists that potential hotspots are not

detected. Therefore, KDE has been used to detect traffic acci-

dent hotspots.

The first report using KDE for traffic accident data was

made by Banos and Huguenin-Richard (2000), who mapped

the distribution of child pedestrian accidents using KDE.

Similarly, several studies have identified spatial clusters of

accidents through KDE (Anderson, 2009; Pulugurtha et al.,

2007; Schneider et al., 2004). Furthermore, several studies

have used KDE to analyze traffic accidents spatially and

temporally (Blazquez and Celis, 2013; Plug et al., 2011). Krisp

and Durot (2007) mapped a distribution of wildlifeevehicle

accidents using KDE. In fact, KDE has been evaluated for

detection of traffic accident hotspots. It has also been

compared with other methods (Erdogan et al., 2008; Yu et al.,

2014). Network kernel density estimation (Network KDE), a

method for adapting KDE as a function of networks, has

been increasing recently. Loo et al. (2011) and Xie and Yan

(2008, 2013) used Network KDE to analyze traffic accidents.

The literature reveals that numerous studies have

investigated traffic accident analysis by using KDE. However,

Xie and Yan (2013) have reported that previous studies have

remained at the level of using KDE mainly as a tool for

visualization.

Many previous studies have examined relations between

traffic accidents and city components (Kim et al., 2006;

Noland and Quddus, 2004; Pulugurtha et al., 2013; Quddus,

2008; Wier et al., 2009), and have developed models to esti-

mate traffic accident risk (Hadayeghi et al., 2010; Marshall

and Garrick, 2011; Moeinaddini et al., 2014; Rifaat et al., 2011),

but the models were developed based on the prior few years

of accident data, even though traffic accidents rarely

occurred on residential roads. This fact can reduce the
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accuracy of prediction. Therefore, this study specifically ad-

dresses KDE for developing models. Additionally, Yu et al.

(2014) reported that, recently, KDE outperformed other

hazardous road segment identification methods. It is

assumed that analysis based not on finite traffic accident

data but on KDE can improve the prediction model

applicability.

However, the parameters of traffic accident prediction

model have not been estimated by KDE, and have not been

evaluated for applicability of the model. Therefore, this study

examines whether KDE are useful for the development of a

predictive model.
Fig. 1 e Spatial pattern of traffic accident in Toyota City

(1999e2007).
3. Case study

Toyota City and Okayama City were selected as cases for this

study. Density estimate models were developed based on the

Toyota City database, and the possibility of their application

was clarified by assessing their performance for Okayama

City.

Toyota City, located in northern Aichi Prefecture, Japan,

has an area of 918 km2, comprising an urban area, suburban

areas, and hilly and mountainous areas. It has about 400,000

residents. Okayama City, located in southeastern Okayama

Prefecture, Japan, has an area of 789 km2, with geography of

various types resembling that of Toyota City. It has about

700,000 residents.

Table 1 presents an outline of the traffic accident database.

As the table shows, there are 23,998 accidents occurred

between 1999 and 2007 in Toyota City, and 41,833 accidents

occurred between 2006 and 2010 in Okayama City. As

mentioned in Chapter 1, traffic accident data are difficult to

obtain from police departments in many Japanese cities. On

the basis of our collaboration with Aichi and Okayama

Prefectural Police on the reduction of traffic accidents, traffic

accident data have been provided with special permission.

Fig. 1 presents spatial patterns of all accident types (e.g.,

vehicleepedestrian accidents, vehicleevehicle accidents,

and single-vehicle accidents) and vehicleepedestrian

accidents in Toyota City (1999e2007). Traffic accidents occur

widely in western areas, where urban functions and

populations are concentrated.
Table 1 e Outline of traffic accident database.

Content Toyota City

Source Toyota Transportation

Research Institute

Year 1999e2007

Number of accidents 23,998

GIS file format Points

Main content � Date, time, and place of ac

� Accident types

(vehicleepedestrian accide

vehicleevehicle accidents,

and single-vehicle acciden

� Severity of accident (fatal a

severe injury, and minor in
4. Development of estimating traffic accident
density models

This chapter presents development of models for traffic ac-

cident density estimation explained by using GIS data. Pa-

rameters of these models based not only on KDE but also on

raw count data are estimated to compare the applicability of

KDE models with that of raw count data models in the next

chapter.
4.1. KDE

A well-established method used to identify spatial patterns is

KDE, which calculates the density of events around each

point, scaled by the distance from the point to each event. KDE

describes a smooth and continuous surfacemap of risk targets

because a discrete density surface is made continuously by

interpolation. Therefore, this method can compensate for a

paucity of data.
Okayama City

Okayama

Prefectural Police

2006e2010

41,833

Points

cident

nts,

ts)

ccident,

jury)
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Fig. 3 e Results with applying KDE (bandwidth 250 m) to

accidents of all types between 1999 and 2007 in Toyota

City.
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A general density estimation function is shown in Eq. (1).

fðxÞ ¼ 1

nh

Xn

i¼1

Kðx� xiÞ
h

(1)

where xi stands for the value of the variable x at location i, n

signifies the total number of locations, h denotes the band-

width or smoothing parameter, K represents the kernel

function, as explained in an earlier report (Silverman, 1986).

Several kernel density functions have been proposed. Ac-

cording to Yu et al. (2014), previous studies generally have

indicated that the kernel density function selection did not

affect the results significantly. However, bandwidth h

significantly affects the results. No impeccable measure

exists for determining the bandwidth. In this study, the

method Ito et al. (2010) reported is used for the estimation.

Themethod is described as follows: (1) Increase bandwidth

at 50 m intervals. (2) Multiple regression analyses (explained

variable: estimates of traffic accident density based on KDE)

are conducted for each bandwidth. (3) Adopt the bandwidth at

which the adjusted coefficient of determination (adjusted R2)

is the highest.

Fig. 2 shows the relations among R2, adjusted R2, and

bandwidth. 250 m bandwidth is chosen because the figure

shows the highest point at 250 m. Fig. 3 portrays the results

with applying KDE (bandwidth 250 m) to accidents of all

types between 1999 and 2007 in Toyota City.
4.2. Data descriptions

Data descriptions are shown as below.

� Toyota City is divided into several areas in 250 m mesh.

Consequently, the city has a total of 14,460 meshes. An

estimation of traffic accident density mesh-unit data

(explained variable) and the component mesh-unit data

(explanatory variables) are created for each mesh.

� The unit of density estimates produced using the KDE

method is the accident number per square kilometer. The

density per year is obtained by dividing the KDE, which

applies KDE to accidents between 1999 and 2007, by 9 years.

The unit of density per year is the accident number per
Fig. 2 e Relations between coefficients and bandwidth.
square kilometer per year. Furthermore, the explained

variable is obtained by dividing the density per year by 16

because the mesh is 250 m � 250 m. The unit of the

explained variable is the accident number per mesh per

year.

� The explained variable for raw count data models is ob-

tained by counting accidents for each mesh and dividing

that result by 9 years. The unit of the explained variable is

the accident number per mesh per year.

This study was conducted to estimate the traffic accident

distribution in the city based on city characteristics. According

to Fell (1976), traffic accident factors fell into three broad

categories, including human causal chain, vehicle causal

chain, and environmental causal chain. Among them,

explanatory variables should be selected from the

environmental causal chain, if models are applied to

ascertain which area should have preferential

implementation. Environmental causal chain can be

subdivided to include structural factors (e.g., road structure),

traffic factors (e.g., traffic stream), and weather factors (e.g.,

weather condition). Structural factors universally affect the

occurrence of traffic accidents. Many data of structural

factors are readily available because they are provided as

GIS data. Therefore, models with structural factors have

wide applications. It is assumed that structural factors

should be valued above other factors, thus, structural

variables are specifically examined. Variables provided as

GIS data in Japan are chosen in Table 2.

� Explained variables are based on accident data between

1999 and 2007, but Table 2 presents explanatory variables

in different period. A data year discrepancy exists

between the explained variable and explanatory

variables. However, that discrepancy has small effects on

http://dx.doi.org/10.1016/j.jtte.2016.01.005
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Table 2 e Explanatory variable data and associated sources.

Explanatory variable Description VIF

Source: eeStat (Statistics Bureau of General Affairs Agency)

Population Total population in mesh based on 2010 population census of Japan e

Pop younger than 15 years Pop younger than 15 years in mesh based on 2010 population census of

Japan

3.01

Pop aged 15e64 years Pop 15e64 years old in mesh based on 2010 population census of Japan e

Pop aged over 65 years Pop over 65 years old in mesh based on 2010 population census of Japan e

Pop aged over 75 years Pop over 75 years old in mesh based on 2010 population census of Japan 3.32

Source: ArcGIS data collection premium series 2010 road network (ESRI Japan)

Intersection Number of intersections, including unsignalled intersection in mesh e

Signalized intersection Number of signalized intersections in mesh 1.67

Intersection on prefectural road Number of intersections on prefectural road in mesh 1.21

Intersection on national road Number of intersections on national road in mesh 1.29

Road length (m) Total length of road in mesh e

Road length (road width: 3.0e5.5 m) (m) Total road width: 3.0e5.5 m in mesh 1.60

Road length (road width: 5.5e13.0 m) (m) Total road width: 5.5e13.0 m in mesh 1.51

Road length (road width: over 13.0 m) (m) Total road width: over 13.0 m in mesh 1.13

Source: ZmapeAREA II, ZENRIN residential maps 2011 (ZENRIN)

Building area (m2) Total building area in mesh 1.92

Source: national land numerical information download service (ministry of land, infrastructure and transport)

Public facilities Number of public facilities, including public offices, schools, post offices,

and social welfare facilities

1.11

Healthcare facilities Number of hospitals, health clinics, and dental clinics in each mesh 1.22

Table 3 e Negative binomial regression models (accidents in all areas).

Accident places Accidents in all areas

Data types KDE Raw count data

Accident types All Vehicleepedestrian Minor All Vehicleepedestrian Minor

Model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Pop aged younger than 15 years 0.005 0.011 0.005 0.005 0.020 0.005

0.000** 0.028* 0.001** 0.002** 0.000** 0.002**

Pop aged over 75 years �0.015 0.023 �0.015 �0.018 0.002 �0.018

0.000** 0.093 0.000** 0.000** 0.882 0.000**

Signalized intersection 0.310 0.471 0.317 0.502 0.346 0.512

0.000** 0.031* 0.000** 0.000** 0.040* 0.000**

Intersection on prefectural road 0.133 0.094 0.137 0.165 0.102 0.166

0.000** 0.452 0.000** 0.000** 0.287 0.000**

Intersection on national road 0.087 �0.005 0.094 0.130 0.194 0.131

0.000** 0.962 0.000** 0.000** 0.004** 0.000**

Road length (road width: 3.0e5.5 m) (m) 0.001 0.001 0.001 0.001 0.000 0.001

0.000** 0.256 0.000** 0.000** 0.236 0.000**

Road length (road width: 5.5e13.0 m) (m) 0.002 0.002 0.002 0.003 0.002 0.003

0.000** 0.013* 0.000** 0.000** 0.001** 0.000**

Road length (road width: over 13.0 m) (m) 0.004 0.001 0.004 0.005 0.002 0.005

0.000** 0.800 0.000** 0.000** 0.108 0.000**

Building area (m2) 6.61 � 10�5 4.99 � 10�5 6.68 � 10�5 6.10 � 10�5 5.01 � 10�5 6.03 � 10�5

0.000** 0.001** 0.000** 0.000** 0.000** 0.000**

Public facilities 0.394 0.483 0.375 0.279 0.530 0.285

0.000** 0.014* 0.000** 0.000** 0.002** 0.000**

Healthcare facilities 0.344 0.328 0.336 0.406 0.431 0.404

0.000** 0.038* 0.000** 0.000** 0.002** 0.000**

Constant �3.647 �8.285 �3.698 �3.768 �7.560 �3.794

0.000** 0.000** 0.000** 0.000** 0.000** 0.000**

Number of observations 8670 8670 8670 8670 8670 8670

Log-likelihood �3497.630 �122.173 �3398.555 �3352.313 �218.458 �3277.432

AIC 7019.259 268.346 6821.110 6728.627 460.917 6578.864

Note: upper row means estimated coefficient; lower row means p-value (** means p-value <0.01, * means p-value <0.05).
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results because no great urban structure alteration

occurred after 1999 in Toyota City. Therefore, these data

for analyses are used.
4.3. Relations between traffic accidents and city
characteristics

Sixteen model types were developed by combining accident

places, accident types, and data types of the explained vari-

able. First, accidents were classified based on accident loca-

tions, such as accidents in all areas, accidents only in densely-

inhabited districts (DID), and accidents only on city roads.

Analysis of accidents in all area is intended to develop amodel

that can reflect the accident distribution throughout the city.

Analysis of accidents in densely-inhabited district is intended

to develop a model that is specialized for estimating the ac-

cident distribution in DID. Analysis of accidents only on city

roads is intended to develop a model that assigns importance

to accidents in residential areas. Second, accidents were

classified based on accident types, all types of accidents (e.g.,

vehicleepedestrian accidents, vehicleevehicle accidents,

single-vehicle accidents), vehicleepedestrian accidents, and

minor accidents. Severe injury accidents and fatal accidents

can not be analyzed because accident data are scarce. Third,
Table 4 e Negative binomial regression models (accidents only

Accident places

Data types KDE

Accident types All Vehicleepedes

Model Model 7 Model 8

Pop aged younger than 15 years 0.005 0.006

0.003** 0.263

Pop aged over 75 years �0.005 0.023

0.263 0.097

Signalized intersection 0.277 0.449

0.000** 0.047*

Intersection on prefectural road 0.083 0.078

0.028* 0.533

Intersection on national road 0.035 �0.008

0.240 0.941

Road length (road width: 3.0e5.5 m) (m) 0.000 0.000

0.657 0.564

Road length (road width: 5.5e13.0 m) (m) 0.001 0.001

0.001** 0.351

Road length (road width: over 13.0 m) (m) 0.002 0.000

0.000** 0.845

Building area (m2) 4.77 � 10�5 2.93 � 10�5

0.000** 0.344

Pubic facilities 0.167 0.406

0.047* 0.038*

Healthcare facilities 0.265 0.274

0.000** 0.071

Constant �1.461 �5.560

0.000** 0.000**

Number of observations 872 872

Log-likelihood �1245.269 �105.205

AIC 2514.538 234.41

Note: upper row means estimated coefficient; lower row means p-value (
models are developed to estimate traffic accident density

based on KDE and raw count data. Negative binomial regres-

sion is adopted for this analysis. It is commonly used tomodel

count data (traffic accident data).

The explanatory variable of the analysis target is selected to

avoid multicollinearity. Multicollinearity is checked by calcu-

lating the variance inflation factors (VIFs). VIFs are less than 10

when the explanatory variables, such as population, pop aged

15e64 years, pop aged over 65 years, intersection, and road

length, are removed. Table 2 presents the results for the VIFs.

Tables 3e5 present the results of parameters estimation

using negative binomial regression. Meshes in roadless areas

(road length is 0 m in mesh) are removed from analysis.

Parameters of models 14 and 17 can not be estimated

because of the scarcity data for vehicleepedestrian accidents

on city roads.

Comparison between the KDE model and the raw count

data model shows that the respective significant variables of

the models are not much different. Furthermore, comparison

of accident types, all with minor, shows that significant vari-

ables and parameter values of the models are not much

different between these two accident types because many

accidents are minor accidents. Understandably, variations in

the number of intersections and road length have significant

effects on many models. Public facilities and healthcare
in DID).

Accidents only in DID

Raw count data

trian Minor All Vehicleepedestrian Minor

Model 9 Model 10 Model 11 Model 12

0.005 0.006 0.013 0.006

0.002** 0.000** 0.000** 0.001**

�0.006 �0.010 �0.001 �0.010

0.207 0.040* 0.953 0.045*

0.290 0.388 0.382 0.387

0.000** 0.000** 0.029* 0.000**

0.086 0.112 0.038 0.110

0.022* 0.003** 0.700 0.003**

0.032 0.056 0.136 0.057

0.296 0.055 0.051 0.050

0.000 0.000 0.000 0.000

0.614 0.446 0.390 0.545

0.001 0.001 0.001 0.001

0.002** 0.000** 0.207 0.000**

0.002 0.002 0.001 0.002

0.001** 0.000** 0.327 0.000**

4.83 � 10�5 4.52 � 10�5 3.09 � 10�5 4.53 � 10�5

0.000** 0.000** 0.172 0.000**

0.137 0.124 0.445 0.110

0.105 0.147 0.007** 0.202

0.267 0.276 0.337 0.271

0.000** 0.000** 0.009** 0.000**

�1.509 �1.713 �4.918 �1.715

0.000** 0.000** 0.000** 0.000**

872 872 872 872

�1219.951 �1218.782 �175.099 �1204.231

2463.902 2461.565 374.198 2432.463

** means p-value <0.01, * means p-value <0.05).
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Table 5 e Negative binomial regression models (accidents only on city roads).

Accident places Accident only on city road

Data types KDE Raw count data

Accident types All Vehicleepedestrian Minor All Vehicleepedestrian Minor

Model Model 13 Model 14 Model 15 Model 16 Model 17 Model 18

Pop aged younger than 15 years 0.008 e 0.008 0.006 e 0.006

0.000** e 0.000** 0.000** e 0.001**

Pop aged over 75 years �0.010 e �0.009 �0.013 e �0.013

0.042* e 0.064 0.009** e 0.013*

Signalized intersection 0.511 e 0.505 0.699 e 0.700

0.000** e 0.000** 0.000** e 0.000**

Intersection on prefectural road �0.205 e �0.195 �0.296 e �0.303

0.000** e 0.000** 0.000** e 0.000**

Intersection on national road �0.284 e �0.277 �0.357 e �0.348

0.000** e 0.000** 0.000** e 0.000**

Road length (road width: 3.0e5.5 m) (m) 0.001 e 0.001 0.001 e 0.001

0.000** e 0.000** 0.000** e 0.000**

Road length (road width: 5.5e13.0 m) (m) 0.002 e 0.002 0.003 e 0.003

0.000** e 0.000** 0.000** e 0.000**

Road length (road width: over 13.0 m) (m) 0.003 e 0.003 0.004 e 0.004

0.000** e 0.000** 0.000** e 0.000**

Building area (m2) 5.98 � 10�5 e 6.02 � 10�5 5.62 � 10�5 e 5.61 � 10�5

0.000** e 0.000** 0.000** e 0.000**

Public facilities 0.431 e 0.458 0.313 e 0.301

0.000** e 0.000** 0.000** e 0.000**

Healthcare facilities 0.392 e 0.386 0.455 e 0.469

0.000** e 0.000** 0.000** e 0.000**

Constant �4.483 e �4.541 �4.421 e �4.441

0.000** e 0.000** 0.000** e 0.000**

Number of observations 8670 e 8670 8670 e 8670

Log-likelihood �1981.142 e �1914.613 �2064.87 e �2020.42

AIC 3986.285 e 3853.226 4153.739 e 4064.84

Note: upper row means estimated coefficient; lower row means p-value (** means p-value <0.01, * means p-value <0.05).
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facilities also have a significant effect on many models. It can

be inferred that these facilities attract many pedestrians and

vehicles, and that traffic accidents occur frequently around

these facilities. Consequently, these variables have significant

effects on many models.
5. Application of traffic accident models

The preceding chapter has developed a traffic accident density

estimation models based on a database for Toyota City. This

chapter presents the evaluation of the contributions of the

models from practical and academic perspectives. The appli-

cability of these models is assessed for other cities. Addi-

tionally, the improvement in applicability of KDE models

compared with that of raw count data models is examined.

Okayama City is separated into areas of 250 m mesh,

therefore, it has 12,697 meshes. The component mesh-unit

data are created for each mesh.

The number of accidents in Okayama City is predicted by

Model 1 as an example. Predicted values are rounded to in-

tegers. As described in chapter 1, the purpose of this study is

to develop models that enable the determination of areas
objectively and easily, and which indicate where to imple-

ment area-wide traffic calming preferentially. Therefore, each

mesh is ranked according to the actual number of accidents.

Similarly, each mesh is ranked according to the predicted

number of accidents. Fig. 4 presents the order by the actual

number of traffic accidents (5-year average) and their

predicted number. As the figure shows, the model can

predict numerous traffic accidents in the south, but predict

fewer in the north.

Therefore, to clarify the applicability of KDEmodels and its

improvement, the Spearman rank correlation coefficient be-

tween the mesh ranking according to the predicted number

and the one ranking according to the actual number are

calculated. Table 6 presents the calculation results of the

Spearman rank correlation coefficient.

The predicted numbers of all accidents and minor acci-

dents and their actual number have a strong positive corre-

lation. However, the Spearman rank correlation coefficient of

vehicleepedestrian is not high. The models predicting all ac-

cidents andminor accidents are likely to show applicability to

other cities. The improvement of the applicability of KDE

models compared with that of raw count data models is

examined next. Comparison of Spearman rank correlation

http://dx.doi.org/10.1016/j.jtte.2016.01.005
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Fig. 4 e Mesh rank of the actual number of traffic accidents in Okayama City. (a) Rank of the actual number of accidents per

year. (b) Rank of the predicted number of accidents per year.
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coefficients shows that no great difference is found in the

correlation coefficients between KDE models and raw count

data models.
6. Conclusions

This study assessed relations between traffic accidents and

city characteristics. Models were developed to estimate the

traffic accident density. Additionally, this study examined the

improvement in the applicability of using KDE as an explained

variable compared with that of using raw count data.

The following results were obtained.
Table 6 e Spearman rank correlation coefficient between
the mesh ranking according to the predicted number and
the one ranking according to the actual number.

Accident
location

Accident type Data type

KDE
model

Raw count data
model

Accident in all

areas

All 0.70 0.69

Vehicleepedestrian 0.38 0.36

Minor 0.69 0.68

Accident only in

DID

All 0.74 0.75

Vehicleepedestrian 0.40 0.38

Minor 0.73 0.74

Accident only on

city road

All 0.60 0.60

Vehicleepedestrian e e

Minor 0.61 0.61
� KDE was used to examine the relation in an efficient

manner. Sixteen model types were examined by

combining accident places, accident types, and data types.

Understandably, variables of the number of intersections

and road length have a significant effect on many models.

A significant effect was found for public facilities and

healthcare facilities inmanymodels. It can be inferred that

these facilities attract many pedestrians and vehicles, and

that traffic accidents occur frequently around these facil-

ities. Consequently, these variables have a significant ef-

fect on many models.

� The applicability of density estimation for traffic accident

models was examined. Results show that the Spearman

rank correlation coefficient between the predicted number

and the actual number is strong. Model predictions for all

and minor accidents are likely to be applicable to other

cities.

� Comparison using Spearman rank correlation coefficients

reveals that no greater difference is found in the correla-

tion coefficient between KDE models and raw count data

models.

First, the practical contributions of this study are the

following. The predicted numbers estimated by developed

models and the actual numbers of accidents show a strong

positive correlation. The model can reveal the relative acci-

dent risk in a city, even if traffic accident data are not avail-

able. The results of this study objectively indicate areas in

which area-wide traffic calming should be implemented

preferentially. Second, the academic contribution of this

study is that KDE models achieve slight improvement in

http://dx.doi.org/10.1016/j.jtte.2016.01.005
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applicability among cities. This result shows that KDE data

can develop a predictionmodel comparedwell with raw count

data. For example, it often happens that information of crime

locations is distributed to the public not in point data format

but in density data format in Japan because of the need of the

personal information protection. This study and its results

can expand the application of density data in various fields.

Challenges for future investigation of this topic are the

following.

� In this study, the developedmodelwas applied to Okayama

City because of the limitation of data. Thesemodels should

be applied to other cities to verify their accuracy.

� Recently, Network KDE has been applied to traffic accident

data. Regression analysis based upon the estimation of

traffic accident density-based Network KDE as an

explained variable is a subject for future analysis.
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