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Novel regulation of cardiac Na pump via phospholemman☆
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As the only quantitatively significant Na efflux pathway from cardiac cells, the Na/K ATPase (Na pump) is the
primary regulator of intracellular Na. The transmembrane Na gradient it establishes is essential for normal
electrical excitability, numerous coupled-transport processes and, as the driving force for Na/Ca exchange,
thus setting cardiac Ca load and contractility. As Na influx varies with electrical excitation, heart rate and pa-
thology, the dynamic regulation of Na efflux is essential. It is now widely recognized that phospholemman, a
72 amino acid accessory protein which forms part of the Na pump complex, is the key nexus linking cellular
signaling to pump regulation. Phospholemman is the target of a variety of post-translational modifications
(including phosphorylation, palmitoylation and glutathionation) and these can dynamically alter the activity
of the Na pump. This review summarizes our current understanding of the multiple regulatory. This article is
part of a Special Issue entitled “Na+ Regulation in Cardiac Myocytes”.

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
1.1. Structure of the Na pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
1.2. Role of Na pump in the heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
1.3. Na pump in the diseased heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2. FXYD proteins — Tissue specific regulators of the Na pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3. Na pump regulation by phospholemman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.1. PKA signaling and phospholemman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.2. PKC signaling and phospholemman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3. NO signaling and phospholemman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4. Phosphatases and phospholemman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.5. Palmitoylation of phospholemman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.6. Oxidant stress and phospholemman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4. Phospholemman as a therapeutic target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6. Disclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

1. Introduction

Since the discovery of Na/K ATPase (Na pump) in 1957 [1] a major
research effort has been focused on investigating the structural and
regulatory properties of this ubiquitous P-type ATP-driven cation
transporter. The Na pump uses the free energy of hydrolysis of ATP
to exchange three intracellular Na ions for two extracellular K ions,
thus setting the electrochemical gradient for both Na and K across
the cell membrane. The Na pump is therefore vital for maintaining
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the resting potential and Na and K gradients in almost every eukaryotic
cell. These gradients ensure basic cellular homeostasis such as regula-
tion of cell volume, essential ionic and amino acid transport processes.
In excitable cells Na pump activity restores the Na and K gradients
following depolarization and in the kidney its activity provides the
driving force for Na reabsorption essential to control extracellular vol-
ume and blood pressure. Among the many Na-dependent transmem-
brane transport processes in muscle cells, the activity of the Na pump
drives Na/Ca exchanger (NCX) and thus regulates contractility. This re-
view will focus on the regulation of the cardiac Na pump at the protein
and enzyme level and specifically, regulation by its accessory protein
phospholemman.

1.1. Structure of the Na pump

Our understanding of the structure–function relationship has
greatly expanded with the discovery [2] and refinement [3–5] of Na
pump crystal structures. The Na pump is a multi-subunit enzyme
composed of 3 subunits, α, β and a member of a FXYD family [6].
The α subunit, with 10 transmembrane segments, contains the bind-
ing sites for Na, K, ATP and cardiotonic steroids such as ouabain and
digoxin. The minimum functional unit is made up of α and β macro-
molecular complex and there are four isoforms of the α subunit (α1,
α2, α3 and α4) and three of the β subunit (β1, β2 and β3) [7,8]. The
catalytic function of Na pump for transport of Na and K ions relies on
the α subunit, whereas the association with β subunit is required for
the complex to traffic through the secretory pathway to the plasma
membrane [9,10]. Each of the α and β isoforms is encoded by their
own gene and can potentially form 12 different Na pump isozymes
with distinct transport and pharmacological properties [11]. In the
heart α1 isoform is the dominant, ubiquitous isoform, whereas α2
and α3 are present in smaller amounts and their expression differs
between species. In rodents, α1 and α2 are the two main isoforms
[12], whereas dogs and macaques express α1 and α3 [13]. In
human hearts all three α isoforms are detected [13] with estimates
ranging from stoichiometric distribution [14] to α1 being dominant
(62%) over α2 (15%), and α3 (23%) [15], although it is unclear to
what extent this represents a ‘pure’ myocyte population and how
much of it is a “contamination” from non-myocytes. In addition to
the α and β subunit, in most tissues it is now well recognized that a
third FXYD subunit (originally designated γ in the kidney) forms
part of the pump complex. Seven members of the FXYD family have
been identified in mammalian tissues and these tissue specific acces-
sory proteins provide further diversity to the Na pump function and
structure [6]. While the Na pump can function in the absence of
FXYD subunit both in vivo and in vitro [16,17], it is not clear whether
the FXYD subunit is ever absent from the α/β complex under physio-
logical conditions, in a cell that has not been genetically modified.
Thus, most researchers agree that in the heart a functional Na pump
complex is made up of α1 or α2 subunits [18,19] in association with
β1 and FXYD-1, although α3 [20,21] and β3 [22] subunits have been
detected. Whereas, FXYD1 (commonly referred to as phospholemman)
is regularly detected in both cardiac homogenates and myocytes [23]
FXYD5 has only been detected in homogenates [24], therefore, it is
unclearwhether it originates frommyocyte or non-myocyte population.

1.2. Role of Na pump in the heart

In the heart, intracellular Na is regulated by balance of Na influx and
effluxmechanisms.While there aremany influx pathways, theNa pump
provides the only significant Na efflux pathway and is therefore vital for
the maintenance of normal electrical activity and the Na gradient. This
Na gradient drives the activity of many co-transporters and exchangers
including theNCX. Thus by controlling steady-state intracellular sodium,
the Na pump regulates the concentration of intracellular Ca via NCX,
which in turn determines the content of sarcoplasmic reticulum (SR).

An increase in Na would limit ‘forward mode’ Na/Ca exchange (Na in,
Ca out) and possibly even favoring more Ca influx and less Ca efflux,
resulting in a larger Ca transient and therefore increased contractility
[25]. This is the accepted mechanism of action for the inotropic effect
of cardiotonic steroids (Na pump inhibitors) used to increase cardiac
output in patients with congestive heart failure ever since their effects
were first described by William Withering in 1785. In addition to its
transport function, evidence is accumulating that Na pump also plays a
signaling role [26], whereby, cardiotonic steroid binding to the extracel-
lular region of the pumpα-subunit activates early-response genes asso-
ciated with cell growth (see review by Li and Xie [27]). Whether this is
independent of inhibition of its transport function and the accompany-
ing changes in intracellular Na and Ca are equivocal [28,29]. While the
role of cardiotonic steroids in normal physiology is yet to be understood,
data is accumulating in support of their role in disease (see review by
Lingrel [30]).

We have previously shown that α1 isoform provides around 88%
of the total Na pump current and is relatively evenly distributed with-
in the cells, whereas,α2 is 5 times more concentrated in the t-tubules
compared to sarcolemma [31]. Although t-tubule membranes repre-
sent only 30% of total surface area they generate approximately 41%
of the total Na pump current, approximately 70% of α2 and 37% of
α1 pump current. Nevertheless, α1 pump current still dominates in
t-tubules with α1:α2 density ratio of 4:1 [31], although 1:1 ratios
have also been reported [32]. In light of differential distribution of
the α1 and α2 in the cardiac cell, it has been suggested that α1 and
α2 isoforms have different physiological roles within the cardiac
myocytes. Recent experiments using SWAP mice, where ouabain
sensitivities of α1 and α2 subunits have been reversed, suggest that
indeed, α2 has a more prominent role (vs. α1) in modulating cardiac
myocyte SR Ca release [33]. As both α1 and α2 are physically
and functionally associated with NCX in cardiac myocytes [34,35] it
is tempting to speculate that α2 isoform controls the local Na and
thus Ca levels (via NCX) in sarcolemma/sarcoplasmic reticulum
microdomains whereas α1 pumps maintain a global pool of Na
throughout the cell. However, considering that at least 50% of the
t-tubular Na pump current is generated by the α1 pumps in mouse
ventricular myocytes [31,32], it seems more likely that while α1 sub-
units are dominant in controlling global Na, both α1 and α2 control
Na microenvironment at the sarcolemma/sarcoplasmic reticulum
junction and hence SR Ca release (see Fig. 1).

1.3. Na pump in the diseased heart

While it is well established that Na pump is vital for maintenance
of trans-membrane Na gradient in a healthy heart, there is accumu-
lating evidence that disruption of this gradient may play a role in
the development of ischemia/reperfusion [36,37], hypertrophy and
heart failure [38–42]. During ischemia, increases in intracellular Na
concentration are attributed to a combination of Na influx via late ac-
tivating Na channels [43] and increased activity of Na/H exchanger
[44] as well as a decreased efflux through Na pump [45]. Whereas,
the relative contributions of Na influx versus efflux have not yet
been determined it is clear that the rise in intracellular Na during is-
chemia and its failure to recover completely on reperfusion are likely
to strongly influence the electrical and contractile dysfunction in the
ischaemic/reperfused myocardium [37,46]. Similarly, increased intra-
cellular Na concentration is well established during heart failure,
however, it still not clear what causes this Na accumulation. Increased
Na influx via Na channels was reported in rabbit [47], dog [48,49] and
human failing hearts [49], whereas, Na/H exchanger activation was
implicated by Baartscheer et al. using a rabbit heart failure model
[50,51]. There is also considerable literature suggesting compromised
Na extrusion (via the Na pump) in heart failure. Our data from human
heart failure samples show significantly lower phospholemman Ser68
phosphorylation but no change in total phospholemman, or α-1
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subunit expression, compared to healthy donor hearts [23]. This is in
agreement with some studies conducted on human, canine and rat
heart failure models [21,41,52] but certainly not all. Bossuyt et al. have
reported a reduction in total phospholemman and α-1 subunit expres-
sion in rabbit heart failure model but no change in α-1 subunit expres-
sion in human heart failure samples [20]. Schwinger and colleagues
have reported a decrease in α- and α-3 subunits along with decreased
Na pump activity in human heart failure [53]. Nevertheless, despite
differences in pump and phospholemman expression observed, a re-
duction in Na pump activity and an increase in intracellular Na were
reported in almost all of the above studies. In the short term, this
might limit systolic dysfunction (by increasing sarcoplasmic reticulum
Ca) and thus be beneficial to the failing heart [40,54]. However, a chronic
increase in intracellular Na and Ca is associated with maladaptive
cardiac hypertrophy and arrhythmogenesis [55–57].

2. FXYD proteins — Tissue specific regulators of the Na pump

Considering that Na pump has to fulfill not only its ionic “house-
keeping” duties but also plays a pivotal role in many other specialized
biological processes it is not surprising that its regulation at the
protein and enzymatic levels is complex. Some of the well character-
ized Na pump regulators include, intracellular sodium, extracellular
potassium, ATP, membrane potential and cardiotonic steroids. In
addition, recent experimental evidence has revealed a novel regu-
latory mechanism that involves interaction of the Na pump with
small-membrane proteins of the FXYD family. A little over 10 years
ago, Sweadner and Rael defined the so-called FXYD protein family,
based on the signature sequence containing the Phe-X-Tyr-Asp
(FXYD) motif, two conserved glycines and one serine residue [6].
The mammalian FXYD family contains 7 members that include FXYD1
(phospholemman) [58], FXYD2 (γ-subunit) [59], FXYD3 (mammary
tumormarker,Mat-8) [60], FXYD4 (corticosteroid hormone-induced fac-
tor, CHIF) [61], FXYD5 (related to ion channel RIC or dysadherin) [62],
FXYD6 (phosphohippolin) [63] and FXYD7 [64]. They are all type I mem-
brane proteins with a single transmembrane domain, an extracellular

NH2 terminus and a cytoplasmic COOH terminus. Except for FXYD2 and
FXYD7, all are predicted to contain a cleavable NH2-terminal signal
peptide. All of the FXYD members contain 61–95 amino acids (with the
exception of FXYD5, which has 178 amino acids due to a terminal exten-
sion at its amino terminus) and transmembranedomains of FXYDs 1, 2, 3,
and 4 were all shown to adopt an α-helical conformation [65,66]. For
many years after their discovery, the function of FXYD proteins was
unknown. Several FXYD proteinswere shown to induce ion-specific con-
ductances when overexpressed in Xenopus oocytes [60,61,67] but it is
still controversial whether this has any physiological significance. It
wasn't until the discovery that FXYD2 associates and modulates renal
Na pump activity in 1997 [68–70] that the research community focused
on investigating their effects on the Na pump. Although it is not clear
whether FXYD proteins might have other functions, at least five of the
FXYD proteins associate with and regulate Na pump activity in a tissue
specificmanner (see reviewbyGeering [71]). Thus there is a general con-
sensus that FXYD proteins are accessory proteins to theα/β pump com-
plex, allowing for tissue-specific regulation of the pump, tailored to the
needs of the environment the pump is required to regulate.

3. Na pump regulation by phospholemman

Phospholemman is a small single membrane-spanning protein (72
amino acids), mainly expressed in the heart, skeletal and smooth mus-
cle but also in other tissues such as brain liver and kidneys [58,72–74]. It
was initially suggested that phospholemman forms taurine-selective
channels in lipid bilayers [75] and that it therefore might be involved
in cell volume regulation. While some structural studies support the
idea of phospholemman multimers [76,77], myocytes from both wild
type (PLMWT) and phospholemman knock out (PLMKO) mice swell
equally, indicating that phospholemman is not essential in limiting
water accumulation in response to a hypo-osmotic challenge [78].
That said, a pool of pump-free phospholemmanmultimers has recently
been described in ventricular muscle, which may represent a ‘storage
pool’ of phospholemman that does not directly regulate the pump
[79]. Classification of phospholemman as a FXYD protein pointed to its
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Na pump regulatory role. Unlike the other FXYD proteins it contains
multiple, well conserved, phosphorylation sites at its COOH terminus.
Indeed, phospholemman is a principal sarcolemmal substrate for PKA
at Ser68 and PKC at residues Ser63, Ser68 and Ser/Thr69 [80,81].
NIMA (never in mitosis A) kinase has also been reported to phosphory-
late phospholemman at Ser63 although the functional effects of this
kinase on the Na pump have never been identified.

Physical interaction between phospholemman and the α subunit
of the Na pump in the heart has been demonstrated using co-
immunoprecipitation [20,76,82–84], crosslinking [85] andmost recently,
FRET [82,86]. The interaction between the phospholemman and α/β
complex was also observed in crystal structures from shark rectal
gland [3] and pig kidney Na pump [2]. However, presumably due to
the mobility of the carboxyl terminus of phospholemman, they have
provided no structural insight on the pump-phospholemman interac-
tions at the intracellular region of phospholemman. Solution and
solid-state NMR spectroscopy studies in micelles and bilayers suggest
that the cytosolic tail (helices 3 and 4) of the unphosphorylated
phospholemman is tightly associated with the negatively charged phos-
pholipids of the membrane [87,88]. Initial NMR experiments with
phospholemman phosphorylated at Ser68 by PKA indicate that phos-
phorylation increases the dynamics around helix 4 [88], however,
whether phosphorylation is accompanied by detachment of helix 4
from the lipid surface is yet to be determined using NMR spectroscopy.
Elegant work by Khafaga and colleagues, using FRET, showed that E960
residue on the pump and F28 on phospholemman are critical for
phospholemman-mediated effects on both pump function and physical
pump-phospholemman interaction [86]. It should be noted that muta-
tion of the E960-F28 residues did not completely abolish physical inter-
action between the pumpandphospholemman, indicating that there are
other, as yet undiscovered interaction sites that hold the two together.
Nevertheless, there is a general agreement between the FRET, cross-
linking and co-immunoprecipitation studies that phosphorylation alters
the association between the pump and phospholemman by moving the

cytosolic arm away from the pump but not by promoting their dissocia-
tion (see Fig. 2).

Functional effects of phospholemman on the cardiac Na pump have
been confirmed by several independent laboratories using a range of ap-
proaches and experimentalmodels. Unphosphorylated phospholemman
inhibits the cardiac Na pump whereas phosphorylation by either PKA or
PKC stimulates it. However, there is some disagreement regarding the
exact nature of this modulatory effect on the pump. Unphosphorylated
phospholemman was shown to inhibit Na pump activity either via a
decrease in apparent Na affinity [82,83,89–92], decrease in Vmax

[16,80,93,94] or both [90,95]. It is likely that some of these discrepan-
cies are due to differences in methodology employed between different
labs. For example, in experiments where changes in Vmax are reported
[16], pipette Na concentration was 50 mM. While at this concentration
any changes in Na pump activity can bemainly attributable to Vmax, it is
not possible to rule out an effect on the apparent Na affinity. It is also
likely that high basal phospholemman phosphorylation, which in a
freshly isolated cardiac myocyte is a mixture of Ser63 (circa 57%),
Ser68 (circa 33%), both Ser63/Ser68 (circa 28%) and unphosphorylated
phospholemman (circa 38%) is another potential source of error [80].
Considering that basal phosphorylation is a result of a combination
of the activities of both PKC (dictated by resting Ca load) and PKA
(dependent on the adrenergic state of the cell), and there is evidence
that PKA stimulates the pump via increase in apparent Na affinity and
PKC via increase in Vmax [90,95], these can clearly provide another
layer of complexity to the interpretation of data. Despite disagreements
over the Vmax/KM effects, which still persist, introduction of PLMKO mice
removed doubts over the mechanism of pump modulation. In myocytes
isolated from the PLMKO animals, pump current (Ip) was higher than
in PLMWT and supplementation of PLMWT with phosphorylated
phospholemman peptide increased Ip up to the levels observed in
PLMKOmyocytes [16]. Furthermore, phosphorylation of phospholemman
via beta and alpha-adrenoceptor resulted in increased Ip andNa extrusion
rates in PLMWT mice but had no effect in PLMKO [89,90]. These studies
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showed that unphosphorylated phospholemman acts as a brake on the
Na pump and that phosphorylation removes this brake by changing the
orientation of the phospholemman cytosolic carboxyl terminus with re-
spect to the pump α subunit, thereby increasing its activity (see model
in Fig. 2).

3.1. PKA signaling and phospholemman

In the heart, β-receptor stimulation increases inotropy and lusitropy
by increasing L-type Ca current, increasing movement of Ca back into
the SR (via phospholamban phosphorylation), increasing the rate of Ca
dissociation from the myofilaments (phosphorylation of troponin I)
and increasing intracellular Na (via increased heart rate). Furthermore,
β-receptor stimulation was consistently shown to increase the activity
of the cardiacNa pump [16,80,84,93,96–99]. Surprisingly some laborato-
ries also report inhibition [100,101], however, this could be a result of
sub-physiological intracellular Ca concentration used in these studies
(b150 nM) [102]. It should also be noted that there is a correlation be-
tween PKA-mediated Ser936 phosphorylation on the α-1 subunit and
Na pump inhibition, however, relevance of this mechanism to cardiac
Na pump regulation is questionable as all the studies were performed
in non-cardiac tissues (for review see Poulsen et al. [103]). On the
contrary, there is strong evidence that PKA-dependent phosphorylation
of phospholemman at Ser68 residue mediates β-receptor activation
of the cardiac Na pump [16,23,76,80,82,83,89,93]. This conclusion
was reinforced by experiments in PLMKO mice in which Ip was
reduced in PLMWT compared to PLMKO myocytes, while the addition of
the PKA-phosphorylated 19 amino acid peptide corresponding to the
carboxyl terminus of phospholemman increased Ip [16]. Conversely,
addition of the unphosphorylated phospholemman peptide reduced
the Ip in both PLMWT and PLMKOmyocytes [16]. Surprisingly, phosphor-
ylated peptide further stimulated Na pump in PLMKO, however, it is pos-
sible that this is an artefact of using a phospholemmanpeptide that does
not contain the transmembrane domain. Indeed, Lifshitz et al. have
reported that transmembrane domain alone exerts some inhibitory ef-
fect on the Na pump [92]. Further experiments by Despa and colleagues
unequivocally showed that β agonist isoprenaline stimulated Na pump
activity only in PLMWT but not PLMKO myocytes [89], indicating that
phospholemman is required for the PKA-mediated stimulation of the
Na pump (see Fig. 3).

While the evidence for β-adrenergic stimulation of the Na pump
seems solid, an inotropy paradox is apparent. IncreasedNa pumpactivity
during fight or flight seems counterintuitive as it would lead to reduced
intracellular Na (and therefore Ca) and thus to reduced inotropy. So the
mechanism (fight orflight) responsible for increasing cardiac output also
initiates a mechanism (phospholemman phosphorylation) potentially
reducing cardiac output? Despa and colleagues provided the answer in
2008 by measuring the effect of β-AR activation on intracellular Na and
Ca inmyocytes from PLMWT and PLMKOmice. An increase in stimulation
frequency plus β-adrenoceptor activation caused a larger rise in intracel-
lular sodium, greater SR Ca content, and bigger Ca transient in PLMKO

compared to PLMWT myocytes. However, greater SR Ca content led to
more arrhythmias in isolated myocytes from PLMKO animals [104]. It
should be noted that Despa and colleagues found a 20% downregulation
of the α subunit in PLMKO myocytes, suggesting higher apparent Na af-
finity (due to the absence of PLM) and reduced pump expression in
PLMKO mice might offset each other so that under physiological condi-
tions, Na pump activities in PLMKO and PLMWT are comparable [89].
The difference occurs after sympathetic stimulation, where the pump is
activated in PLMWT but not in PLMKO myocytes thus allowing for
PLMWT to decrease their intracellular Na load. Remarkably,we do not ob-
serve such adaptational changes in our PLMKO colony and find that Ip is
around 30% higher in PLMKO then in PLMWT [16,31], but in PLM3SA

mice where phospholemman Ser63, Ser68 and Ser/Thr69 residues
were mutated to alanines (and thus these animals cannot upregulate
their Na pump activity following β-adrenergic stimulation), we find
similar increases in Ca load and propensity to arrhythmias under sympa-
thetic stress, as observed by Despa and colleagues (see Fig. 4). Thus,
the physiological role of phospholemman may be to limit the rise in in-
tracellular Na during sympathetic stimulation and thereby prevent Ca
overload and triggered arrhythmias in the heart. This is supported by
in vivo measurements of dP/dt in PLMKO and PLMWT mice [105], Wang
and colleagues reported increased +dP/dt both at baseline and at low
concentrations of isoprenaline in PLMKO mice [105].

3.2. PKC signaling and phospholemman

PKC to a large extent mimics the effect of PKA activation on the Na
pump in the heart. Most studies show that PKC stimulates the pump
[80,90,95,106,107], however, inhibition [108–110] was also reported.
In the kidney, intracellular Ca has been shown to interfere with the
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functional effects of PKC on the Na pump [111] and indeed we have
shown this to be the case in the heart [112]. It is therefore possible
that discrepant effects of PKC on the pump are a function of differ-
ences in intracellular Ca used. There are at least three PKC isoforms
expressed in the heart α, δ and ε [80], providing further source of
complexity. Nevertheless, Na pump activation by PKC was shown to
be dependent on PLM [90], although the mechanism for this increase
in pump activity is still not clear as changes in Vmax alone [90,95] or
both Vmax and Km were reported [82]. Bibert et al. have examined
the effects of PKA and PKC activation on the Na pump in Xenopus oo-
cyte expression system and found that while PKA activation (via
phospholemman) increases apparent Na affinity of both α1 and α2
pump isoforms, PKC had no effect on the apparent Na affinity of either
α1 or α2 but increased the maximum turnover rate of the α2 pumps
only [95]. Bossuyt et al. study used SWAP mice (where α1 and α2
ouabain sensitivities are swapped), and found that either PKA or
PKC activation increased Na affinities (via phospholemman) of α1
and α2 isoforms in cardiac myocytes. However, PKC activation in-
creased Vmax of α2 but not α1 isoform [82], similar to experiments
in oocytes. Based on these findings, it was proposed that PKA and
PKC have access to different pools of PLM, Ser68 and Ser63, respec-
tively, and thus maintain intracellular Na differently in the vicinity
of either α1 or α2 isoforms. Although there is evidence that PKA is
functionally linked to the α1 isoform [31,113], data on the exclusive
link between PKC and α2 are ambiguous. In mouse ventricular
myocytes, activating PKA after PKC induces additional Ser68 phos-
phorylation and increases pump Na affinity (on top of a PKC-
induced increase in Vmax) whereas, activating PKC after PKA induces
Ser63 and additional Ser68 phosphorylation and increases pump
Vmax (on top of a PKA-induced increase in Na affinity) [90]. Similarly,
in Xenopus oocytes where rat phospholemman and α1 or α2
isoforms were overexpressed, PKA-induced Ser68 phosphorylation
increased the apparent Na affinities of both α1 and α2 isoforms,
whereas, PKC phosphorylation (of Ser63 and Ser68 residues) in-
creased the Vmax of α2 but not α1 isoforms [95]. These data indicate
that both α1 and α2 isoforms can “sense” Ser68 phosphorylation
(resulting in a change in the apparent Na affinity of the pump),

whereas, α2 isoforms can additionally sense Ser63 phosphorylation
(resulting in an increased Vmax). However, it is difficult to explain
how α2 isoform, which provides only 12% of the total pump current
[31], can account for the 60% increase in pump Vmax observed when
PKC is activated [90]. Furthermore, phosphorylation by PKA or PKC
activation induced similar reductions in FRET between YFP-labeled
phospholemman and CFP-labeled α1 or α2 subunits, indicating
that there is no difference in the physical association between the
phospholemman and α subunits following phosphorylation. How-
ever, submaximal concentrations of PKA agonists had a smaller effect
on the FRET between phospholemman and α2 than α1, suggesting
subtle differences in association and regulation of Ser68 residue
and the two Na pump isoforms. Thus, despite recent advances in
our understanding of PKC mediated phospholemman regulation, the
physiological role of PKC-induced Na pump stimulation has not
been established although our work on the nitric oxide (NO) mediat-
ed pump regulation may provide some insights (NO signaling and
phospholemman section), see Fig. 3 for mechanism.

3.3. NO signaling and phospholemman

Raising intracellular Ca2+ either artificially or via field-stimulation
in ventricular myocytes activates constitutively expressed nitric oxide
synthase (NOS), generating NO in submicromolar concentrations
[114,115]. Confusingly, NO has been reported to mediate both inhibi-
tion [116–121] and stimulation of the Na pump [122–127]. An elegant
hypothesis explaining these apparent discrepancies was proposed,
stating that NO stimulates Na pump only in tissues expressing
phospholemman [128]. However, as is often the case, “Another beau-
tiful hypothesis destroyed by an ugly fact”, some of the tissues where
NO was reported to inhibit the pump were subsequently found to
express phospholemman [129]. Nevertheless we have shown that in
field-stimulated cardiac myocytes, NO activates the Na pump via
PKCε-induced phosphorylation of PLM at Ser-63 and Ser-68 residues,
in a Ca-dependent manner (see Fig. 3 for mechanism). Furthermore,
in patch-clamped myocytes, NO increased apparent Na affinity of
the pump in PLMWT but not PLMKO animals, again confirming the
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requirement of phospholemman for the pump stimulation. The
resulting Na pump stimulation was found to play an important role
in protecting the heart against Na+ and Ca2+ overload (via NCX)
and resultant arrhythmias in both field-stimulated cardiac myocytes
and hearts in the absence of sympathetic stimulation. We propose
that in a beating heart, intracellular Na and thus Ca are basally
controlled through phospholemman-induced Na pump regulation
(via NO) whereas fight or flight-induced activation of the pump activity
is a “reserve”, only used following sympathetic stimulation in order
to deal with increased Na and Ca influx (see PKA signaling and
phospholemman section). The effects of PKA and PKC activation are
additive, both in termsof phosphorylation of phospholemmanand func-
tional effects on the Na pump [90] and indeedβ-receptor-induced phos-
phorylation of Ser68 phospholemman residue was shown to be
enhanced by NO-mediated PKCε activation [112].

3.4. Phosphatases and phospholemman

While phosphatases have often been considered to be the poorer
cousins of the kinases, and have tended to elicit less excitement amongst
the scientific community, they are equally important and as well regu-
lated as kinases in living systems. Despite suggestions that phosphatases
are involved in regulation of phospholemmanas early as 1999 [130], rel-
atively little research has been conducted to date on the pathways lead-
ing to phospholemman dephosphorylation. In the heart more than 90%
of total phosphatase activity is contributed by the types 1 and 2A, PP-1
and PP-2A [131]. In particular PP-1 has been implicated in the regulation
of cardiac β-agonist responses and as a negative regulator of cardiac
contractility [132–134]. It is the major phosphatase dephosphorylating
the SERCA-pump regulator phospholamban (PLB) [131], and thereby
negatively affects Ca transients [134]. PP-1 activity in turn is tightly reg-
ulated by several regulatory anda few inhibitory subunitswith the latter
including inhibitor-1 (I-1) and inhibitor-2. The cytosolic I-1 [134–136] is
activated by cAMP/PKA-dependent phosphorylation at Thr-35 and then
potently prevents substrate-dephosphorylation by PP-1. We have re-
cently shown that phospholemman phosphorylation at Ser-68 and car-
diac Na pump activity is negatively regulated by PP-1 and that this
regulatory mechanism is counteracted by PKA-dependent I-1, under
resting conditions [23] (see Fig. 3). Using okadaic acid as a crude phos-
phatase inhibitor we found that IC50 for inhibition of Ser-63 dephos-
phorylation is much lower (127 nM) than for Ser-68 (525 nM)
indicating that PP-2A might be responsible for Ser-63 dephosphoryla-
tion. Interestingly, the EC50 for the Thr-69 site was high, 2.7 μM, indi-
cating that even if Thr-69 dephosphorylation may be mediated by PP1,
this is unlikely to occur under physiological conditions. Furthermore,
phospholemman phosphorylation was diminished in failing human
hearts selectively at the PKA-dependent Ser-68 residue, which is consis-
tent with impaired β-AR signaling, I-1 deactivation and potentially
hyper-activated PP-1, as previously reported in these heart failure sam-
ples [137,138].

Recently, we have shown that presence of the PP-2A in the pump
complex in cardiac muscle maintains pump-associated phospholemman
unphosphorylated at Ser-63 [79]. Therefore, it is possible that differential
exposure of pools of phospholemman to different phosphatases can drive
different phosphorylation patterns for pump-associated and pump-free
phospholemman although more work is required to understand what
effect these phenomena might have in determining trafficking and func-
tional roles of phospholemman within the cardiac cell.

3.5. Palmitoylation of phospholemman

Phospholemman has two cysteines at residues 40 and 42 (which lie
in the intracellular region of phospholemman just beyond the trans-
membrane domain) that are completely conserved across species.
Cysteine 42 has recently been reported to be glutathionylated during
oxidative regulation of the cardiac sodium pump [139] and we have

recently reported that both Cys40 and Cys42 are palmitoylated [22].
Palmitoylation of phospholemman increases the half-life of protein
and importantly decreases Na pump activity, probably through a
modification of the local environment surrounding the entrance to the
sodium binding sites in the α subunit [22]. Surprisingly, phosphoryla-
tion of phospholemman at serine 68 by PKA in rat ventricular myocytes
or transiently transfected HEK cells increased its palmitoylation [22].
Considering that Ser68 phosphorylation is predicted to increase Na
pump activity and palmitoylation to decrease it, it is difficult to predict
the physiological significance of these two seemingly opposing regula-
tory mechanisms. It has been suggested that individual palmitoylation
sites on phospholemman may have opposing effects on pump activity
through their reorienting effects on phospholemman helix 3 (where
these sites are located), thus providing further complexity to this regu-
latorymechanism [140]. Clearly more research is needed to understand
the role of palmitoylation in phospholemman mediated pump regula-
tion, however, considering that one or both cysteines are found in anal-
ogous positions throughout the FXYD family [141], and all are predicted
to be palmitoylated [22], FXYD protein palmitoylation may be a univer-
sal means to regulate the pump.

3.6. Oxidant stress and phospholemman

Oxidant stress alters protein structure and function through the
modification of the redox status of regulatory protein sulfhydryl groups.
As early as 1993, Shattock andMatsuura have found that Na pump cur-
rent was reduced by photoactivated rose-bengal (a singlet oxygen and
superoxide generator) in voltage-clamped rabbit ventricular myocytes
[142]. Furthermore, depletion of cellular glutathione or intracellular ap-
plication of thiol-modifying reagents reduced pump activity [143], pro-
viding more evidence in support of a possible functional link between
pump activity and its protein sulfhydryl status. While there is agree-
ment that oxidant stress inhibits Na pump function, mechanisms driv-
ing this process are unclear. Glutathionylation of the cardiac pump has
been shown to occur on α [144] and β [110,145] subunits, and both
are reported to negatively regulate Na pump function. The cardiac β1
subunit was shown to be glutathionylated (at Cys46 residue) either
by application of oxidants (peroxynitrite or hydrogen peroxide) [145],
following activation of PKCε-dependent NADPH oxidase [110] or sur-
prisingly even via activation of PKA signaling cascades [100]. Conse-
quent inhibition of the cardiac Na pump is mediated by a decrease in
maximal turnover rate of the pump. Phospholemman is reported to re-
verse this β1-glutathionylation-mediated pump inhibition by acting as
a “decoy” for oxidant stress, being itself glutathionylated at Cys42 resi-
due [139]. It is very difficult to interpret this data in the context of
well-reported stimulatory effects of PKA [16,80,84,93,96–99] and PKC
[80,90,95,106,107] on the Na pump activity. Adding further confusion
to an already complicated picture is evidence that oxidant stress can ac-
tivate PKA in ventricular myocytes [146,147] leading to substantial
phosphorylation of phospholemman at S68. Reconciling the opposing
effects of phosphorylation, palmitoylation and glutathionylation on
the pump activity is not straightforward. It is possible that differences
in methodology, basal phosphorylation state of the isolated myocytes
and intracellular Ca levels can account for some, but certainly not all
the divergent results. With increasing realization of the importance of
Na pump regulation in both normal physiology and disease, it is imper-
ative that these differences are addressed if we are to progress to de-
signing clinically effective therapeutic strategies.

4. Phospholemman as a therapeutic target

It is clear from the literature that Na overload can contribute to
contractile and electrical dysfunction in ischemia/reperfusion [36,37],
hypertrophy and heart failure [38–42]. Reduction of Na influx was
already shown to reduce infarct size [148], arrhythmias [149] and ische-
mic injury [43], so as the Na efflux pathway is also compromised in
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hypertrophy [38,41,42] and heart failure [23,150], it seems reasonable
to suggest that this may also be considered as a therapeutic target.
In fact, as pointed out by Rasmussen and Figtree in their analysis of
drug therapies targeting the neurohormonal abnormalities in heart
failure patients, there is a remarkable correlation between the ability
of the treatment to stimulate the Na pump and its clinical outcome
[151]. Thus, increases in Na pump activity, through the modulation of
phospholemman, may provide an important therapeutic target in car-
diovascular disease. There is an argument that in heart failure and ische-
mia where the heart is already energetically compromised, increasing
the activity of energy demanding Na pump could further burden the
cell and thus make matters worse. However, there is accumulating evi-
dence that high intracellular Na contributes to the impaired mitochon-
drial energetics [152,153] through diminishedmitochondrial Ca uptake
[154] required to stimulate ATP synthesis. Therefore therapeutically, it
might be favorable to reduce Na overload and allow the cell to start pro-
ducing more ATP.

5. Conclusions

Owing to the importance of Na pump as a major efflux pathway for
Na and its role in driving a plethora of other transporters in almost
every single cell in our body, it is perhaps not surprising to find a com-
plex network of regulators and “fine tuners” controlling its activity. Mul-
tiple regulatory pathways converge on phospholemman, some of them
seemingly cancelling each other, and some of them acting synergistically
(see Fig. 5 for a summary of functional effects of various phospholemman
modifications). Phospholemman-phosphorylation mediated effects on
the pump have now been reproduced by many independent groups
and the role of phospholemman Ser68 residue in protection against
β-receptor-mediated Na/Ca overload and arrhythmias is well char-
acterized. However, accumulating data on cysteine modifications via
palmitoylation and glutathionylation is compelling and detailed studies
addressing the contribution of each of the three regulatory pathways
are urgently needed. Perhaps an important factor being overlooked in
our quest to understand the role of phospholemman-mediated Na
pump regulation is the old adage in the real estate thesaurus “location,
location, location”. We are becoming increasingly aware that cardiac
cells are not “empty bags” waiting to be filled but complex structures

with strictly localized protein networks precisely regulating their imme-
diate environment. Perhaps if we develop the tools to study and modify
individual populations of molecular networks in different areas of
t-tubules, caveolae or sarcolemma, we will discover that phosphoryla-
tion, palmitoylation and glutathionylation are not mutually exclusive.
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