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We introduce the class of lattice-linear monomial ideals and use
the lcm-lattice to give an explicit construction for their minimal
free resolution. The class of lattice-linear ideals includes (among
others) the class of monomial ideals with a linear free resolution
and the class of Scarf monomial ideals. Our main tool is a new
construction by Tchernev that produces from a map of posets
η : P → Nn a sequence of multigraded modules and maps.
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1. Introduction

Let R = k[x1, . . . , xn] be a polynomial ring where k is a field, considered with its standard Zn-
grading (multigrading) and let N be an ideal in R generated by monomials.

A well-studied combinatorial object associated to N is the lcm-lattice LN . This atomic lattice is
comprised of the least common multiples of minimal monomial generators of N where ordering in
LN is given by divisibility. Gasharov, Peeva and Welker in [6] express the Betti numbers of R/N
using the homology groups of certain open intervals in LN . They further show that the isomorphism
class of LN , together with the labeling of its elements, determines the structure of the minimal free
resolution of R/N .

Motivated by these results, we introduce the class of lattice-linear monomial ideals. A lattice-linear
ideal has the mapping structure of its minimal free resolution encoded in the covering relations of
its lcm-lattice. In our main result, Theorem 3.3, we construct explicitly the minimal free resolution of
any lattice-linear ideal from its lcm-lattice.

The class of lattice-linear ideals contains extensively studied subclasses, including the class of
monomial ideals with a linear free resolution [7–11] and the class of Scarf ideals [1]. For each of these
two subclasses, minimal free resolutions have been constructed using different techniques which are
also distinct from the one described in this paper.
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The key tool used to produce lattice-linear resolutions is a new construction described in Section 2
which is due to Tchernev. This construction takes a finite poset P as its input and produces as its
output D(P ), a sequence of k-vector spaces and k-linear maps. The sequence D(P ) is formed from
the homology of certain open intervals in the poset P and is motivated directly by the results of [6]
on the lcm-lattice. In general, this sequence may not even be a complex of vector spaces, and if it is
indeed a complex, it may not necessarily be exact. Appendix A provides some technical details of the
construction, where in Proposition A.1, Tchernev shows that if the poset P is assumed to be ranked
then D(P ) is a complex of vector spaces.

We turn our attention to free resolutions of monomial ideals in Section 3. When there exists a
map of posets η : P → Nn , we homogenize D(P ) to produce a sequence of multigraded modules
and multigraded morphisms F (η) which approximates a free resolution of the monomial ideal N
whose generators have their degrees given by the images of the atoms of P . In the case when F (η)

is an acyclic complex, we call it a poset resolution of R/N . The framework of poset resolutions is
utilized to describe the minimal resolution of a lattice-linear ideals, although other posets may pro-
vide appropriate structure for supporting resolutions. Indeed, both the Taylor resolution [15] and the
Eliahou–Kervaire resolution [5,4] may be realized as poset resolutions. In Section 4, we give brief
descriptions of these examples of poset resolutions as well as the examples of lattice-linear ideals
mentioned above.

The remainder of the paper is devoted to the proof of Theorem 3.3, which makes use of a certain
reformulation of the sequence D(P ). More precisely, in Section 5 we describe a variation on the
construction of D(P ). In order to obtain this reformulation we assume that A, the set of atoms of P ,
forms a crosscut which is indeed the case if P is a lattice or a geometric semilattice. Under the
assumption that A forms a crosscut, the Crosscut Theorem applies so that the poset P is homotopy
equivalent to the atomic crosscut complex Γ (P , A). The reformulation of D(P ) is carried out by
replacing the homology of the open intervals used in the original construction with the homology of
atomic crosscut complexes associated to each element of P through the isomorphism on homology
induced by homotopy equivalence. More precisely, we describe a canonical isomorphism between the
vector space given by the homology of an open interval and the vector space given by the homology of
the crosscut complex of said open interval. Through this isomorphism, the differential of D(P ) is able
to be defined on either of the resulting vector spaces, facilitating the use of two equivalent methods
for construction of D(P ). This reformulation is established in Proposition 5.5 and Corollary 5.6, where
we utilize the homotopy equivalence between P and the atom crosscut complex Γ (P , A) described
in the proof of the Crosscut Theorem given by Björner in [2].

The proof of Theorem 3.3 is given in Section 6, where the poset map used to construct the min-
imal free resolution of a lattice-linear ideal is the multidegree map, mdeg : LN → Nn , which sends a
monomial to its multidegree. As mentioned above, since LN is a lattice, we use the crosscut complexes
of open intervals to provide the framework for the underlying vector space structure of F (mdeg).

2. Poset combinatorics and D(P )

Let (P ,�) be a finite poset with minimum element 0̂. When the meet (greatest lower bound)
and join (least upper bound) of a subset σ ⊆ P exist, they are denoted as ∧σ and ∨σ , respectively.
A totally ordered subset σ ⊆ P which has the form α0 < · · · < αk is called a chain of length k, and
for α ∈ P , the rank of an element α is rk(α) = sup{�: α0 < · · · < α� = α}. A subset of P comprised
entirely of elements which are pairwise incomparable is called an anti-chain. An element β ∈ P is
said to be covered by α (which we write as β � α) when β < α and there exists no γ ∈ P such that
β < γ < α. An open interval in P is the subposet of chains

(β,α) = {γ ∈ P | α < γ < β},

with closed and half-open intervals denoted similarly. Recall that the set of atoms of P is

A = {a ∈ P : 0̂ � a}.
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Using the convention that rk(0̂) = 0, we have rk(a) = 1 for every a ∈ A. The poset P is said to be
ranked when rk(α) = rk(β) + 1 for every β � α ∈ P .

For the purpose of topological analysis of P , recall that the order complex of a poset is the abstract
simplicial complex 	(P ) whose vertices are the elements of P \ {0̂} and for k > 0, the k-dimensional
faces of 	(P ) are in one-to-one correspondence with the length k chains of P \ {0̂}. As is standard,
whenever discussing topological properties of P , we are implicitly referring to the topological prop-
erties of 	(P ). On the other hand, given a simplicial complex Ω , the face poset P (Ω) is the set
of faces of Ω with partial ordering given by inclusion. These combinatorial correspondences allow
the first barycentric subdivision of a simplicial complex Ω to be realized as the abstract simplicial
complex sd(Ω) = 	(P (Ω)).

For α ∈ P we use the notation 	α := 	(0̂,α) for the order complex of the associated open interval
which we analyze in the following way.

Definition 2.1. For λ ∈ P , set Dλ = 	(0̂, λ], the order complex of a half-closed interval, so that

	α =
⋃
λ�α

Dλ.

For a fixed λ � α, let

	α,λ = Dλ ∩
( ⋃

β�α
λ �=β

Dβ

)
.

Remark 2.2. For each λ �= β where both λ and β are covered by α we have Dλ ∩ Dβ ⊂ 	λ . Indeed,
suppose that {μ0,μ1, . . . ,μk} is a face of Dλ ∩Dβ which is associated to the chain μ0 < μ1 < · · · < μk
of P . By assumption, μk � λ and μk � β . Supposing that μk = λ, it follows that either λ = β or
λ � β � α, each of which is a contradiction to our assumptions. Therefore, μ j < λ for every 0 � j � k

which implies that μ0 < μ1 < · · · < μk is a chain of the open interval (0̂, λ) so that {μ0,μ1, . . . ,μk}
is a face of 	λ . For a fixed λ � α, taking the union of the complexes Dλ ∩ Dβ over all β � α with
β �= λ we have the inclusion 	α,λ ⊆ 	λ .

Using the family of simplicial complexes 	α we now describe a sequence of vector spaces and
vector space maps

D(P ) : · · · −→ Di
ϕi−→ Di−1 −→ · · · −→ D1

ϕ1−→ D0

whose structure is determined by the reduced simplicial homology of the complexes 	α with coeffi-
cients in k.

Remark 2.3. Inherent in our study of an abstract simplicial complex X is the existence of the empty
face ∅ ∈ X . We utilize the convention (see, for instance [2]) that the empty abstract simplicial com-
plex {∅}, which has no vertices, is a (−1)-dimensional simplex.

Definition 2.4.

1. Set D0 = H̃−1({∅},k), a one-dimensional k-vector space.
2. For i � 1, set Di,α = H̃i−2(	α,k) and

Di =
⊕

α∈P\{0̂}
Di,α.
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Remark 2.5. The structure of the poset P clearly determines in a canonical way the vector spaces Di,α .

Remark 2.6. When i = 1 and α ∈ A, we have 	α = D0̂ = {∅} and thus, D1,α = H̃−1({∅},k), a one-
dimensional k-vector space. Alternatively, if i = 1 and α /∈ A then 	α = ⋃

λ�α Dλ �= {∅} and hence
D1,α = H̃−1(	α,k) = 0. Therefore,

D1 =
⊕
α∈A

D1,α =
⊕
α∈A

H̃−1
({∅},k) ∼=

⊕
α∈A

k.

Next, given λ�α ∈ P , we consider the Mayer–Vietoris sequence in reduced homology for the triple

(
Dλ,

⋃
β�α
λ �=β

Dβ,	α

)
.

We write ι : H̃i−3(	α,λ,k) → H̃i−3(	λ,k) for the map induced in homology by the inclusion map
and

δ
α,λ
i−2 : H̃i−2(	α,k) → H̃i−3(	α,λ,k)

for the connecting homomorphism from the Mayer–Vietoris sequence. Recall this homomorphism
takes the class [c] ∈ H̃i−2(	α,k) to the class [di−2(c′)] ∈ H̃i−3(	α,λ,k) where c′ + c′′ = c ∈
C̃i−2(	α,k), and c′ and c′′ are any components of c that are supported by Dλ and

⋃
λ�=μ�α Dμ

respectively. Here, d is the usual simplicial boundary map.
We now proceed with the definition of the maps ϕi : Di → Di−1 for the sequence D(P ).

Definition 2.7.

1. Define ϕ1 : D1 → D0 componentwise by ϕ1|D1,α
= idH̃−1({∅},k) .

2. For i � 2 define ϕi : Di → Di−1 componentwise by

ϕi|Di,α =
∑
λ�α

ϕα,λ
i

where

ϕα,λ
i : Di,α → Di−1,λ

is the composition ϕα,λ
i = ι ◦ δ

α,λ
i−2.

Remark 2.8. The maps of vector spaces ϕi are clearly canonical and determined by the structure of
the homology of the open intervals in the poset P .

Remark 2.9. A priori, the sequence D(P ) is not necessarily a complex of vector spaces, and even if it
is a complex, it need not be exact. While necessary and sufficient conditions for the construction to
produce an exact complex are not known, if the poset is ranked, D(P ) is a complex of vector spaces.
This result appears as Proposition A.1 of Appendix A.
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3. Poset resolutions and lattice-linear monomial ideals

Let R = k[x1, . . . , xn], write m = 〈x1, . . . , xn〉 for the unique graded maximal ideal of R and xa =
xa1

1 · · · xan
n for a monomial of R . We appeal to the standard Zn-grading (multigrading) of R and use

the notation of Section 2 for ordering in the partially ordered set Zn . We use the multidegree map
mdeg : R → Zn for which xa �→ a = (a1, . . . ,an) and identify the monomials in R with the n-tuples of
Nn ⊂ Zn .

Suppose that η : P → Nn is a map of partially ordered sets, and A is the set of atoms of P . Let N
be the ideal in R minimally generated by the monomials{

xη(a): a ∈ A
}
.

The sequence of vector spaces D(P ) constructed in Section 2 and associated to P may be homog-
enized using the map η to produce a sequence of free multigraded R-modules and multigraded
R-module homomorphisms which approximates a free resolution of the multigraded module R/N .

The homogenization of D(P ) is carried out by defining F0(η) = R ⊗k D0 and multigrading the
result with mdeg(xa ⊗ v) = a for each v ∈ D0. Similarly, for i � 1 set

Fi(η) =
⊕

0̂ �=λ∈P

Fi,λ(η) =
⊕

0̂ �=λ∈P

R ⊗k Di,λ

where the multigrading is defined as mdeg(xa ⊗ v) = a + η(λ) for each v ∈ Di,λ .
The differential in this sequence of multigraded modules is defined componentwise in homological

degree 1 as

∂1|F1,λ(η) = xη(λ) ⊗ ϕ1|D1,λ

and for i � 1, the map ∂i : Fi(η) → Fi−1(η) is defined as

∂i|Fi,α(η) =
∑
λ�α

∂
α,λ
i

where ∂
α,λ
i : Fi,α(η) → Fi−1,λ(η) takes the form ∂

α,λ
i = xη(α)−η(λ) ⊗ ϕα,λ

i for λ � α. We now have a
sequence of multigraded modules and maps

F (η) : · · · −→ Ft(η)
∂t−→ Ft−1(η) −→ · · · −→ F1(η)

∂1−→ F0(η),

and are in a position to make the following definition.

Definition 3.1. If F (η) is an acyclic complex of multigraded modules, then we say that it is a poset
resolution of the ideal N .

We now turn to the class of monomial ideals that are the focus of this paper. Recall that the
lcm-lattice associated to a monomial ideal N is the set LN of least common multiples of minimal
generators of N along with partial ordering given by divisibility. By definition, LN has minimum el-
ement 0̂ = 1 which is considered to be the least common multiple of the empty set. Recall that
monomials in R are identified with their degree in Nn and it is standard to consider LN ⊂ Nn . As an
immediate consequence of [3, Theorem 3.1a], if the ith multigraded Betti number βi,α(R/N) �= 0, then
α ∈ LN . In particular, this means that if Bi is any multihomogeneous basis of the free module Fi in
the minimal free resolution F of R/N then mdeg(v) ∈ LN for each v ∈ Bi .
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Definition 3.2. Let F be a minimal multigraded free resolution of R/N . We say that N is lattice-linear
if multigraded bases Bk of the free modules Fk can be fixed for all k so that for any i � 1 and any
v ∈ Bi the differential

∂F (v) =
∑

v ′∈Bi−1

mv,v ′ · v ′

has the property that if the coefficient mv,v ′ �= 0 then mdeg(v ′) � mdeg(v) ∈ LN .

We now state our main result.

Theorem 3.3. Define the map mdeg : LN → Nn by sending a monomial m ∈ LN to its multidegree mdeg(m) =
(α1, . . . ,αn) ∈ Nn. The monomial ideal N is lattice-linear if and only if F (mdeg) is its minimal free resolution.

We postpone the proof of Theorem 3.3 until Section 6, first giving examples of poset resolutions
and lattice-linear ideals in Section 4 and reformulating D(P ) in Section 5.

4. Examples of poset resolutions

Poset resolutions provide a general framework from which to view a variety of (minimal) resolu-
tions which have been previously constructed using disparate techniques which are each distinct from
the one presented herein.

For instance, the Taylor resolution [15] of an ideal minimally generated by the monomials
{m1, . . . ,mr} can be realized as a poset resolution where P = Br , the Boolean lattice. The map

η : Br → Nn

is defined on a lattice element I ⊆ {1, . . . , r} via I �→ mdeg(mI ), where mI = lcm(mi: i ∈ I). Although
generally nonminimal, this reinterpretation provides a poset resolution of an arbitrary monomial ideal.

If one considers a more restricted class of monomial ideals, and an appropriate poset, mini-
mal resolutions are also able to be constructed. Indeed, recall that a monomial ideal N is called
stable if for every monomial m ∈ N , the monomial m · xi/xd ∈ N for each 1 � i < d, where d =
max{k: xk divides m}. The class of stable monomial ideals, introduced in [5], is shown to admit a
minimal poset resolution in [4] using a poset of Eliahou–Kervaire admissible symbols.

We now turn to the poset whose structure is the main motivation for this paper, the lcm-lattice LN .
Theorem 3.3 establishes a minimal poset resolution for the class of lattice-linear ideals which contains
ideals with a linear free resolution, whose minimal free resolutions have been constructed in [10]
using tools from Discrete Morse Theory. Our methods allow us to provide a considerably simpler and
more transparent approach to constructing these minimal free resolutions.

Proposition 4.1. Every monomial ideal which has a linear minimal free resolution is a lattice-linear monomial
ideal.

Proof. Suppose that N is an ideal with linear resolution and aiming for a contradiction, that N is not
lattice-linear. Then there exists i > 0 and e ∈ Fi of degree α such that in the expansion of ∂F (e) the
element e′ ∈ Fi−1 has multidegree β which is not covered by α ∈ LN . Therefore, there exists γ ∈ LN

such that β < γ < α. However, since N has a linear resolution, deg(α) = deg(β)+ 1, and there can be
no multidegree γ which fits this criteria for comparability in LN . Hence, N is lattice-linear. �
Remark 4.2. As is the case with ideals having linear resolutions, the notion of lattice-linearity is
dependent upon the characteristic of the ground field k. For example, the ideal minimally generated
by the ten monomials
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〈x1x2x3, x1x3x5, x1x4x5, x2x3x4, x2x4x5,

x1x2x6, x1x4x6, x2x5x6, x3x4x6, x3x5x6〉

in R = k[x1, x2, x3, x4, x5, x6] which is the Stanley–Reisner ideal corresponding to a triangulation of
the projective plane is known to have a linear resolution if and only if char(k) �= 2. It is natural to
ask whether the lattice-linearity of the ideal is preserved when linearity is not, however this ideal is
lattice-linear if and only if char(k) �= 2.

For ideals whose resolution is not linear in any characteristic, it is natural to ask whether lattice-
linearity is preserved when the characteristic of k is changed. This is not the case, for the ideal
minimally generated by the ten monomials

〈
x1x2

2x3
3, x1x3

3x2
5, x1x3

4x2
5, x2

2x3
3x3

4, x2
2x3

4x2
5,

x1x2
2x6, x1x3

4x6, x2
2x2

5x6, x3
3x3

4x6, x3
3x2

5x6
〉

in R = k[x1, x2, x3, x4, x5, x6] is lattice-linear if and only if char(k) �= 2.

Remark 4.3. For a squarefree monomial ideal N , the linear strand of the minimal free resolution
of R/N has been completely described by Reiner and Welker in [13]. Their technique utilizes a Mayer–
Vietoris sequence in reduced homology applied to the links of faces in the Alexander dual simplicial
complex 	∗ associated to N . The connection between the technique of Reiner and Welker and the
one described in this paper is not obvious and is worthy of further study.

Lattice-linearity is also an appropriate generalization of another well-studied class of monomial
ideals. Recall from [1] the Scarf simplicial complex

	N = {
I ⊆ {1, . . . , r}: mI �= m J for all J ⊆ {1, . . . , r} other than I

}
,

where as in the Taylor resolution, mI = lcm(mi: i ∈ I). In fact, any face I ∈ 	N is uniquely determined
from mI as I = {i: mi < mI }. The ideal N is called a Scarf ideal if its minimal free resolution is
supported on the reduced simplicial chain complex of 	N . For instance, the so-called generic [1,11]
ideals are Scarf. Note that when N is Scarf, the differential in its minimal free resolution takes the
unique basis element eI labeled by the monomial mI to

|I|∑
j=1

(−1) j+1 mI

mI\{i j}
· eI\{i j}

where I = {i1, . . . , i|I|}.

Proposition 4.4. Every Scarf ideal is a lattice-linear monomial ideal. In particular, for η : P (	N ) → Nn where
I �→ mdeg(mI ), the complex F (η) is the minimal free resolution of R/N.

Proof. Suppose that N is a Scarf ideal, set LN as the lcm-lattice of N and let F denote the minimal
free resolution of R/N with differential ∂F . Fix a homological degree p > 0 and an I ⊆ {1, . . . , r}.
For every J ⊂ I , the monomial m J < mI in LN . Supposing that N is not lattice-linear, there exists
J = {i1, . . . , î j, . . . , ip} so that the coefficient of e J in the expansion of ∂F (eI ) is nonzero, and yet

m J is not covered by mI in the lattice LN . Thus, there exists m ∈ LN so that m J < m < mI . Since N is
Scarf, I and J are uniquely determined from mI and m J . By definition, m = lcm(mi1 , . . . ,mit ) for some
{i1, . . . , it} and it follows that J ⊂ {i1, . . . , it} ⊆ I = J ∪ {i j}. This forces {i1, . . . , it} = I and therefore,
m = mI , and m J � mI . Hence N is lattice-linear. �
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5. A reformulation of D(P )

The structure of the poset P affects directly the make-up of the sequence D(P ), which itself may
prove difficult to analyze. Specifically, the homology of the open intervals (0̂,α) and the precise ac-
tion of the maps ϕi may be difficult to calculate. As such, we consider another family of simplicial
complexes associated to P , which under appropriate assumptions can take the place of the simplicial
complexes 	α in the construction of D(P ). To do so, we recall the following well-studied combinato-
rial notions.

A set C ⊂ P is called a crosscut if it satisfies the following three properties; (i) C is an anti-chain,
(ii) for every finite chain σ in P there exists some element in C which is comparable to each element
in σ and (iii) if S ⊆ C is bounded in P , then either the join ∨S or the meet ∧S exists in P . For a
crosscut C , the crosscut simplicial complex Γ (P , C) is defined as the collection of all subsets of C which
are bounded in P . The connection between P and the crosscut complex Γ (P , C) is fundamental.

Theorem 5.1. (See [2, Crosscut Theorem].) The poset P and Γ (P , C) are homotopy equivalent.

To proceed, we assume that P is a finite poset and that its set of atoms A forms a crosscut, which
is the case when P is a lattice or geometric semilattice. The assumption that set of atoms A forms a
crosscut of P implies that Aα = {a ∈ A: a < α} also is a crosscut for the subposet (0̂,α) where α ∈ P .
In this case, the Crosscut Theorem applies not only to P but to the open intervals of the form (0̂,α)

which are in turn homotopy equivalent to Γ ((0̂,α), Aα), itself an atom crosscut complex.
The proof of Theorem 3.3, given in Section 6 utilizes this homotopy equivalence to analyze the

structure of D(LN ), the sequence of vector spaces based on the lcm-lattice of a monomial ideal N .

Remarks 5.2.

1. Björner’s proof of the Crosscut Theorem in [2] relies on an order-reversing map of posets. For
a poset P and its atom crosscut A, this map h : P (	(P )) → P (Γ (P , A)) is defined on a poset
element σ ∈ P (	(P )) as

σ �→ {
x ∈ A: σ ∈ 	(P�x)

}
where P�x = {y ∈ P : y � x}. The map h induces a simplicial map h : 	(P (	(P ))) →
	(P (Γ (P , A))) which is the desired homotopy equivalence.

2. The simplicial map h between the complexes 	(P (	(P ))) = sd(	(P )) and 	(P (Γ (P , A))) =
sd(Γ (P , A)) induces in the usual way a map between the complexes C̃(sd(	(P ))) and
C̃(sd(Γ (P , A))) which in turn induces a chain map

h� : C̃
(
sd

(
	(P )

)) → C̃
(
sd

(
Γ (P , A)

))
.

A homotopy equivalence f : 	(P ) → Γ (P , A) can therefore be defined on the level of chains as
f� = unsd� ◦ h� ◦ sd� where

C̃
(
	(P )

) sd�−→ C̃
(
sd

(
	(P )

)) h�−→ C̃
(
sd

(
Γ (P , A)

)) unsd�−→ C̃
(
Γ (P , A)

)
.

Here, unsd� is the chain map induced from the simplicial map unsd, which is defined by fixing a
total ordering ≺ on the set of atoms A and mapping a subset of atoms to its minimum element
under this ordering. Invoking the Algebraic Subdivision Theorem [12, Theorem 17.2], unsd� is a
chain map that is a homotopy inverse to the subdivision map sd : Γ (P , A) → sd(Γ (P , A)).
To wit, recall that St(v, K ), the star of a vertex v in a simplicial complex K , is the union of the
interiors of the simplices in K that have v as a vertex. Given a vertex A′ of sd(Γ (P , A)) then
viewing its minimum element a′ as a vertex of Γ (P , A) it follows that

St
(

A′, sd
(
Γ (P , A)

)) ⊂ St
(
a′,Γ (P , A)

)
.
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By [12, Lemma 15.1], it follows that unsd is a simplicial approximation to the identity, and there-
fore the Algebraic Subdivision Theorem applies.

3. Under barycentric subdivision, a face σ = {y0, . . . , yk} ∈ 	(P ) with y0 < · · · < yk ∈ P has image

sd�(σ ) =
∑

ρ∈Σk+1

ερ

{{yρ(k)}, {yρ(k−1), yρ(k)}, . . . , {yρ(0), . . . , yρ(k)}
}

(5.3)

where Σk+1 is the group of permutations on the set {0,1, . . . ,k} and ερ denotes the sign of the
permutation ρ . Applying h to the chain{{yρ(k)}, {yρ(k−1), yρ(k)}, . . . , {yρ(0), . . . , yρ(k)}

}
yields the face

{A yρ(k)
, A ymax(ρ(k),ρ(k−1))

, . . . , A ymax(ρ(k),...,ρ(0))
}.

Unless ρ is the identity of Σk+1, this face has dimension less than or equal to k − 1. It follows
that under the chain map h� , the sum in (5.3) has image

h�

(
sd�(σ )

) = {A yk , A yk−1 , . . . , A y0}. (5.4)

Considering the simplicial map unsd : sd(Γ (P , A)) → Γ (P , A), if ayt = ayt−1 for some 1 � t � k,
then the face

{ayk , . . . ,ay0} = unsd
({A yk , A yk−1 , . . . , A y0}

)
has dimension less than or equal to k. Thus,

unsd�

({A yk , A yk−1 , . . . , A y0}
) = 0

except when ayk ≺ ayk−1 ≺ · · · ≺ ay0 . Therefore,

f�(σ ) = unsd�

(
h�

(
sd�(σ )

)) =
{ {ayk , . . . ,ay0} when ayk ≺ · · · ≺ ay0 ,

0 otherwise.

With appropriate simplical background established, we have the following.

Proposition 5.5. Suppose that the set of atoms A forms a crosscut in the poset P . For α ∈ P and λ � α, the
canonical isomorphism on homology between H̃i−2(	α,k) and H̃i−2(Γ ((0̂,α), Aα),k) induced by the ho-
motopy equivalence between (0̂,α) and Γ ((0̂,α), Aα) allows the map ϕα,λ

i : Di,α → Di−1,λ to be interpreted
as the map between the vector spaces

φ
α,λ
i : H̃i−2

(
Γ

(
(0̂,α), Aα

)
,k

) → H̃i−3
(
Γ

(
(0̂, λ), Aλ

)
,k

)
described in (5.8).

The conclusion of this proposition leads immediately to the following.

Corollary 5.6. If the set of atoms A forms a crosscut in the poset P , then the sequence D(P ) has two equivalent
definitions; one which uses the family of order complexes {	α: α ∈ P } and one which uses the family of
crosscut complexes {Γ ((0̂,α), Aα): α ∈ P }.
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Proof of Proposition 5.5. We first describe for each α ∈ P , a simplicial decomposition of the atom
crosscut complex Γ ((0̂,α), Aα) similar to that which was performed on the order complex 	α . More
precisely, for λ ∈ P , let Gλ be the full simplex on {a ∈ A: a � λ}, the set of atoms which are compara-
ble to λ. For α ∈ P this allows the decomposition of the atom crosscut complex as

Γ
(
(0̂,α), Aα

) =
⋃
λ�α

Gλ.

Similar to Definition 2.1, for a fixed λ � α we set

Γα,λ = Gλ ∩
( ⋃

β�α
λ �=β

Gβ

)
.

Assuming that the atoms of P form a crosscut implies that the simplicial inclusion Γα,λ ⊆ Γ ((0̂, λ), A)

holds. This allows the crosscut complexes of open intervals of P to be analyzed using an appropriate
Mayer–Vietoris sequence.

Indeed, given λ � α, we consider the Mayer–Vietoris sequence in reduced homology for the triple(
Gλ,

⋃
λ �=β�α

Gβ,Γ
(
(0̂,α), Aα

))
.

Mirroring the definition of ϕ∗ , we set

ι : H̃i−3(Γα,λ,k) → H̃i−3
(
Γ

(
(0̂, λ), Aλ

)
,k

)
to be the map induced in homology by the inclusion map and

δ
α,λ
i−2 : H̃i−2

(
Γ

(
(0̂,α), Aα

)
,k

) → H̃i−3(Γα,λ,k)

to be the connecting homomorphism from the Mayer–Vietoris sequence. This homomorphism takes
the class [c] ∈ H̃i−2(Γ ((0̂,α), Aα),k) to the class [di−2(c′)] ∈ H̃i−3(Γα,λ,k) where c′ + c′′ = c ∈
Ci−2(Γ ((0̂,α), Aα),k), and c′ and c′′ are components of c that are supported by Gλ and by⋃

λ�=β�α Gμ respectively. Again, d is the usual simplicial boundary map.
Define

φ1 :
( ⊕

α∈A

H̃−1
(
Γ

(
(0̂,α), Aα

)
,k

)) → H̃−1
({∅},k)

componentwise as the identity map φ1|H̃−1(Γ ((0̂,α),Aα),k)
= idH̃−1({∅},k) . For i � 2 define

φi :
( ⊕

α∈P

H̃i−2
(
Γ

(
(0̂,α), Aα

)
,k

)) →
( ⊕

α∈P

H̃i−3
(
Γ

(
(0̂,α), Aα

)
,k

))

componentwise by

φi|H̃i−2(Γ ((0̂,α),Aα),k)
=

∑
φ

α,λ
i (5.7)
λ�α
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where

φ
α,λ
i : H̃i−2

(
Γ

(
(0̂,α), Aα

)
,k

) → H̃i−3
(
Γ

(
(0̂, λ), Aλ

)
,k

)
(5.8)

is the composition φ
α,λ
i = ι ◦ δ

α,λ
i−2.

Claim. For every β � α ∈ P and every i � 1 the map f induces canonically a commutative diagram

H̃i(	α,k)

ϕi

fi

H̃ i(Γ ((0̂,α), Aα),k)

φi

H̃ i−1(	β,k)
fi−1

H̃i−1(Γ ((0̂, β), Aβ),k)

where f∗ is an isomorphism in homology.

Proof of claim. Remark 5.2 implies that for each α and each σ ∈ 	(0̂,α] we have f�(σ ) ∈ C̃(Gα) and
therefore the horizontal maps in our diagram are well-defined homology isomorphisms induced from
a homotopy equivalence.

To prove commutativity, fix β � α, suppose that [π ] is a homology class in H̃i(	α) and write

π =
∑

dim(σ )=i

cσ · σ

=
∑

yσ
i �β

cσ · σ +
∑

yσ
i �β

cσ · σ , (5.9)

for a representative of this class where σ = {yσ
0 , . . . , yσ

i } is oriented by considering the chain yσ
0 <

· · · < yσ
i ∈ P and cσ ∈ k is a scalar. Applying the isomorphism f, we have

f
([π ]) = [

f�(π)
]

=
[ ∑

dim(σ )=i

cσ · f�(σ )

]

=
[ ∑

yσ
i �β

cσ · f�(σ ) +
∑

yσ
i �β

cσ · f�(σ )

]
.

Since the terms appearing in the first summand are faces in Gβ and the terms appearing in the second
summand are faces in ⋃

β �=γ �α

Gγ ,

then applying the map φi to [ f�(π)] yields

φi
(
f
([π ])) =

[ ∑
yσ �β

cσ · di ◦ f�(σ )

]
.

i
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On the other hand, taking [π ] ∈ H̃i(	α), and first applying the map ϕi , we obtain the homology
class

ϕi
([π ]) =

[ ∑
yσ

i �β

cσ · di(σ )

]
.

Utilizing the isomorphism f, we now have

f
(
ϕi

([π ])) =
[ ∑

yσ
i �β

cσ · f� ◦ di(σ )

]

=
[ ∑

yσ
i �β

cσ · di ◦ f�(σ )

]

= φi
([

f�(π)
])

so that commutativity is proved and the proposition follows. �
6. Proof of main theorem

We begin this section with the following general facts regarding notation. Any sequence S of
morphisms of free multigraded modules can be decomposed as

S =
⊕
α∈Zn

Sα

where each Sα is a sequence of maps of vector spaces, and is called the multigraded strand of S in
degree α. We denote by (Sα)i the ith component of the sequence Sα . Using the multigrading, it is
clear that

(mS)α =
∑
β�α

xα−β Sβ ⊂ Sα.

Further, we will identify xα−β Sβ with Sβ so that we may write Sβ ⊂ Sα for β � α. This allows us to
consider Sγ ⊂ Sα for all γ < α. In addition, we may now write

(mS)α =
∑
β�α

Sβ =
∑
γ <α

Sγ ⊂ Sα.

Proof of Theorem 3.3. It is clear that if F (η) is the minimal free resolution then N is lattice-linear.
It remains to show that lattice linearity implies that F (η) is a resolution of R/N . We remark that
since LN is a lattice, its set of atoms (the minimal generators of N) forms a crosscut, so that Theo-
rem 5.5 applies. We therefore utilize the homotopy equivalence between 	α and Γ ((0̂,α), Aα) and
Corollary 5.6 to proceed with the proof using this alternate formulation of D(LN ) for our computation
of F (η).

Suppose that N is a lattice-linear monomial ideal with minimal free resolution F and let Bi be
a basis for Fi as in Definition 3.2. With this choice of basis, let Fi,α be the free submodule of Fi
spanned by the set

Bi,α = {
v ∈ Bi: mdeg(v) = α

}
.
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Hence,

Fi =
⊕
α∈LN

Fi,α

and in particular

(Fα)i =
⊕
β�α

V i,β

where

V i,β = k〈v: v ∈ Bi,β〉
and xα−β V i,β is identified with V i,β .

Making use of T , the Taylor resolution of R/N , consider the exact sequence

0 −→
∑
β�α

Tβ −→ Tα −→ Tα

/ ∑
β�α

Tβ −→ 0. (6.1)

The exactness of the Taylor resolution implies that Tα is an exact complex of vector spaces for 0̂ �=
α ∈ LN . Indeed, Tα is acyclic with H0(Tα) ∼= (R/N)α and (R/N)α = 0 for xα ∈ N .

Passing from (6.1) to the long exact sequence in homology, the connecting homomorphism yields
an isomorphism

Hi

(
Tα

/ ∑
β�α

Tβ

)
μi>

∼=
Hi−1

( ∑
β�α

Tβ

)
,

which takes the class

[v] ∈ Hi

(
Tα

/ ∑
β�α

Tβ

)

to the class

[
∂T (v)

] ∈ Hi−1

( ∑
β�α

Tβ

)

whenever v is a cycle in Tα/
∑

β�α Tβ represented by an element v ∈ Tα .
Since F is the minimal free resolution of R/N , we make the identifications

(
Fα/(mF )α

)
i =

(
Fα

/ ∑
β�α

Fβ

)
i

= (Fα)i

/ ∑
β�α

(Fβ)i

=
⊕
β�α

V i,β

/ ⊕
β<α

V i,β

= V i,α.
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Fixing an embedding of F as a direct summand of T , we have T = F
⊕

E for some split exact
complex of multigraded free modules E , and in particular, Tα = Fα

⊕
Eα for every α. Since the

induced map of complexes

Fα

/ ∑
β�α

Fβ −→ Tα

/ ∑
β�α

Tβ

is a split inclusion and an isomorphism in homology, we consider V i,α as a subspace of the cycles
Zi(Tα/

∑
β�α Tβ) and obtain the canonical identification

Zi

(
Tα

/ ∑
β�α

Tβ

)
= V i,α ⊕ Bi

(
Tα

/ ∑
β�α

Tβ

)
.

Recalling the definitions of Γ ((0̂,α), Aα) and Γα,γ we see that∑
β�α

Tβ = C̃
(
Γ

(
(0̂,α), Aα

)
,k

)
and ∑

β�α
γ �=β

Tγ ∧β = C̃(Γα,γ ,k).

Using these identifications, we have the following diagram for each γ � α and each i � 2:

V i,α

incl

∂F ◦i
(
∑

β�α Fβ)i−1
projγ

V i−1,γ

incl

Zi(Tα/
∑

β�α Tβ)

proj

Zi−1(Tγ /
∑

ν�γ Tν)

proj

Hi(Tα/
∑

β�α Tβ)

μi ∼=

Hi−1(Tγ /
∑

ν�γ Tν)

μi−1∼=

Hi−1(
∑

β�α Tβ)
δ
α,γ
i−1 Hi−2(

∑
β�α
γ �=β

Tγ ∧β) ι
Hi−2(

∑
ν�γ Tν)

H̃i−2(Γ ((0̂,α), Aα),k)

δ
α,γ
i−1

H̃i−3(Γα,γ ,k)
ι

H̃i−3(Γ ((0̂, γ ), Aγ ),k)

(6.2)

We claim this diagram is commutative.
Let v ∈ V i,α so that by the assumption of lattice-linearity,

∂F (v) =
∑
β�α

vβ
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where each vβ ∈ V i−1,β . Canonically, incl(v) = v . Under projection, the cycle v is sent to its corre-
sponding class in homology, [v]. As mentioned above, the connecting map μi is an isomorphism,
and

μi
([v]) = [

∂T (v)
] = [

∂F (v)
] =

[ ∑
β�α

vβ

]
.

Applying δ
α,γ
i−1 , which is the connecting Mayer–Vietoris map,

δ
α,γ
i−1

([ ∑
β�α

vβ

])
= [

∂T (vγ )
]
.

Lastly, ι is the homological inclusion map and thus, ι([∂T (vγ )]) = [∂T (vγ )].
Again taking v ∈ V i,α , we appeal to the differential of F and obtain(

∂F ◦ i
)
(v) = ∂F (v) =

∑
β�α

vβ .

Projecting onto V i−1,γ , we have

projγ

( ∑
β�α

vβ

)
= vγ .

The inclusion map now gives incl(vγ ) = vγ , and passing this cycle to homology yields [vγ ]. Through
the isomorphism, μi−1([vγ ]) = [∂T (vγ )], completing the proof of the commutativity of the diagram.

We complete the proof of the theorem by establishing the connection between lattice linearity and
the poset construction.

For each i � 0 define the isomorphism of free R-modules ψi : Fi → F (η)i on a basis element
v ∈ Bi,α ⊂ Bi by applying the left column of (6.2), thus

ψi(v) = 1 ⊗ [
μi ◦ proj ◦ incl(v)

] = 1 ⊗ [
∂F (v)

] ∈ R ⊗ Gi,α ⊂ F (η)i .

By the commutativity of (6.2), we have a commutative diagram,

(F )i

ψi

∂F
(F )i−1

ψi−1

(F (η))i
di

(F (η))i−1

(6.3)

for every i � 2. Furthermore, (6.3) commutes trivially for i = 1. It follows that the sequences F and
F (η) are isomorphic, hence F (η) is the minimal free resolution of R/N . �
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Appendix A. A sufficient condition for D(P ) to be a complex1

We present with proofs two additional properties of the sequence D(P ) as constructed in Sec-
tion 2. These results provided the main motivation for our initial study of the sequence D(P ), however
they seem to not have any interesting direct consequences of their own. Thus rather than have them
in a separate paper, it is more appropriate to include them as an appendix here.

The first main result is the following:

Proposition A.1. If P is a ranked poset then D(P ) is a complex of vector spaces.

Before we proceed with the proof, we need to establish some additional notation. For the rest of
this Appendix A the letter P always denotes a ranked poset. We set 	

(0)
α = Dα = Dα(P ), and for j � 1,

we write

	
( j)
α =

⋃
γ <α

rk(γ )=rk(α)− j

	
(0)
γ .

Since 	
(0)
α is contractible, we have (and will tacitly use throughout this Appendix A) the canonical

identification

H̃i(	
(0)
α ,	

(1)
α ,k)

θi,α

= H̃i−1(	
(1)
α ,k) (A.2)

for every i given by the connecting map in the long exact sequence in relative homology. In particular,
the canonical decomposition of reduced chain complexes

C̃
(
	

( j)
α ,	

( j+1)
α ,k

) =
⊕
γ <α

rk(γ )=rk(α)− j

C̃
(
	

(0)
γ ,	

(1)
γ ,k

)

for each j gives rise to a decomposition on the level of reduced homology

H̃i
(
	

( j)
α ,	

( j+1)
α

) =
⊕
γ <α

rk(γ )=rk(α)− j

H̃ i
(
	

(0)
γ ,	

(1)
γ

) =
⊕
γ <α

rk(γ )=rk(α)− j

H̃ i−1
(
	

(1)
γ

)

which we refer to as reindexing.
We break the proof of Proposition A.1 into three lemmas.

Lemma A.3. We have ϕ1 ◦ ϕ2 = 0.

Proof. Suppose [w] ∈ H̃0(	
(1)
α ,k), with representative cycle w; so we have

w =
∑

λ∈(0̂,α)

cλ · {λ} with
∑

λ∈(0̂,α)

cλ = 0.

1 By Alexandre Tchernev, Department of Mathematics and Statistics, University at Albany SUNY, Albany, NY 12222, United
States, e-mail address: tchernev@math.albany.edu.
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Choosing a partition of (0̂,α) into a disjoint union

(0̂,α) =
⊔
β�α

Pβ (A.4)

of subsets Pβ such that for every λ ∈ Pβ one has λ � β , we get

w =
∑
β�α

wβ with wβ =
∑
λ∈Pβ

cλ · {λ}.

Therefore,

ϕ
α,β

2

([w]) = [
d(wβ)

] =
[ ∑

λ∈Pβ

cλ · {∅}
]

where d is the usual boundary map. Applying ϕ1, we obtain

ϕ1 ◦ ϕ2
([w]) =

∑
β�α

ϕ1 ◦ ϕ
α,β

2

([w]) =
∑
β�α

[ ∑
λ∈Pβ

cλ · {∅}
]

= 0,

which is the desired conclusion. �
The remaining two lemmas involve the maps μ and D from the canonical long exact sequence in

reduced homology

· · · → H̃i
(
	

(1)
α ,	

(3)
α ,k

) μ→ H̃i
(
	

(1)
α ,	

(2)
α ,k

) D→ H̃i−1
(
	

(2)
α ,	

(3)
α ,k

) → ·· · . (A.5)

Lemma A.6. For each i � 1 the diagram

H̃i(	
(1)
α ,	

(2)
α ,k)

reindex

D
H̃i−1(	

(2)
α ,	

(3)
α ,k)

reindex⊕
β�α H̃i−1(	

(1)
β ,k)

ϕi+1 ⊕
γ ��α H̃i−2(	

(1)
γ ,k)

is commutative. The notation γ � �α means γ < α and rk(γ ) = rk(α) − 2.

Proof. Suppose that [w] is a representative for the homology class generated by the image w in
C̃i(	

(1)
α ,	

(2)
α ) of the relative cycle

w =
∑

aσ
i �α

cσ · σ =
∑
β�α

wβ

of (	
(1)
α ,	

(2)
α ), where cσ ∈ k, each face σ = {aσ

0 , . . . ,aσ
i } is oriented by aσ

0 < · · · < aσ
i and wβ =∑

aσ
i =β cσ · σ . Since w is a relative cycle, we must have

∑
aσ =β

cσ · d(σ̂ ) = 0
i
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where σ̂ = {aσ
0 , . . . ,aσ

i−1} and d is the usual boundary map. Therefore, each wβ is a relative cycle for

(	
(0)
β ,	

(1)
β ) and reindexing [w] = ∑

β�α[wβ ] yields

∑
β�α

[
d(wβ)

] =
∑
β�α

[vβ ], where vβ = d(wβ) = (−1)i
∑

aσ
i =β

cσ · σ̂

is a cycle in 	
(0)
β . Next, choose for each β � α a partition

(0̂, β) =
⊔
γ �β

Pβ,γ

of (0̂, β) such that λ � γ for each λ ∈ Pβ,γ and write

vβ =
∑
γ �β

wβ,γ where wβ,γ = (−1)i
∑

aσ
i =β

aσ
i−1∈Pβ,γ

cσ · σ̂ .

Therefore for each δ < α with rk(δ) = rk(α) − 2 the component of ϕi+1(
∑

β�α[vβ ]) in H̃i−2(	
(1)
δ ,k)

is given by

∑
β: δ<β<α

ϕ
β,δ

i+1

([vβ ]) =
∑

β: δ�β�α

ϕ
β,δ

i+1

([ ∑
γ �β

wβ,γ

])
=

∑
β: δ�β�α

[
d(wβ,δ)

]
.

On the other hand, since vβ is a cycle, each wβ,γ is a relative cycle for (	
(2)
α ,	

(3)
α ). As D is the

connecting map in (A.6), we have

D
([w]) = [

d(w)
] =

[ ∑
β�α

vβ

]
=

∑
γ <α

rk(γ )=rk(α)−2

[ ∑
β: γ �β�α

wβ,γ

]

and reindexing yields

∑
γ <α

rk(γ )=rk(α)−2

[
d

( ∑
β:γ �β�α

wβ,γ

)]
.

Therefore, its component in H̃i−2(	
(1)
δ ,k) is equal to

[
d

( ∑
β: δ�β�α

wβ,δ

)]
=

∑
β: δ�β�α

[
d(wβ,δ)

]
,

which proves the desired commutativity of our diagram. �
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Lemma A.7. For each i � 1 the diagram

H̃i(	
(1)
α ,	

(3)
α ,k)

μ

H̃i(	
(1)
α ,	

(2)
α ,k)

reindex

H̃i(	
(1)
α ,k)

π

ϕi+2 ⊕
β�α H̃i−1(	

(1)
β ,k)

(A.8)

is commutative.

Proof. Suppose that [v] is a homology class in H̃i(	
(1)
α ,k) represented by the cycle

v =
∑

aσ
i <α

cσ · σ .

Under projection

π
([v]) = [

π(v)
] =

[ ∑
aσ

i <α

cσ · σ ′
]
,

where σ ′ = π(σ ) is the image of σ under the standard projection C̃(	
(1)
α ) → C̃(	

(1)
α ,	

(3)
α ). Applying

μ to π([v]) we have

μ
([

π(v)
]) =

[ ∑
aσ

i <α

cσ · σ̄
]

=
∑
β�α

[w̄β ],

where ¯ denotes images under the projection C̃(	
(1)
α ) → C̃(	

(1)
α ,	

(2)
α ) and

wβ =
∑

aσ
i ∈Pβ

cσ · σ

with Pβ is as in (A.4). Note that since v is a cycle, each wβ is forced to be a relative cycle. Now

reindexing yields
∑

β�α[d(wβ)] where clearly [d(wβ)] is the component in H̃i−1(	
(1)
β ,k). On the

other hand

ϕi+2
([v]) =

∑
β�α

ϕ
α,β

i+2

([v]) =
∑
β�α

[
d(wβ)

]
and commutativity follows. �
Proof of Proposition A.1. We show ϕi−1 ◦ ϕi = 0. Lemma A.3 establishes this for i = 2, and the com-
mutative diagrams of Lemmas A.6 and A.7 may be combined so that for i � 3 we have ϕi−1 ◦ ϕi =
(reindex) ◦ D ◦μ ◦π . Since D and μ are consecutive maps in an exact sequence, D ◦μ = 0. Therefore
ϕi−1 ◦ ϕi = 0 for each i which completes the proof that D(P ) is a complex. �

The general case can always be reduced to the case of a ranked poset because of our second main
result:
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Proposition A.9. Let Q be any finite poset with minimum 0̂. Then there is a rank preserving canonical embed-
ding Q ⊂ P , where P is a ranked poset with minimum 0̂ such that for every i � 0 and α ∈ P one has

Di,α(P ) =
{ Di,α(Q ) if α ∈ Q ,

0 otherwise.

In particular, Di(Q ) = Di(P ) for every i � 0.

Proof. The construction of the ranked poset P below is well known and is the standard way of
obtaining a ranked poset from Q while preserving rank. More precisely, for all β � α in Q with
rkP (α) − rkP (β) � 2, let

Pα,β = {
γ

α,β

i : 1 � i � rkP (α) − rkP (β) − 1
}

be a set of symbols, and let P be the disjoint union

P = Q
⊔( ⊔

β�α

Pα,β

)
.

The elements of P are ordered by describing their covering relations: the Hasse diagram of P is
obtained from the Hasse diagram of Q by breaking up each edge β �α into n edges β �γ

α,β

1 � · · · �
γ

α,β

n−1 � α where n = rkQ (α) − rkQ (β). It is clear that in this way P is canonically determined by Q
and rkQ (α) = rkP (α) for each α ∈ Q .

Since P can be obtained iteratively by breaking up one edge in two at a time, to prove the second
claim of the proposition it is enough to assume that only one additional poset element γ is added to
Q and β � γ � α in P for some β � α in Q .

We have

	γ (P ) =
⋃
ρ�γ

Dρ(P ) = Dβ(P ) = Dβ(Q )

since γ uniquely covers β by construction. Thus, 	γ (P ) is a cone with apex β and hence contractible.
Therefore, Di,γ (P ) = 0 for each i. Next, let δ ∈ Q . If δ � α then 	δ(P ) = 	δ(Q ) and so Di,δ(P ) =
Di,δ(Q ) for each i. Thus, it remains to consider the case δ � α. Let

Ω = St
(
	δ(P ), {α}) = Dβ(P ) ∗ 	

([α, δ)
) = Dβ(Q ) ∗ 	

([α, δ)
)
.

Thus 	δ(P ) = 	δ(Q ) ∪ Ω and Ω ∩ 	δ(Q ) = Dβ(Q ) ∗ 	([α, δ)) is a cone with apex β , hence con-
tractible. Since both Ω and Ω ∩ 	δ(Q ) are contractible we get the desired conclusion by considering
the Mayer–Vietoris sequence in reduced homology on the triple (	δ(Q ),Ω,	δ(P )). �
Remark A.10. Replacing the poset Q with the ranked poset P may result in different sequences D(Q )

and D(P ). Indeed, although the vector space components are identical by Proposition A.9, the maps
in the sequences are different in general. In particular, the maps present in D(P ) will in general have
more trivial components.
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