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Abstract

We return to the theme of generalized derivations related to symmetric functions to correct the hypothesis
of one of the main theorems of our first paper, so that all cases are now properly covered.
© 2006 Elsevier Inc. All rights reserved.
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1. Preliminaries

Let F be an arbitrary field of characteristic p. In [1] we estimated the cardinality of the range
of elementary symmetric polynomials defined on the Cartesian product of certain finite sets.
The statement of the main results of [1], Theorems 5 and 6 are not correct and needs an extra
constraint to guarantee the correctness of the proofs. We are going to present new versions of
those results with the new proofs. The wrong argument of the proofs in [1] concerns the existence
of ρt satisfying equalities (4) and (5) of [1].

� The research of the first author was done within the activities of the Centro de Estruturas Lineares e Combinatórias
and supported by project POCTI-ISFL-1-1431. The second author was partially supported by a grant from CNPq-Brazil.

∗ Corresponding author. Tel.: +351 21 750 0296; fax: +351 21 750 0072.
E-mail addresses: perdigao@hermite.cii.fc.ul.pt (J.A. Dias da Silva), hemar@unb.br (H. Godinho).

0024-3795/$ - see front matter ( 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2006.06.019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82155641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/laa
mailto:perdigao@hermite.cii.fc.ul.pt
mailto:hemar@unb.br


118 J.A. Dias da Silva, H. Godinho / Linear Algebra and its Applications 420 (2007) 117–123

We useQk,m to denote the subset of the strictly increasing maps from {1, . . . , k} into {1, . . . , m}.
We write sk(X1, . . . , Xm) to mean the elementary symmetric polynomial of degree k in the
indeterminates X1, . . . , Xm, i.e.

sk(X1, . . . , Xm) =
∑

ω∈Qk,m
Xω(1) · · ·Xω(k).

Let A1, . . . , Am be nonempty finite subsets of the field F. In [1] a lower bound was found for the
cardinality of the set

sk(A1, . . . , Am) :={sk(a1, . . . , am): (a1, . . . , am) ∈ A1 × · · · × Am}.
An answer for this problem was obtained after we translated it to the Linear Algebra setting

and studied the degree of the minimal polynomial of the linear operator sk(T1, . . . , Tm) defined
as follows:

Definition 1.1. Let Ti be a linear operator on a finite dimensional vector space Vi over F, i =
1, . . . , m. For ω ∈ Qk,m, let δω(T1, . . . , Tm) = S1 ⊗ · · · ⊗ Sm with Si = I if i �∈ Im(ω) and Si =
Ti if i ∈ Im(ω). The linear operator sk(T1, . . . , Tm) on V1 ⊗ · · · ⊗ Vm is defined as the sum of
the operators δω(T1, . . . , Tm)

sk(T1, . . . , Tm) :=
∑

ω∈Qk,m
δω(T1, . . . , Tm).

This linear operator is related with the elements

Dk,Z(X1, . . . , Xm) :=
∑

ω∈Qk,m
δω(X1 ⊗ · · · ⊗Xm)

of the Z-algebra Z[X1] ⊗ · · · ⊗ Z[Xm] and

Dk,F(X1, . . . , Xm) :=
∑

ω∈Qk,m
δω(X1 ⊗ · · · ⊗Xm)

of the F-algebra F[X1] ⊗ · · · ⊗ F[Xm]. To handle these elements we have to consider the basis
EZ of Z[X1] ⊗ · · · ⊗ Z[Xm] induced by the bases

{
X
j
i : j ∈ N0

}
, i = 1, . . . , m and the basis EF

of F[X1] ⊗ · · · ⊗ F[Xm] induced by the bases
{
X
j
i : j ∈ N0

}
, i = 1, . . . , m.

Terminology. Let A be a commutative ring with identity and M a free A-module. Let V be a
basis of M . Given m ∈ M

m =
∑
v∈V

avv

we call support of m on V to the subset of V

suppV(m) :={v ∈ V: av /= 0}.
Let v ∈ V. We say that v, V-occurs in m if v ∈ suppV(m).

The following results were proved in [1].

Theorem 1.2. The element Xs11 ⊗ · · · ⊗X
sm
m , EZ-occurs in Dk,Z(X1, . . . , Xm)

t if and only if
s1 + · · · + sk = kt and si � t , i = 1, . . . , m.
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Corollary 1.3. Let

Dk,Z(X1, . . . , Xm)
t =

∑
(s1,...,sm)∈Nm0
s1+···+sm=kt
si�t,i=1,...,m

C(s1,...,sm)X
s1
1 ⊗ · · · ⊗Xsmm

with C(s1,...,sn) ∈ N. Then

suppEF

(
Dk,F(X1, . . . , Xm)

t
) =

⎧⎨
⎩(s1, . . . , sm) :

s1 + · · · + sm = kt,

si � t, i = 1, . . . , m,
and p � |C(s1,...,sn)

⎫⎬
⎭ .

A partition ofN ∈ N is a decreasing sequence of nonnegative integers whose terms sum up to
N . We identify partitions that differ only by a string of zeros. Using this identification we represent
(when convenient) any partition by a N -tuple. We use the notation a(h) for the finite sequence of
length h with all terms equal a, i.e. a(h) := (a, . . . , a)︸ ︷︷ ︸

h times

. To each partition λ = (λ1, . . . , λt ) of N

we associate a Young diagram [λ] withN boxes arranged in t left justified rows with row i having
λi boxes, i = 1, . . . , t . For example the partition (3, 2, 2, 1) has Young diagram

[λ] =

Let λ = (λ1, . . . , λN) be a partition ofN . For j ∈ N define λ̃j to be the cardinality of {i: λi �
j}. Then the sequence λ̃ = (λ̃1, . . . , λ̃N ) is a partition of N called the conjugate partition of λ.
It is easy to see that λ̃j is the number of boxes of the j th column of [λ]. Counting, by rows, the
boxes of the first t columns of [λ] we get that for t ∈ N

λ̃1 + · · · + λ̃t = number of boxes in the first t columns of [λ]
= min{λ1, t} + · · · + min{λN, t}. (1.1)

Given two partitions of N , ρ = (ρ1, . . . , ρN) and γ = (γ1, . . . , γN) we say that ρ dominates
γ and we write ρ � γ if

ρ1 + · · · + ρi � γ1 + · · · + γi, i = 1, . . . , N.

2. Correcting the main result

Let V be a finite dimensional vector space over F and let T be a linear operator on V . Let
d = deg(PT ), wherePT denotes the minimal polynomial ofT . It is well known that {I, T , T 2, . . . ,

T d−1} is a basis of the cyclic F-subalgebra of L(V, V ) generated by {T }. We write 〈T 〉 to denote
this cyclic subalgebra.

Let li = deg(PTi ), i = 1, . . . , m. The set

B = {
T
e1
1 ⊗ · · · ⊗ T emm : 0 � ej � lj − 1 for j = 1, 2, . . . , m

}
is the basis of 〈T1〉 ⊗ 〈T2〉 ⊗ · · · ⊗ 〈Tm〉 induced by the bases

{
I, Ti, . . . , T

li−1
i

}
, i = 1, . . . , m.
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If ψi the evaluation map f (Xi) → f (Ti) from F[Xi] into 〈Ti〉, then

sk(T1, . . . , Tm)
t = ψ1 ⊗ · · · ⊗ ψm

(
Dk,F(X1, . . . , Xm)

t
)

=
∑

(s1,...,sm)∈suppEF
(Dk,F(X1,...,Xm)

t )

C(s1,...,sm)T
s1
1 ⊗ · · · ⊗ T smm . (2.1)

Notation. Given m positive integers a1, . . . , am we write �(k, a1, . . . , am) to denote the integer

�(k, a1, . . . , am) :=
⌊
a1 + · · · + am −m

k

⌋
+ 1

and r(k, a1, . . . , am) to denote the integer

r(k, a1, . . . , am) := (a1 + · · · + am −m)− (�(k, a1, . . . , am)− 1)k.

From now on assume l1 � · · · � lm � 1, � = �(k, l1, . . . , lm), r = r(k, l1, . . . , lm) and write λ =
(λ1, . . . , λm) = (l1 − 1, l2 − 1, . . . , lm − 1).

For 0 � t � �− 1, set

l′i := min{t + 1, li}, i = 1, . . . , m. (2.2)

For t = 1, . . . , �− 1 let

Et =
{
j ∈ {1, . . . , m}: (l′1 − 1)+ · · · + (l′j − 1) � kt

}
.

Proposition 2.1. Let � = �(k, l1, . . . , lm) and r = r(k, l1, . . . , lm). The set Et is a nonempty
subset of {1, . . . , m} for every t ∈ {1, . . . , �− 1} if and only if

(l1 − 1, . . . , lm − 1) �
(
�+ r − 1, (�− 1)(k−1)

)
.

Proof. Assuming that λ = (l1 − 1, . . . , lm − 1) � (
�+ r − 1, (�− 1)(k−1)

)
, we are going to

prove that m ∈ Et . From this hypothesis it follows that

λ̃ = (λ̃1, . . . , λ̃m) �
(
k(l−1), 1(r)

)
. (2.3)

Then for t = 1, . . . , �− 1

λ̃1 + · · · + λ̃t � kt.

Using (1.1) we have for, 1 � t � �− 1,

min{(l1 − 1), t} + · · · + min{(lm − 1), t} � kt.

Now using the definition of l′i we rewrite the former inequality as follows:
m∑
i=1

(l′i − 1) � kt.

Therefore, m ∈ Et .
Conversely assume that for t ∈ {1, . . . , �− 1}, Et /= ∅. Then,

m∑
i=1

(l′i − 1) � kt, t = 1, . . . , �− 1.
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Again, using Eqs. (1.1) and (2.2), we get

min{(l1 − 1), t} + · · · + min{(lm − 1), t} � kt.

Then

λ̃1 + · · · + λ̃t � kt, t = 1, . . . , �− 1. (2.4)

Since (1r ) is the minimum of the partitions of r by the order of domination, we get from (2.4)

(λ̃1, . . . , λ̃m) �
(
k(�−1), 1(r)

)
.

Now

(l1 − 1, . . . , lm − 1) �
(
�+ r − 1, (�− 1)(k−1)

)
follows, by conjugation. �

In [1] the following is proved:

Lemma 2.2. If T s11 ⊗ · · · ⊗ T
sm
m satisfies the conditions

(i) s1 + · · · + sm = kt;
(ii) si � min{li − 1, t}, i = 1, . . . , m;

(iii) p � |C(s1,...,sm),

then T s11 ⊗ · · · ⊗ T
sm
m ∈ B and it B-occurs in (sk(T1, . . . , Tm))

t .

Until the end of this section let � = �(k, l1, . . . , lm), and r = r(k, l1, . . . , lm).
The next lemma shows that under the constraints listed in Proposition 2.1 there is a m-tuple

(s1, . . . , sm) satisfying requirements conditions (i) and (ii) presented in the lemma above.

Lemma 2.3. Assume that ((l1 − 1), . . . , (lm − 1)) � (
�+ r − 1, (�− 1)(k−1)

)
. Then for every

t ∈ {1, . . . , �− 1} there exists θt ∈ Nm
0 satisfying conditions (i) and (ii) of Lemma 2.2.

Proof. For any t ∈ {1, . . . , �− 1} let ρt = minEt . Define for i = 1, . . . , m and t = 0, . . . , �− 1

θt,i =
⎧⎨
⎩
l′i − 1 if 1 � i � ρt − 1;
kt − (l′1 + · · · + l′ρt−1 − (ρt − 1)) if i = ρt ;
0 if i > ρt .

Then

(i) θt,1 + · · · + θt,m = kt;
(ii) θt,i � l′i − 1 = min{li − 1, t}, i = 1, . . . , �− 1. �

Denote by θt (k, l1, . . . , lm) (briefly by θt ) the mapping constructed by the procedure described
in the proof of the previous lemma.

Theorem 2.4. Assume that ((l1 − 1), . . . , (lm − 1)) � (
�+ r − 1, (�− 1)(k−1)

)
. Let 0 � s �

�− 1. If p does not divide Cθt for t = 1, . . . , s then the degree of the minimal polynomial of
sk(T1, . . . , Tm) is greater than or equal to s + 1.
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Proof. Bearing in mind Lemmas 2.2 and 2.3 we see, since p does not divide Cθt for every
t ∈ {1, . . . , �− 1}, that θt ∈ suppB

(
sk(T1, . . . , Tm)

t
)
. On the other hand from Corollary 1.3 and

equality (2.1) we conclude that θt �∈ suppB
(
sk(T1, . . . , Tm)

t−1
)
. Then

θt ∈ suppB
(
sk(T1, . . . , Tm)

t
) \suppB

(
sk(T1, . . . , Tm)

t−1
)
.

One can easily see that this implies that

I, sk(T1, . . . , Tm), . . . , sk(T1, . . . , Tm)
s

are linearly independent linear operators of V1 ⊗ · · · ⊗ Vm. Therefore,

deg(Psk(T1,...,Tm)) � s + 1. �

Corollary 2.5. Assume that ((l1 − 1), . . . , (lm − 1)) � (
�+ r − 1, (�− 1)(k−1)

)
. If either F is

of characteristic zero or p is big enough then

degPsk(T1,...,Tm) �
⌊

deg(PT1)+ · · · + deg(PTm)−m

k

⌋
+ 1.

Corollary 2.6. Assume that either F is of characteristic zero or p is big enough. If T be a linear
operator on a nonzero finite dimensional vector space V over F then

deg
(
Psk(T ,...,T )

)
�

⌊
m(deg(PT )− 1)

k

⌋
+ 1.

3. Additive theory results

Throughout this section k,m are positive integers with k � m. Let A1, . . . , Am be finite
nonempty subsets of a field F and suppose, without loss of generality, that

|A1| � |A2| � · · · � |Am|.
Let � = �(k, |A1|, . . . , |Am|), r = r(k, |A1|, . . . , |Am|) and let θt = θt (k, |A1|, . . . , |Am|). Using
the arguments of the proof of Theorem 4.6 of [1] we obtain from Theorem 2.4 the following result:

Theorem 3.1. Assume that p does not divide Cθt , t = 1, . . . , �− 1, and

(|A1| − 1, . . . , |Am| − 1) �
(
�+ r − 1, (�− 1)(k−1)

)
.

Then

|sk(A1, . . . , Am)| �
⌊ |A1| + |A2| + · · · + |Am| −m

k

⌋
+ 1.

Corollary 3.2. Assume that ((|A1| − 1), . . . , (|Am| − 1)) � (
�+ r − 1, (�− 1)(k−1)

)
. If either

F is of characteristic zero or p is big enough then

|sk(A1, . . . , Am)| �
⌊ |A1| + |A2| + · · · + |Am| −m

k

⌋
+ 1.
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Corollary 3.3. Assume that either F is of characteristic zero or p is big enough.
If A be a finite nonempty subset of F. Then

|sk(A, . . . , A)| �
⌊
m(|A| − 1)

k

⌋
+ 1.
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