Some results on generators of ideals

Shiv Datt Kumara, Satya Mandalb,∗

aDepartment of Mathematics, Government Post Graduate College, Ramnagar, Nainital, India
bDepartment of Mathematics, University of Kansas, Lawrence, KS 66045, USA

Received 31 October 2000; received in revised form 28 March 2001
Communicated by A.V. Geramita

Abstract

We prove some results on projective generation of ideals. © 2002 Elsevier Science B.V. All rights reserved.

MSC: 13C10

1. Introduction

In [1], Mandal proved the following theorem:

Theorem 1.1. Let $R = A[X]$ be a polynomial ring over a noetherian commutative ring A. Let I be an ideal in R that contains a monic polynomial and $\mu(I/I^2) = r \geq \dim(R/I) + 2$. Then I is also generated by r elements.

It is natural to ask whether we can extend generators of $I(0) = \{ f(0) : f \in I \}$ to generators of I. One of our results (Theorem 3.2) deals with this question in the semilocal case.

Besides, we also prove the Laurent polynomial analogue of Nori’s Homotopy Conjecture as follows:

Theorem 1.2. Let $R = A[X,X^{-1}]$ be a Laurent polynomial ring over a noetherian commutative ring A. Let I be an ideal in R that contains a doubly monic polynomial and
Let $R = \mathbb{A}[X, X^{-1}]$ be a Laurent polynomial ring over a noetherian commutative ring \mathbb{A}. Let I be an ideal in R that contains a doubly monic polynomial and P be a projective \mathbb{A}-module of rank $r \geq \dim (R/I) + 2$. Write $I(1) = \{ f(1) : f \in I \}$ let $s : P \rightarrow I(1)$ and $\phi : P[X, X^{-1}] \rightarrow I/I^2$ be two surjective maps such that

$$\phi \equiv s \text{ (modulo } (X - 1, I(1)^2))\).$$

Then there is a surjective map $\psi : P[X, X^{-1}] \rightarrow I$, such that ψ lifts ϕ and that $\psi(1) = s$.

This theorem is the Laurent polynomial analogue of the corresponding theorem [2] that was proved for ideals in polynomial rings.

In this paper, all rings we consider are noetherian and commutative. For a ring \mathbb{A} and an \mathbb{A}-module M, the minimal number of generators of M will be denoted by $\mu(M)$. Also recall, a Laurent polynomial f in $\mathbb{A}[X, X^{-1}]$ is said to be a doubly monic if the coefficients of the highest and the lowest degree terms are units.

2. Preliminaries

Lemma 2.1. Let $R = \mathbb{A}[X, X^{-1}]$ be a Laurent polynomial ring over a noetherian commutative ring \mathbb{A}. Let I be an ideal in R and P be a projective \mathbb{A}-module. Write $I(1) = \{ g(1) : g \in I \}$. Let $s : P[X, X^{-1}] \rightarrow I(1)$ and $\phi : P[X, X^{-1}] \rightarrow I/I^2$ be two surjective maps such that

$$\phi \equiv s \text{ (modulo } (X - 1, I(1)^2))\).$$

Then, there is a map $\phi_1 : P[X, X^{-1}] \rightarrow I$ into I that is a lift of ϕ and that $\phi_1(1) = s$.

Proof. Let $F : P[X, X^{-1}] \rightarrow I$ be any lift of ϕ. Since $\text{Hom}(P[X, X^{-1}], \mathbb{A}[X, X^{-1}]) = \text{Hom}(P, \mathbb{A}) \otimes \mathbb{A}[X, X^{-1}]$ we have $F = (F_0 + F_1 X + \cdots + F_m)X^k$ where, $F_i \in \text{Hom}(P, \mathbb{A})$ and k is an integer. Since, $F(1) \equiv s \text{ (modulo } I(1)^2\)), we have $F(1) - s \in I(1)^2 \text{Hom}(P, \mathbb{A})$. Therefore, $F(1) - s = f_1(1)g_1(1)\lambda_1 + \cdots + f_r(1)g_r(1)\lambda_r$ for some $f_1, \ldots, f_r, g_1, \ldots, g_r$ in I and $\lambda_1, \ldots, \lambda_r$ in $\text{Hom}(P, \mathbb{A})$. Write

$$\phi_1 = F - (f_1g_1\lambda_1 + \cdots + f_rg_r\lambda_r).$$

Then $\phi_1(1) = F(1) - (F(1) - s) = s$ and λ is a lift of ϕ. \qed

3. Main theorems

Theorem 3.1. Let $R = \mathbb{A}[X, X^{-1}]$ be a Laurent polynomial ring over a noetherian commutative ring \mathbb{A}. Let I be an ideal in R that contains a doubly monic polynomial and...
P be projective A-module of rank $r \geq \dim(R/I) + 2$. Write $I(1) = \{f(1) : f \in I\}$ let

$$s : P \to I(1) \quad \text{and} \quad \phi : P[X,X^{-1}] \to I/I^2$$

be two surjective maps such that

$$\phi \equiv s(\text{modulo}(X - 1,I(1)^2)).$$

Then there is a surjective map $\psi : P[X,X^{-1}] \to I$ such that ψ lifts ϕ and that $\psi(1) = s$.

Proof. Write $J = I \cap A[X]$. Then we have $I(1) = \{f(1) : f \in J\} = J(1)$. Also since I contains a doubly monic polynomial, J contains a special monic polynomial (i.e. a monic polynomial with constant term 1).

We can find a lift $\phi_1 : P[X,X^{-1}] \to I$ of ϕ such that $\phi_1(1) = s$. Since $\text{Hom}(P[X,X^{-1}], \ A[X,X^{-1}]) = \text{Hom}(P,A) \otimes \ A[X,X^{-1}]$, we have $\phi_1 = \phi_2/X^k$ where $\phi_2 \in \text{Hom}(P[X],A[X])$ and k is a positive integer. It follows that ϕ_2 maps into J and $\phi_2(1) = s$.

Let $F = o\phi_2$ where $o : J \to J/J^2$ is then natural map. Then, $F \equiv s(\text{modulo}(X - 1,I(1)^2))$. Let g be a special monic in J. Since $F_X = \phi$ and since $(J/J^2)_g = 0$ we have F is a surjective map. So, by the theorem of Mandal [2] there is a surjective $A[X]$-linear map $\psi : P[X] \to J$ that lifts F and $F(1) = s$. Now if $\chi = \psi_k$ then $\chi : P[X,X^{-1}] \to I$ is a surjective $A[X,X^{-1}]$-linear map that lifts ϕ and $\chi(1) = s$. This completes the proof of the theorem. □

Lemma 3.1. Let A be semilocal ring and I be an ideal in A. Then $\mu(I) = \mu(I/I^2)$.

Proof. Let $I = (f_1, \ldots, f_r) + I^2$. Let m_1, \ldots, m_k be the maximal ideals that do not contain I. We can assume that f_1 is in m_1, \ldots, m_l and not in m_{l+1}, \ldots, m_k. Choose

$$g \in I^2 \cap (m_1 \cap \ldots \cap m_k) \setminus (m_1 \cup \ldots \cup m_l).$$

Write $F_1 = f_1 + g$. Then F_1 does not belong to m_1, \ldots, m_k. It follows $I = (F_1, f_2, \ldots, f_r)$. □

Theorem 3.2. Let A be a semilocal commutative noetherian ring and I be an ideal in $R = A[X]$ that contains a monic polynomial and $\mu(I/I^2) = r$. Let $I_0 = \{f(0) : f \in I\} \subseteq \text{rad}(A)$ be a complete intersection ideal of height r or $I_0 = A$. Let $I_0 = (a_1, \ldots, a_r)$ be generated by a_1, \ldots, a_r. Then $I = (f_1, f_2, \ldots, f_r)$ where $f_1(0) = a_1, f_2(0) = a_2, \ldots, f_r(0) = a_r$.

Proof. Let $I = (f_1, f_2, \ldots, f_n) + I^2$. We can assume that f_1 is a monic polynomial. Now $I' = I/(f_1)$ is an ideal in $R' = A[X]/(f_1)$. Since R' is a semilocal ring and $\mu(I'/I'^2) = r - 1$, it follows from the lemma that I' is generated by $r - 1$ elements. So, after modifying the generators of I we have $I = (f_1, \ldots, f_r)$ for some f_2, \ldots, f_r. □
Let $f_1(0) = b_1, \ldots, f_r(0) = b_r$. So, we have $I_0 = (b_1, b_2, \ldots, b_r)$. So, we have

$$
\begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_r
\end{pmatrix} =
\begin{pmatrix}
\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1r} \\
\alpha_{21} & \alpha_{22} & \cdots & \alpha_{2r} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{r1} & \alpha_{r2} & \cdots & \alpha_{rr}
\end{pmatrix}
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_r
\end{pmatrix}.
$$

Let $A = (a_{ij})$ denote the above matrix. First, assume that $I_0 \subseteq \text{rad}(A)$. Let “bar” denote “modulo I_0”. Since $\bar{a}_1, \bar{a}_2, \ldots, \bar{a}_r$ and also $\bar{b}_1, \bar{b}_2, \ldots, \bar{b}_r$ are both free generators of I_0/I_0^2, it follows that $\det(A)$ is unit and hence $\det(A)$ is also a unit. So, A is an invertible matrix in this case. When $I_0 = A$, since A is semilocal, we can choose A as an invertible matrix.

Now let

$$
\begin{pmatrix}
F_1 \\
F_2 \\
\vdots \\
F_r
\end{pmatrix} =
\begin{pmatrix}
\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1r} \\
\alpha_{21} & \alpha_{22} & \cdots & \alpha_{2r} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{r1} & \alpha_{r2} & \cdots & \alpha_{rr}
\end{pmatrix}
\begin{pmatrix}
f_1 \\
f_2 \\
\vdots \\
f_r
\end{pmatrix}.
$$

So, we have $I = (F_1, F_2, \ldots, F_r)$ and $F_1(0) = a_1, F_2(0) = a_2, \ldots, F_r(0) = a_r$. □

References