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IN MEMORY OF S. RAMANUJAN 

In this paper, we discuss various equivalent formulations for the sum of an 
infinite series considered by S. Ramanujan. In the process, we also evaluate, in 
closed form. various classes of related infinite series. c’ 1987 Academic Press, Inc. 

1. INTRODUCTION 

In Chapter 9, Volume 2 of his notebooks, Ramanujan (cf. [19, for- 
mula (11.3)] stated that 

G(l+fiz;ii( 1 1+;+ ... +A ) 

7c m (-1)’ 

=Z,C, (4r+ 1j3 
-- 

3 >rzo CL+-+ 1j3’ f. l (1.1) 

Recently, Berndt and Joshi (cf. [3, p. 31]), while editing this chapter, 
observed that this formula is incorrect; in fact, on taking the first three 
terms of the series defining G(l), they found that G( 1) > 0.1529320988... 
whereas the extreme right of (1.1) is less than 0.1442780636. 

In an attempt to obtain a corrected version of this formula, we are led to 
consider the following 12 classes of infinite series: 

H,(s)=.L”r-“k-l, 

Hz(s)=C’r-“(k+r)p’, 

H3(.s)=Z” r-“k-l, 
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where Z’ ad C” respectively denote 

and s denotes a complex number with Re s > 1 in H, (s) through H,(s) and 
Res > 0 in H,(s) through H,, (3). 

It may be noted that it is possible to shorten the above notation as 
follows: For i, j E { 0, 1 }, let 

H’,“j)(s)=C’(-l)‘(‘-l)r-“(-l)j(k~l)~-l, 

H~i)(s)=~C’(-l)~(~-‘~r-~(-l)j(~~l)(r+~)-l, 

Hy)(s) = ,y (- 1) ~(r~l)~--s(_l)j(li~l)k-l. 

Then we note that for i, j E (0, 1) and k E { 1,2,3} 

H6i+3j+k(~)= HP+). 

Some of these infinite series have been studied, for positive integer values 
of s, by several authors and we refer to Euler [7, 81, Nielsen [ 181, 
Ramanujan [19], Rutledge and Douglass [20], Klamkin [13, 143, 
Williams [27], Briggs, Chowla, Kempner, and Mientka [4], Lehner and 
Newman [ 151, Gupta [lo], Jordan [ 111, Kanemitsu [ 121, the author 
and Sivaramasarma [21, 221, Sivaramasarma [25], the author and Sub- 
barao [23,24], Bruckman [S], Georghiou and Philippou [9], Dixon and 
O’Cinneide [6], Matsuoka [17] and Apostol and Vu [2]. 

In Section 2 of this paper, we prove several relationships between H,(s) 
through H,,(s). In Section 3, we discuss the evaluation of each of these 
infinite series for certain positive integer values of s. In particular, we give a 



A FORMULA OF S. RAMANUJAN 3 

new proof of the following identity due to Nielsen [18] which apparently 
goes back to Euler (cf. [ 18, footnotes on p. 473): For integral s z 2, 

s-2 

2H,(s)=(s+2)i(s+l)- 1 [(s-i)i(i+l) 
i= 1 

where i(s) denotes the Riemann zeta function defined by i(s) = C,“= L n -’ 
in Re s > 1 and its analytic continuation in Re s > 0. This result and certain 
of its special cases were rediscovered by several authors (See Remark 3.1). 
We also evaluate, in closed form, H, (26) H, (26), H,(s), H,(26), H,,(2h), 
and H,, (26) where s 3 2 and b 2 1 are integers. We believe that all these 
results are new. 

Our results of Section 3 give, in particular, the values of H, (2), H,(2), 
H,(2), H4(2), H6(2), ff7(2), ff,,(2), and H,, (2) explicitly in terms of c(2) 
and l(3). In Section 4, we complete this list by evaluating H,(2), H,(2), 
H,(2), and H,,(2). These evaluations also involve Catalan’s constant (see 
(4.13)). 

In Section 5 we prove that 

W)=&W)+$H,P) 

= -&1(4)+$H,(3) 

=&,1(4)+$H,(3) 

=&j[(4)-tH,(3) 

= i% C(4) + A C(3) log 2 - $ H,, (3) 

=&1(4)-i& 

and 

G(1)=0.16227. 

We also note that 

(1% 2 J4 = -~~(4)+~i(3)log2-~(log2)“+~+Li,(l/*). 

In the above A, is the constant defined by (cf. [20, p. 301) 

A 
4 (1.2) 
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and Li4(z) is the polylogarithm of order 4 defined by [ 161 

L&(z)= f ;, IZI Q 1. 
n=l 

Unfortunately, we could not evaluate, in closed form, any one of H,(3), 
H,(3), H,(3), H,(3), N,,(3), H,,(3), A,, and LL+($). 

2. RELATIONSHIPS BETWEEN H,(s) THROUGH H,,(s) 

We write b(s) = C,“= 1 ( - l)“- In-” for Res>O so that ~(s)=(1-2’~~) 
c(s) for all s in Res>O, s# 1 and a(l)=log2. 

The following Lemma is basic to our work. 

LEMMA 2.1. For Re s > 1, we have 

H,(s) + H2(S) = H,(s) + 5 [(s + I), (2.1) 

H, (3) + H,(s) = H,(s) + 5 a(s + 1 ), (2.2) 

H6(S)+H,,(S)=H4(S)+ti(S+ 1). (2.3) 

HS(S) + ff,*(S) = ff,,(s) + 4 4s + 11, (2.4) 

H,(s)-H,(s)=2’~“H,(s)+2~-“i(s+ I), (2.5) 

H6b) = H,(s) + $ its + 11, (2.6) 

H,,(s) = H,(s) + i a(s + 1 ), (2.7) 

ff,(s) + ff8b) = ff,,(sh (2.8) 

ff:(s)+ff,,(s)=H,(s). (2.9) 

Proof The results (2.1) through (2.5) follow directly from the 
definitions and the results (2.6) through (2.9) follow from the easily proved 
identity 

*zl(-l)*P’= i 1 1 

k=l k k=,r+k+s’ 

3. EVALUATION OF H,(.S)THROUGH H12(~)~o~ CERTAIN VALUES OF s 

Throughout this section, a 2 2 and b B 1 denote integers and 
[(s)=(2”- 1) i(s) for Res> 1. 
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Remark 3.1. Theorem 3.1 has a long history and evidently Euler (cf. 
[7] and [S], p. 228) was the first to discover it in case a = 2. Nielsen (cf. 
[ 18, pp. 37-511) developed a systematic method of proving Theorem 3.1 
and several related results. In case a = 2, Theorem 3.1 was rediscovered by 
Ramanujan (cf. [19, Chap. 9, entry 93; [3, p. 251) Briggs et al. [4]. 
Klamkin [ 131, and Bruckman [S]. Theorem 3.1 in case a = 3 was 
rediscovered in a slightly different form, by Rutledge and Douglass [20] 
(who ascribe to F. T. Morley and whose paper is not available to the 
author) and it also appears as a problem proposed by Klamkin [14]. In 
1953, Williams [27] and in 1983, Georghiou and Philippou [9] 
rediscovered Theorem 3.1 and in 1979, the author and Sivaramasarma 
[21] gave a new proof based on Apostol’s extension of a transformation 
formula due to Lehner and Newman (cf. [ 1, p. Ill]). Also the author and 
Sivaramasarma [21] obtained a result equivalent to Theorem 3.1. Mat- 
suoka [ 171 and Apostol and Vu [2] independently discussed the nature of 
the analytic continuation of H,(s). In addition to this, Apostol and Vu’s 
paper [2] contains several interesting and related results. Finally certain 
power series associated with the series defining H, (s) were investigated by 
Ramanujan (cf. [ 19, Chap. 91) and for proofs of these assertions we refer 
to Berndt and Joshi (cf. [3, pp. 25-351). 

Proof of Theorem 3.1. We give yet another proof based on 

LEMMA 3.1. Let C,“=, f (r) and Cp=, g(k) be two absolutely convergent 
series of complex terms. Then 

r@9,$, s(k)+ f g(r) i f(k) 
r=l k=l 

= (T, f(r))(E, g(k)) +T, f(r) g(r). 
In particular, if for complex u, v with Re u > 1, Re v > 1 

R(u,v)= f 
1 

r,k=l r”(r+kY 

then 

P(u, v)+P(v, ~)=~(u)uv)+~(~+v) 

Nu, v) + WV, u) = i(u) i(v) - 4lu + 0). 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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Proof. Since C,“=, f(r) and Cp= 1 g(k) converge absolutely, we have 

- f )f(d g(k) 
r.k = 1 

k<r r<k r=k 

from which (3.1) follows. 
On taking f(r) = r-’ and g(k) = k-” in (3.1), we obtain (3.4). Further, 

since 

PC& 0) + R(u, u) = i(u) i(u), 

(3.4) and (3.5) are in fact equivalent. 
Now to prove Theorem 3.1, we write S, = 1 + l/2 + . . . + l/r so that 

=r f 
1 

,=,k(r+ 

Hence we have 

=.$ r,-2k;r+k)‘+R(u-172) 

=,f , r”;;~k)‘fR(u-l’ 2, 

=,z, rap’k(t+k)’ 
+ R(a - 2,3) + R(a - 1,2). 

Continuing this procedure, we have by (3.5) 

+iafl {R(i,u+l-i)+R(a+l-i,i)} 
r=2 

=2r,ktl r(r:k)” 
+~~f’{i(i)i(u+l-i)-i(u+l)}. 

1=2 
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Since 

we find 
u-l 

H,(a)=2{H,(a)-i(a+1)}+4 C {i(i)i(u+l-i)-i(u+l)} 
i=2 

from which Theorem 3.1 follows. 

Remark 3.2. The reciprocity relation (3.2) is of frequent occurance in 
the literature (cf. [ 18, 21,23, 23) and apparently goes back to Euler. 

THEOREM 3.2. 2H, (2~ - 1) = cf:; * ( - 1 )j c(i) ((2~ - i), 

ProojI We need the following extension due to Apostol (cf. [ 1, p. 1111; 
[21]) of a transformation formula due to Lehner and Newman [15]. 

LEMMA 3.2. Let f (x, y) be a complex valued function defined for positive 
integral x and y. Then 

c f(r, k) = i f(r, r) + i ‘2’ {f(k r) +f(r, k) -f(k, r-k)}. 
I < r,k G n 

r+k>n+l 
r=l r=2k=l 

Proof: For a lattice point theoretic proof of the lemma, we refer to the 
author and Sivaramasarma [Zl]. Here we give a simpler proof. We have 

n n r-l n u-l 

= c f(r,r)+ c 1 (f(r,k)+f(k r))- c c f(u-kk) 
r=l r=2 k=l u=2 k=l 

and the lemma follows. 
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To prove Theorem 3.2, we take f(x, y) = l/x*“- ‘(x +y) in Lemma 3.2 
and obtain 

c 
1 < r,k <n 

r+kan+l 

(3.6) 

For a 2 3, we have 

r+k>n+ I r+ka,,+l 

=-$,n;2+P”. . . 
Hence from (3.6) we find, on letting n tend to infinity, 

so that by (3.4), 

[(2a)+2H1(2a-l)= 2 i {(y~2k~2u+2+r-2a+2k~2) 
r=l k=l 

- (r-3k-2a+3 +1.-20+3k-3) 
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= {P(2,2a - 2) + P(2a - 2,2)} 

- {P(3,2a-3)+P(2a-3,3)) 

+ ... + {P(2a-2,2)+P(2,2a-2)) 

=1(2)1(2~-2)~1(3)1(2a-3) 

+ ... +1(2a-2)1(2)+1(2a) 

from which the theorem follows for a> 3. Theorem 3.1 covers the case 
a= 2. 

THEOREM 3.3. Cy:,’ [(2i) [(2a - 2i) = (a + f) ((2~). 

ProojY Follows from Theorems 3.1 and 3.2. 

THEOREM 3.4. 2H, (2~ - 1) = (a + f) ((2~2) - x:p:/ [(i + 1) 1(2a - 2i - 1). 

Proof Follows from Theorems 3.2 and 3.3. 

Remark 3.3. Theorems 3.2 through 3.4 appear in Nielsen (cf. [ 18, 
pp. 37-511). Theorem 3.3 was rediscovered by Tornheim (cf. [26, corollary, 
p. 3081) Williams (cf. [27, Theorem I]), and Georghiou and Philippou 
[9]. Recently, Sivaramasarma (cf. [25, Chap. III]) gave a new proof of 
Theorem 3.3. His work also contains various related results. 

THEOREM 3.5. 2H,(a) = 2<(a) a( 1) - u<(u + I ) + 2a(a + 1) + x;=, o(i) 
o(a-i+ 1). 

Proof: Following Nielsen (cf. [ 18, p. 471) we write 

d*“=rc, (r+ l)“,=, 
-Li (-l)k-1 

k 
for any 24 > 

for any u 3 

1, v3 1, (3.7) 

1, V> 1. (3.8) 

Then it is known (cf. [ 18, p. 47, Eq. 8 and p. 50, Eq. 61) that 
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However, by definition, 

d,,, = f ;y (-yk-’ 
r=2 k-1 

= f f( i t-;“‘yr’) 

r=2 k= I 

$(,$, t-lk)* ‘A+ ’ 

r > 

= H4(U) - a(24 + 1). (3.11) 

Hence by (3.9) and (3.11) 

H,(a)=d,.,+a(a+l) 

=i(a)4l)+YL, 

and the theorem follows from (3.10). 

THEOREM 3.6. We have 

4H,(2b) = (226+’ -2&3)[(2b+l) 
h-l 

+2 C {[(2h-i)<(i+ l)-i(2i)r(2h+ 1 -2i)). (3.12) 
,=I 

4H,(2h) = (22b+1 +2b-1)[(2b+l) 
h-l 

-2 ,T, ({(2h-i)[(i+l)+[(2i)~(2h+l-2i);., (3.13) 

4H, (2b) = (22bf ’ -2b- l)l(2b+ 1) 

+2y (1(2b-i)i(i+l)-1(2i)~(2h+l-2i)}, (3.14) 
i= I 

and 

4H,,(2b)=4[(2b)o(l)+(6-22-2b-22b)~(2b+l) 

-Q2h+l)+ f a(i)a(2b-i+ 1) 
i=l 

h-l 

-2 c {1(2b-i)[(i+ l)-Q227QZh+ 1 -2i)j. (3.15) 
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Proof It is known due to Jordan (cf. [ll, Eq. @a)]) that 

4 f ~~~,~=(2’h”l)l(zb+1) 
r=l 

h-l 

-2 1 [(2i)r(2b+ 1 -2i). (3.16) 
;= I 

But 

Thus (3.12) follows from (3.16) and the above. 
To prove (3.13) we have by (2.1) 

4Hj (2b) = 4H, (2b) + 4H, (2b) - 2[(2b + 1). 

Hence Theorem 3.1 and (3.12) yield (3.13). 
Formula (3.14) follows from (2.6) and (3.12) while (3.15) follows from 

(2.9), Theorem 3.5, and (3.12). This completes the proof of the theorem. 

Remark 3.4. We believe that Theorems 3.5 and 3.6 are new. (3.12) in 
case b = 1 is due to the author and Sivaramasarma (cf. [21, Eq. (1.13)]) 
who also proved its equivalence with a result due to Gupta [ 101. (3.14) in 
case b = 1 is due to the author and Subbarao (cf. [24, Eq. (2.16)]) while 
(3.16) in case b = 1 is stated by Ramanujan (cf. [ 19, p. 108 J) and proved 
by the author and Sivaramasarma [22]. Apparently, Jordan [ 1 l] was first 
to prove the general result (3.16). 

THEOREM 3.7. 

226+1H,(2b)=(22b+1b-2b-1){(2b+1) 

h -1 
+2 1 {[(2i)c(2b+ 1 -2i)-(22h- 1)<(26-i)[(i+ 1)). 

,=I 

and 
(3.17) 

4bH,,(2b)=(3*226-4)[(2b)a(l)+ b+;-b.2’” 
( ) 

1(2b+ 1) 

h-l 

- ,c, ([(2i)r(26-i+ 1)+251(21’)[(2b+ 1 -2i) 

+(l -22h+’ )1(2b-i)i(i+l)) 

-22b i o(i)(r(2b-i+ 1). (3.18) 
i= I 
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Proof. By (2.5), we have 

Hence (3.17) follows from Theorem 3.1 and (3.13). 
Now to prove (3.18), we first recall the following result due to Jordan 

(cf. [ll], eq. (9a), p. 683): 

Since 

b-l 

=~(26+1)+451(26)0(1)-2 1 r(2i)[(2h+1-2i). (3.19) 
,=I 

=4b+I O” 1+(-l)‘-’ ’ l+(-1)k-l 
c c 

r=l 2r2b k=l 2k 

=4b f i 

i 

1 I (-l)‘-‘+(-l)“-‘+(-l)‘-‘(-l)k-’ 

r=, k=l rZbk r2’k rZbk rZbk 

=4b{H,(2h)+H?(2h)+Nq(2h)+H,o(2h)), 

(3.18) follows from (3.19), Theorems 3.1, 3.5, and (3.17). This completes the 
proof of the theorem. 

4. THE CASE s=2 

Our results in Section 3, in particular, yield the following 

THEOREM 4.1. 

H, (2) = 21~3)~ (4.1) 

H2W=iW (4.2) 

w2)=$1(3), (4.3) 

~~(2)=~1(2)~(1)--f1(3) (4.4) 

w2)=x(3) (4.5) 

H,(2) = d l(3) (4.6) 

~,,(2)=t1(2)o(l)-~1(3) (4.7) 

~,,(2)=~1(2)a(l)-1(3). (4.8) 



A FORMULAOFS.RAMANUJAN 13 

We complete this list by proving 

THEOREM 4.2. 

H,(2)=${(2)a(l)-7cG+$[(3), (4.9) 

Hs(2)=nG--c(3), (4.10) 

H,(2)=nG-#c(3), (4.11) 

&,(2)=nG-%1(3), (4.12) 

where G denotes the Catalan’s constant defined by 

G=$, (L:)I;’ =0.915965594177.... (4.13) 

ProojI First we prove (4.11). For this we recall a result enunciated by 
Ramanujan (cf. [ 19, Chap. 9, entry 211) and proved by Berndt and Joshi 
(cf. [3, p. 461): For 1x1 < 7c/4 

sin 2x sin 6x 

(4.14) 

For the sake of completeness, we indicate a proof of (4.14). We denote the 
left- (resp. right-) hand side of (4.14) by f (x) (resp. g(x)) and observe that 

f@+ )=dO+ 1 and f’(x) = g’(x) = x2/sin 2x 

in view of the well known 

m (-q-y r 1 
(tan’ x)‘= C 

r=l r c- k=,2k-1 

and 

1 
cosx+-cos 3x+ ... 

3 
+og cot; . 

( > 



14 R.SITARAMACHANDRARAO 

On taking x = 71/4 in (4.14) we find 

1 
-Tj l-- 
2 ( 

1 + l/3 + 1 + l/3 + l/5 _ & c 
22 32 ) 

nl 11 
=; p-~+j+cc 

( 

11 11 

) ( 
-2 rj+F+F+&c. I (4.15) 

/ 

Hence on one hand we have 

f (-l)‘-’ r 
i-=1 

,.2 ,c, &=nG-$3) 

and on the other 

=H,(2)+$(r(3)-+H,(2) 

=H,(2)+h-c(3) 

(4.16) 

. +i 11 
(4.17) 

where in the last step we used (4.6). Now (4.11) follows from (4.16) and 
(4.17). Also (4.10) follows from (2.2), (4.6), and (4.11); finally (4.9) follows 
from (2.8), (4.7), and (4.10); (4.12) follows from (2.7) and (4.10). This com- 
pletes the proof of the theorem. 

5. THE CASE s= 3 AND RAMANUJAN'S G(1) 

In this section, we relate G( 1) explicitly to each of H,(3), H3 (3), H,(3), 
H,(3), H,,(3), and A,, where A4 is given by (1.2). 

THEOREM~.~. G(1)=&,(4)-dA4. 

Proof. We first note (cf. [20, Eq. (18)]) that 

f (-lY-l l 
r=2 

T,C,k= -;A+$ (5.1) 
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In fact 

15 

Hence 

f (-1)“-1 fj (-I)“-1 

m=l m2 PI=1 n* 

which is (5.1). We also need 

H,(3) = g C(4) + 4 A,. 

To see this, we have by (5.1) 

(5.2) 

Since a(4) = i c(4) and c(4) = 7c4/90, we obtain (5.2). 
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Now consider 

1 
G(l)=,;1 7z;ij( 

1+;+ ..* +A 
) 

= ;-A H,(3)-&(3). 
( ) 

But by Theorem 3.1 and the fact tht c*(2) = rr4/36 = 5 c(4), we have 

H, (3) = 1~4) -l*(2)) 

= 2 l(4). 

Hence from (5.3) and (5.4) 

G(l)=gQ4)-i&(3). 

(5.3) 

(5.4) 

(5.5) 

Thus by (5.2) 

W)=~1(4)-~(~1(4)+~A4)-~A4+&~(4) 

and Theorem 5.1 follows. 

Remark 5.1. It may be noted that (5.5) above relates G( 1) explicitly 
with H,(3). 

THEOREM 5.2. G( 1) N 0.16227... 

ProoJ It is known due to Rutledge and Douglass [ZO], that the first 
live digits of A, are 0.16265. Hence by Theorem 5.1, we see that 

G( 1) N & (1.08232) - $ (0.16265) 

= 0.16227. 

THEOREM 5.3. G( 1) = & t(4) + 4 H, (3). 
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Proof. We have 

17 

(5.6) 

Hence the theorem follows from (5.4). 

COROLLARY 5.1. H,(3) = i c(4) - 2A,. 

Proof: Follows from Theorems 5.1 and 5.3. 

THEOREM 5.4. G( 1) = - & c(4) + $ H, (3). 

Prooj: From (5.6), (2.1), and (5.4), we have 

G(l)=~H,(3)+$H,(3)=$(H,(3)+H,(3))-$H,(3) 

=Q (M3)+t1(4))-&%(4) 

= -$$1(4)+$H,(3). 

COROLLARY 5.2. H,(3) = y c(4) - 2.4,. 

ProoJ: Follows from Theorems 5.1 and 5.4. 

THEOREM 5.5. G(1) = &, C(4) + $ H,(3). 

ProoJ: Follows from Theorem 5.3 and (2.6). 

COROLLARY 5.3. H,(3) = $$ ((4) -2A,. 

Proof Follows from Theorems 5.1 and 5.5. 

THEOREM 5.6. G(1) = & c(3) log 2 + & C(4) - & HII (3). 

Proof: Follows from Theorems 5.3, (2.9), and Theorem 3.5 with s = 3. 

COROLLARY 5.4. H,, (3) = i c(3) log 2 - $ ((4) + 2,4,. 

Proof: Follows from Theorems 5.1 and 5.6. 
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