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Abstract 

The ubiquitous availability of Android devices has led to increasing malicious mobile attacks targeting the Android mobile 
operating system. In recent times, adversaries leverage situational awareness, user and device context to create targeted malware 
for mobile devices. Several mobile security tools such as Mobile Sandbox, TargetDroid, and ANANAS focus on tailoring the 
detection schemes for individual users and suffer from scalability by analyzing individual user’s activities. To the best of our 
knowledge, these tools do not incorporate user group profiling in their automated user-behavior driven dynamic analysis. In 
addition, adaptive and location-based alerts are not provided to mobile users. We propose SCREDENT: Scalable Real-time 
Anomalies Detection and Notification of Targeted Malware in Mobile Devices, to provide a scalable system to classify, detect, 
and predict targeted malware in real-time. SCREDENT incorporates behavior-triggering probabilistic models and user grouping 
to minimize the number of parallel dynamic analysis instances needed.  SCREDENT leverages container technology to perform 
dynamic analysis and allow for modularity as emulation technology improves.  SCREDENT uses adaptive, location-based 
notification principles to create a geographical fence which warn users of malicious attacks.  Finally, SCREDENT provides 
proactive, adaptive alerts to individual users if at least one of the group members has triggered malicious activities in an 
application currently used by the individual. 
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1. Introduction 

About 84% of all smartphones, worldwide, are Android devices28 and the majority of these devices are 
unprotected29.  Given Android’s prominence and general smartphone vulnerability, it is not surprising that the 
majority malicious mobile attacks are designed for the Android mobile operating system. Lately, mobile malware 
that use contextual device and user behavioral data to avoid detection and observation have emerged.  This targeted 
malware only executes when certain conditions are met22, 15, 5.  Several analytic tools such as Mobile Sandbox, 
TargetDroid, and ANANAS have been developed to take a hybrid approach to identifying targeted malware18, 9, 2, 4.  
There are also tools such as DREBIN, Marvin, and Draco which have mobile applications to provide static on device 
analysis17, 12, 11, 7, 18, 21, 24. Draco, though, combines its on-device static analysis with remote dynamic analysis 
remotely11.   These tools analyze individual mobile/user activities to detect malware. In the presence of a large 
number of mobile devices and users, even distributed analyses will not be sufficient to provide efficient and timely 
detection. To the best of our knowledge, these tools do not integrate group user profiling with their automated user-
behavior driven dynamic analysis to perform targeted malware detection.  The profiling of groups of mobile users 
will provide efficient analyses, significantly reduce redundancy and increase probability of adaptive alerts. Further, 
the tools suffer from usable alert system which informs the user of potential attacks based on user context and 
location. 

 
The rest of the paper is organized as follows. Section 2 provides an overview of the SCREDENT architecture. 

Section 3 describes the machine learning strategies SCREDENT employs.  In Section 4, we conclude and discuss 
future work. 

2. SCREDENT Overview 

SCREDENT collects user behaviors and contextual data from real users.  Next, it creates probabilistic models to 
represent the data to be executed on a cloud-based targeted malware testbed.  The models are used to emulate user 
group behaviors during the dynamic analysis of Android malware. Risk factor is then determined and an adaptive, 
location based alert is sent to the end user.  If a user is entering an area known for malicious attacks, SCREDENT 
sends a proactive alert. SCREDENT is a system of systems comprised of three individual subsystems we developed 
using a top-down systems engineering approach (see Figure 1). The key subsystems of SCREDENT are: User 
Behavior Modeling and Profiling for Smartphones (UMAPS), DockerDroid, and Targeted Malware Alert and 
Notification System (TAMANOS). 

 
 

 

Fig. 1. SCREDENT Architecture. 
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2.1. UMAPS: User Behavior Modeling and Profiling for Smartphones  

SCREDENT’s user monitoring system, UMAPS, contains two components: logging and mapping (see Fig. 2).  
The logging component consists of a native Android application which logs replicable contextual and user 
behavioral data temporarily on the device until a Wi-Fi connection is established (see Table I).  The user may change 
the default settings to upload immediately or whenever mobile data is available. The information logged is then 
uploaded from the device to the cloud for modeling and dynamic analysis.  The native application further performs 
lightweight static analysis on recently installed application manifests using a remotely trained support vector 
machine (SVM)16. The SCREDENT logging application also uploads the results of the static analysis for 
applications that are flagged as false positives by users.  This allows for amore insightful modifications of the SVM 
as well as SCREDENT’s alert system.  

 
The mapping component then analyzes the uploaded log files, mapping behaviors and probabilities, to create or 

update stored markovian models for each user (see Figure 3). Then, SCREDENT forms user groups to allow 
intelligent storage of the models created.  Using K-means clustering, intelligent storage decreases the overall number 
of markov models stored by allowing SCREDENT to flush older model data upon update without losing valuable 
knowledge of past models8.  SCREDENT also monitors conceptual drift between each temporarily stored individual 
model and its corresponding group model.  When an individual user model varies too greatly from its corresponding 
group model, SCREDENT performs K-means clustering again to create new groups (see Figure 3). 

 

 

Fig. 2 . UMAPS Architecture. 

Table 1. Replicable events in TargetDroid. 

Available Events 

Accept call Change battery status Uninstall App Set time zone Receive SMS Activate 3G 

Change wallpaper Turn on GPS Install APKs Sensor: Accelerometer Turn of GPS Change clock 

Turn on Airplane mode Set ringer Sensor: Gyroscope Turn off Airplane mode Cancel Call / Hang up Turn on screen 

Set volume Sensor: Rotation/Pitch Turn of Terminal Connect AC Send SMS Get location 

Go Home Lock Terminal Turn of 3G Bright auto Set bright auto View SMS 
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2.2. DroidDocker  

In the distributed analysis subsystem, DroidDocker, SCREDENT performs both static and dynamic analysis in 
the cloud (see Figure 4).  Here, the on-device SVM model, used to analyze application manifest files, is trained 
remotely.  The SVM classifier uses manifest features identified in recent work12, 16, 3.  Benign application samples 
were collected from Google Play and malware samples were collected form Contagion mobile malware minidump.  
The on-device application is then updated with the resulting SVM.  This SVM is regularly updated.  These updates 
leverage information regarding false positives from users to improve the SVM.  

 
The distributed analysis system also executes dynamic analysis. Currently, we employ TargetDroid to perform 

dynamic analysis9.  Targetdroid is an Android malware analysis tool that employs behavior-triggering markovian 
models to detect targeted smartphone malware.  It is built around Droidbox, an out-of-the-box Android malware 
dynamic analysis tool13.  TargetDroid uses the stochastic models to modify the standard Android emulator settings, 
like the battery being half full, to aid in triggering malicious behaviors by injecting these events.   DroidDocker 
further facilitates automatically injecting the stored user-triggered events into the emulated environment in a scalable 
fashion20. By modifying TargetDroid, DroidDocker is able to scale its dynamic analysis to fit within the 
SCREDENT framework.  DroidDocker is able to surpass the standard emulator instance limitation and managing 
event injection with monkeyrunner for each dynamic analysis instance running in parallel20, 32. We store the results 
of SCREDENT’s dynamic analysis for subsequent risk analysis and user notification. 

 

               

 
Fig. 3. (a) Markov Model of Battery Status; (b) K-means Group Clustering, k=5. 
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Fig. 4 . DroidDocker Architecture. 

Cluster Number 

P
ar

ti
ci

pa
nt

 I
D

 



1223 Paul McNeil et al.  /  Procedia Computer Science   83  ( 2016 )  1219 – 1225 

2.3. TAMANOS: Targeted Malware Alert and Notification System  

SCREDENT uses Targeted Malware Alert and Notification System (TAMANOS) for risk assessment and 
adaptive alerting (see Figure 5). TAMANOS is an adaptive, location-based targeted malware alert and notification 
system for Android devices.  This subsystem has three main purposes: perform risk assessment of malware analyses, 
store blacklists, and create adaptive, location-based notifications or proactive alerts.    

 
TAMANOS uses a SVM to determine the maliciousness of an application to user groups based on the dynamic 

analysis performed by DroidDocker.  If malicious, TAMANOS creates customized location-based notifications for 
each user in the group using individual preferences.  These preferences influence whether the alert is visual, tactile, 
or auditory.  Proactive alerts are also sent to users if they enter an area known for malicious attacks if the user is at 
risk.  For example, if a user is entering a neighborhood known for Bluetooth attacks while the user’s Bluetooth is on, 
the user will receive a warning.  This proactive functionality extends strategies used in the Early Alert System 
(EARS) location-based notification system to limit energy consumption and maintain user privacy14.  Further, 
TAMANOS maintains the outcome of risk assessments for each application analyzed by SCREDENT.  This limits 
redundancies of analysis and allows faster notification of malicious applications of known malware. 

 

 

Fig. 5 . TAMANOS Architecture. 

 

3. SCREDENT Scalable Real-time Environment 

Two of SCREDENT’s main objectives are realized through its infrastructure: scalability and real-time 
processing. Here, we look at scalability primarily in terms of data collection, analysis, and storage. SCREDENT’s 
native on-device application allows remote data collection to occur simultaneously from a large number of devices. 
SCREDENT employs MongoDB for persistent and temporary storage in each subsystem23.   MongoDB allows for 
simple horizontal scalability as the amount data collected and models stored increases23.  Cassandra is another 
option for scalable storage but requires well defined schema.  The Android operating system and emulation 
technologies are constantly evolving, choosing such a rigid structure would be ill-advised. Unlike Cassandra, 
MongoDB is forgiving when it comes to data schemes which may need to change as the state-of-the-art does23.   

 
SCREDENT’s use of MongoDB also aids its objective to achieve real-time processing.  SCREDENT implements 

lambda architecture using MongoDB and Apache Spark in each subsystem30, 19, 31. Each database is separated into a 
speed, serving, and batch layer. Apache Spark is used to manage constantly running queries to create necessary 
views19.  Further, the Spark infrastructure allows for fast message passing from one SCREDENT subsystem to 
another and model training31. 
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SCREDENT implements scalable analysis using Docker’s container technology as the testbed platform10.  

SCREDENT manages manage the creation, scheduling, and execution of virtual clones in the cloud using Docker.  
SCREDENT’s modular distributed analysis subsystem connects to standalone databases of contextual or user 
behavior data to a desired analysis tool’s docker image.  As stated previous, SCREDENT currently uses TargetDroid 
for dynamic analysis.  Since TargetDroid is out-of-box, it shares the 15 emulator instance restriction that the 
standard Android emulator possesses9.  Using Docker allows SCREDENT to easily surpass this limitation and do so 
with a lower overhead than starting a new virtual machine each time an instance limitation is reached10.  
SCREDENT creates or executes TargetDroid instances according to a longest match algorithm to pair user group 
models with the emulators that best match the real devices of user group members.     

4. Limitations 

SCREDENT requires access to Wi-Fi or mobile data at some point conduct its deeper analysis. If the user never 
enables either, then SCREDENT cannot perform its needed updates. Similarly, SCREDENT requires access to the 
network GPS in order to perform location-based notifications. SCREDENT shares several attack surfaces, such as 
man-in-the-middle attacks when uploading log files or attacks to the containers25, 15, 1.  Additional efforts need to be 
taken to minimize these surfaces.   SCREDENT’s dynamic analysis testbed framework allows for a different 
analysis tool to be substituted as the state of the art progresses.  However, SCREDENT currently uses TargetDroid 
for analysis and inherits TargetDroid limitations9. SCREDENT also only replicates a limited amount of interactions 
as limited by the standard Android SDK.  This replication limitation may be remedied by using alternative 
emulators, such as QEMU-based, or Google releases newer standard emulators27.  

5. Conclusion and Future Work 

The increase of next generation mobile malware has inspired the development of next generation malware 
detection tools.  These tools often focus on individual users and fail to provide customized alerts.  We presented 
SCREDENT as a targeted malware classification, detection, and alert tool.  SCREDENT uses user group profiling to 
increase the scalability of data collection and storage.  SCREDENT also leverages real time processing to improve 
analysis performance and user experience. 

 
Although the SCREDENT framework has been implemented, there are optimizations that need to be made. For 

instance, large scale, long term, end to end testing of SCREDENT needs to be completed.  The observations made 
from real world deployment will provide information regarding improving the models used in each subsystem and 
how they can be modified for increased accuracy.  Large scale testing will also reveal key areas for performance 
optimizations throughout the system, such as algorithms reducing dynamic analysis runtime.  Further, user testing can 
be done to improve the adaptive user notification experience. 
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