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Mirsky proved that, for the existence of a complexmatrixwith given

eigenvalues and diagonal entries, the obvious necessary condition is

also sufficient.We generalize this theorem tomatrices over any field

and provide a short proof. Moreover, we show that there is a unique

companion-matrix-type solution for this problem.

© 2012 Elsevier Inc. All rights reserved.

If λ1, . . . , λn are the eigenvalues of a complex matrix A of order n and d1, . . . , dn are its diagonal

elements, then the sum of the λi’s is necessarily equal to the sum of the di’s. Mirsky [1] proved that

the converse holds. If the data are real numbers, he proved that A can be chosen to be real as well. For

a recent short proof of Mirsky’s results see [2].

Instead of specifying the eigenvalues of a matrix we shall specify its characteristic polynomial. We

shall work over any field F . Let

f (t) = tn + cn−1t
n−1 + cn−2t

n−2 + · · · + c0

be a monic polynomial over F .

Theorem 1.1. Given a sequence d1, . . . , dn in F with d1 + · · · + dn = −cn−1, there exists a unique

sequence b1, . . . , bn−1 in F such that f (t) is the characteristic polynomial of the matrix
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D.Ž. Ðoković / Linear Algebra and its Applications 437 (2012) 2680–2682 2681

A = [aij] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 0 0 · · · 0 b1

1 d2 0 0 b2

0 1 d3 0 b3
...

0 0 0 dn−1 bn−1

0 0 0 1 dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. For any S ⊆ {1, . . . , n}, let AS be the submatrix of Awhose entries are the aij with i, j ∈ S, and

let MS = det AS . It suffices to prove that the system of n − 1 equations

∑

S:|S|=n−k+1

MS = (−1)n−k+1ck−1, k = 1, . . . , n − 1

in n − 1 unknowns b1, . . . , bn−1 has a unique solution in F . (By |S| we denote the cardinality of S.)

This is true because of the following claim: for each k we have

∑

S:|S|=n−k+1

MS = (−1)n−kbk + gk,

where gk is a polynomial in the unknowns bk+1, . . . , bn−1 only.

Toprove this claim, it suffices to showthat ifbk occurs inMS and |S| ≤ n−k+1 then S = {k, . . . , n}.
By the hypothesis bk occurs in MS , and so {k, n} ⊆ S and there must exist a permutation π of S such

that πn = k and

∏
i∈S

aπ i,i �= 0.

Hence, π i ∈ {i, i + 1} for i ∈ S \ {n}. As k ∈ S and πn = k, we have πk = k + 1. If k < n − 1

then π(k + 1) �= k + 1 and so π(k + 1) = k + 2, etc. By repeating this argument, we conclude that

{k, . . . , n} ⊆ S. As |S| ≤ n − k + 1, it follows that S = {k, . . . , n}. This completes the proof of our

claim and the theorem. �

If dn = −cn−1 and all other di = 0, then A becomes the well known Frobenius companion matrix

of f (t):

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 −c0

1 0 0 0 −c1

0 1 0 0 −c2
...

0 0 0 0 −cn−2

0 0 0 1 −cn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The next theorem, which has much simpler proof, provides explicit formulae for the unknown

elements b1, . . . , bn−1 and establishes the existence assertion of Theorem 1.1, but not the uniqueness.

For k = 0, 1, . . . , n−1, denote by hr(d1, . . . , dk) the sumof all monomials in d1, . . . , dk of degree
r. (In particular h0(d1, . . . , dk) = 1.) Let In be the identity matrix of order n.
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Theorem 1.2. If dn = −cn−1 − d1 − · · · − dn−1 and

bk = −
n∑

i=k−1

cihi−k+1(d1, . . . , dk), k = 1, . . . , n − 1, (1.1)

where cn = 1, then det(tIn − A) = f (t).

Proof. Let T = [tij] be the upper triangular matrix with entries tij = hj−i(d1, . . . , di), 1 ≤ i ≤ j ≤ n.

As all tii = 1, T is invertible. It suffices to verify that AT = TC, which is straightforward. �

For example, if n = 4 then the above formulae read

b1 = −c0 − c1d1 − c2d
2
1 − c3d

3
1 − d41,

b2 = −c1 − c2(d1 + d2) − c3

(
d21 + d1d2 + d22

)
−

(
d31 + d21d2 + d1d

2
2 + d32

)
,

b3 = −c2 − c3(d1 + d2 + d3) −
(
d21 + d22 + d23 + d1d2 + d1d3 + d2d3

)
.
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