Generalization of Mirsky's theorem on diagonals and eigenvalues of matrices ${ }^{\text {* }}$

Dragomir Ž. Đoković

Department of Pure Mathematics, Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

ARTICLEINFO

Article history:

Received 17 June 2012
Accepted 20 June 2012
Available online 19 July 2012
Submitted by V. Sergeichuk
AMS classification:
15A18
15A29

Keywords:

Characteristic polynomial
Companion matrix
Principal minors

Abstract

Mirsky proved that, for the existence of a complex matrix with given eigenvalues and diagonal entries, the obvious necessary condition is also sufficient. We generalize this theorem to matrices over any field and provide a short proof. Moreover, we show that there is a unique companion-matrix-type solution for this problem.

© 2012 Elsevier Inc. All rights reserved.

If $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of a complex matrix A of order n and d_{1}, \ldots, d_{n} are its diagonal elements, then the sum of the λ_{i} 's is necessarily equal to the sum of the d_{i} 's. Mirsky [1] proved that the converse holds. If the data are real numbers, he proved that A can be chosen to be real as well. For a recent short proof of Mirsky's results see [2].

Instead of specifying the eigenvalues of a matrix we shall specify its characteristic polynomial. We shall work over any field F. Let

$$
f(t)=t^{n}+c_{n-1} t^{n-1}+c_{n-2} t^{n-2}+\cdots+c_{0}
$$

be a monic polynomial over F.
Theorem 1.1. Given a sequence d_{1}, \ldots, d_{n} in F with $d_{1}+\cdots+d_{n}=-c_{n-1}$, there exists a unique sequence b_{1}, \ldots, b_{n-1} in F such that $f(t)$ is the characteristic polynomial of the matrix

[^0]\[

A=\left[a_{i j}\right]=\left[$$
\begin{array}{cccccc}
d_{1} & 0 & 0 & \cdots & 0 & b_{1} \\
1 & d_{2} & 0 & & 0 & b_{2} \\
0 & 1 & d_{3} & & 0 & b_{3} \\
\vdots & & & & & \\
0 & 0 & 0 & & d_{n-1} & b_{n-1} \\
0 & 0 & 0 & & 1 & d_{n}
\end{array}
$$\right] .
\]

Proof. For any $S \subseteq\{1, \ldots, n\}$, let A_{S} be the submatrix of A whose entries are the $a_{i j}$ with $i, j \in S$, and let $M_{S}=\operatorname{det} A_{S}$. It suffices to prove that the system of $n-1$ equations

$$
\sum_{S:|S|=n-k+1} M_{S}=(-1)^{n-k+1} c_{k-1}, \quad k=1, \ldots, n-1
$$

in $n-1$ unknowns b_{1}, \ldots, b_{n-1} has a unique solution in F. (By $|S|$ we denote the cardinality of S.) This is true because of the following claim: for each k we have

$$
\sum_{S:|S|=n-k+1} M_{S}=(-1)^{n-k} b_{k}+g_{k}
$$

where g_{k} is a polynomial in the unknowns b_{k+1}, \ldots, b_{n-1} only.
To prove this claim, it suffices to show that if b_{k} occurs in M_{S} and $|S| \leq n-k+1$ then $S=\{k, \ldots, n\}$. By the hypothesis b_{k} occurs in M_{S}, and so $\{k, n\} \subseteq S$ and there must exist a permutation π of S such that $\pi n=k$ and

$$
\prod_{i \in S} a_{\pi i, i} \neq 0
$$

Hence, $\pi i \in\{i, i+1\}$ for $i \in S \backslash\{n\}$. As $k \in S$ and $\pi n=k$, we have $\pi k=k+1$. If $k<n-1$ then $\pi(k+1) \neq k+1$ and so $\pi(k+1)=k+2$, etc. By repeating this argument, we conclude that $\{k, \ldots, n\} \subseteq S$. As $|S| \leq n-k+1$, it follows that $S=\{k, \ldots, n\}$. This completes the proof of our claim and the theorem.

If $d_{n}=-c_{n-1}$ and all other $d_{i}=0$, then A becomes the well known Frobenius companion matrix of $f(t)$:

$$
C=\left[\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & -c_{0} \\
1 & 0 & 0 & & 0 & -c_{1} \\
0 & 1 & 0 & & 0 & -c_{2} \\
\vdots & & & & & \\
0 & 0 & 0 & & 0 & -c_{n-2} \\
0 & 0 & 0 & & 1 & -c_{n-1}
\end{array}\right] .
$$

The next theorem, which has much simpler proof, provides explicit formulae for the unknown elements b_{1}, \ldots, b_{n-1} and establishes the existence assertion of Theorem 1.1, but not the uniqueness.

For $k=0,1, \ldots, n-1$, denote by $h_{r}\left(d_{1}, \ldots, d_{k}\right)$ the sum of all monomials in d_{1}, \ldots, d_{k} of degree r. (In particular $h_{0}\left(d_{1}, \ldots, d_{k}\right)=1$.) Let I_{n} be the identity matrix of order n.

Theorem 1.2. If $d_{n}=-c_{n-1}-d_{1}-\cdots-d_{n-1}$ and

$$
\begin{equation*}
b_{k}=-\sum_{i=k-1}^{n} c_{i} h_{i-k+1}\left(d_{1}, \ldots, d_{k}\right), \quad k=1, \ldots, n-1, \tag{1.1}
\end{equation*}
$$

where $c_{n}=1$, then $\operatorname{det}\left(t I_{n}-A\right)=f(t)$.
Proof. Let $T=\left[t_{i j}\right]$ be the upper triangular matrix with entries $t_{i j}=h_{j-i}\left(d_{1}, \ldots, d_{i}\right), 1 \leq i \leq j \leq n$. As all $t_{i i}=1, T$ is invertible. It suffices to verify that $A T=T C$, which is straightforward.

For example, if $n=4$ then the above formulae read

$$
\begin{aligned}
& b_{1}=-c_{0}-c_{1} d_{1}-c_{2} d_{1}^{2}-c_{3} d_{1}^{3}-d_{1}^{4} \\
& b_{2}=-c_{1}-c_{2}\left(d_{1}+d_{2}\right)-c_{3}\left(d_{1}^{2}+d_{1} d_{2}+d_{2}^{2}\right)-\left(d_{1}^{3}+d_{1}^{2} d_{2}+d_{1} d_{2}^{2}+d_{2}^{3}\right), \\
& b_{3}=-c_{2}-c_{3}\left(d_{1}+d_{2}+d_{3}\right)-\left(d_{1}^{2}+d_{2}^{2}+d_{3}^{2}+d_{1} d_{2}+d_{1} d_{3}+d_{2} d_{3}\right) .
\end{aligned}
$$

References

[1] L. Mirsky, Matrices with prescribed characteristic roots and diagonal elements, J. London Math. Soc. 33 (1958) 14-21.
[2] E.A. Carlen, E.H. Lieb, Short proofs of theorems of Mirsky and Horn on diagonals and eigenvalues of matrices, Electron. J. Linear Algebra 18 (2009) 438-441.

[^0]: * Supported in part by an NSERC Discovery Grant.

 E-mail address: djokovic@uwaterloo.ca

