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1. Introduction

Fractional calculus, a mathematical topic developed in the 17th century, did not attract much attention until recent
decades. It was recently found that many systems in various fields can be modeled with the help of fractional derivatives,
such as in viscoelastic mechanics, the power-law phenomenon in fluids and complex networks, allometric scaling laws
in biology and ecology, colored noise, electrode–electrolyte polarization, dielectric polarization, boundary layer effects in
ducts, electromagnetic waves, quantitative finance, quantum evolution of complex systems, and fractional kinetics ([1,2]
and many references cited therein).
In this paper, we mainly study one kind of typical fractional partial differential equations by using the finite element

method, which reads in the following form:{ut + aux + bDαx u+ cu = f , α ∈ (1, 2], x ∈ Ω, t ∈ (0, T ],
u|t=0 = ϕ(x), x ∈ Ω,
u|∂Ω = g, t ∈ (0, T ],

(1)

whereΩ is a domainwith boundary ∂Ω , time T > 0, the anomalous diffusion itemDαx u is anα-th order fractional derivative
of u with respect to the space variable x in the Caputo sense (which will be introduced later on), ux is the advection item,
and a, b, c, f , g are functions of x, t which satisfy the conditions requested by the theorem of error estimates.
Considering Eq. (1), if α ∈ Z+, it is just the classical partial differential equation; in particular, if α = 2 and f = 0, it

often represents the typical Fokker–Planck equation which is commonly used to describe the Brownian motion of particles.
If α = 2, c ∈ R, it is also the traditional form of the advection dispersion equation. And if α is not an integer, it always relates
to the anomalous diffusion phenomenon.
In general, three kinds of fractional derivatives are used: the Grwünwald–Letnikov derivative, the Riemann–Liouville

derivative and the Caputo derivative. Their definitions are introduced below.
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Definition 1. The α-th order Riemann–Liouville integral of function u(x) is defined as follows:

Iαu(x) =
1

Γ (α)

∫ x

0

u(s)
(x− s)1−α

ds,

where α > 0.

Definition 2. The fractional left derivative of Grwünwald–Letnikov type is given as follows:

GDαu(x) = lim
n→+∞
nh=x

h−α
n∑
k=0

(−1)k
(α
k

)
f (x− kh).

This limit expression is not convenient to use. However, if x ∈ Cn+1(Ω), the above limit definition is equal to

GDαu(x) =
n∑
k=0

u(k)(0)xk−α

Γ (k+ 1− α)
+

1
Γ (n+ 1− α)

∫ x

0

u(n+1)(t)
(x− t)−n+α

dt,

where n− 1 ≤ α < n ∈ Z+. If α > 1, then the Laplace transform of the Grwünwald–Letnikov fractional derivative does not
exist in the classical sense [3]. From a pure mathematics point of view such a class of functions is narrow.

Definition 3. The α-th order Riemann–Liouville derivative of function u(x) is defined as follows:

Dαx u(x) =
dn

dxn
In−αu(x), n− 1 < α < n ∈ Z+.

In this definition, the condition ofu(x) isweakened, and it is convenient to use and easy to connectwith the typical derivative.
But from the definitionwe can see that, if u is a non-zero constant inΩ , thenDαx u(x) 6= 0, which is different from the integer
derivative. When we investigate the equations involving Dαx u(x), we need to know the values D

α−i
x u(x)|x=0, i = 1, 2, . . . , n.

Although attempts have been made to give some interpretations of them, for example, see [4], not all these fractional
derivatives have clear practical and physicalmeanings for physicalmeasurements to be obtained. In order to overcome these
shortcomings, a practical fractional derivative was introduced, which is as follows. It is convenient to model the fractional
phenomenon by using this kind of definition since its initial value problem is the same as the classical initial value problem.

Definition 4. The α-th order Caputo derivative of function u(x) is defined as

Dαx u(x) = I
n−α d

nu(x)
dxn

, n− 1 < α < n ∈ Z+.

From this definition we can see that, if u is a constant in Ω , then Dαx u(x) = 0; this property is the same as that of the
integer order derivative. It is known that, if

u(0) = u′(0) = · · · = u(n−1)(0) = 0,
then

Dαx u(x) = Dαx u(x).
Here, we do not concern ourselves with the existence and uniqueness of a solution to the considered equation (work on

the existence and uniqueness of u satisfying (1) can be found in [5]), but focus on the finite element method for solving the
equation. So we always assume that there exists a sufficiently regular solution u(x, t).
The rest of this paper is constructed as follows. In Section 2 the preliminary knowledge regarding fractional derivative

space is introduced. The error estimates of the finite element method for solving Eq. (1) are studied in Section 3. And in
Section 4, numerical examples are taken to confirm the theoretical results derived in Section 3.

2. Fractional derivative space

The following notations are used. The Lp(Ω) inner product is denoted by (·, ·), and the Lp(Ω) norm by ‖ · ‖Lp , with the
special cases L2(Ω) and L∞(Ω) norms being denoted as ‖ · ‖ and ‖ · ‖∞. We denote the norm associated with the Sobolev
spaceW k,p(Ω) by ‖ · ‖W k,p , with a special caseW

k,2(Ω) being rewritten as Hk(Ω)with norm ‖ · ‖Hk or ‖ · ‖k and semi-norm
| · |Hk or | · |k. For the definition of fractional order Sobolev spacesW

s,p(Ω), s ∈ R+ \ Z+, we use the interpolation between
two Banach spaces; see [6].

Definition 5. Let 0 < β < 1, and Jα(Ω) be a fractional dimensional space, defined below:

Jα(Ω) = {u ∈ Hk|Dβu,Dβ∗u ∈ Hk}, α = β + k,

endowed with a semi-norm

|u|Jα(Ω) = ‖Dαu‖L2(Ω),



1720 Y. Zheng et al. / Computers and Mathematics with Applications 59 (2010) 1718–1726

and a norm

‖u‖Jα(Ω) = (‖u‖2L2(Ω) + |u|
2
Jα(Ω))

1
2 ,

and let Jα0 (Ω) denote the closure of C
∞

0 (Ω)with respect to ‖ · ‖Jα(Ω) or ‖ · ‖α . Here D
β∗ means the right fractional derivative

in the Caputo sense.

Definition 6. For u(·, t) being defined on the entire time interval (0, T ], we define the norms

‖u‖∞,k = sup
0<t<T

‖u(·, t)‖k,

‖u‖0,k =
(∫ T

0
‖u(·, t)‖2kdt

)1/2
,

‖u‖(t) = ‖u(·, t)‖.

We present some inequalities on norms for Sobolev spaces which will be used later on.

Lemma 1. Let Ω ⊂ Rd be bounded, ∂Ω ∈ C1. Then for u and v such that the given norms are finite, we have

‖uv‖ ≤ C ·

{
‖u‖s‖v‖d/2−s, 0 < s < d/2,
‖u‖∞‖v‖,
‖u‖s‖v‖, s > d/2.

Lemma 2. Let {Sh} denote a family of partitions of Ω , with grid parameter h. Associated with Sh we let Xh(Ω) represent the
finite-dimensional vector space of continuous piecewise linear polynomials. We denote by uh the continuous piecewise linear
approximation to u. Then the following approximation properties hold.
(1) [7] For u ∈ Jα(Ω), there is a constant C such that, for all 0 < β < α,

‖u− uh‖β ≤ Chα−β‖u‖α.
(2) [8] For u ∈ Jα(Ω), there exists a constant C such that, for all α − 1 < k < α,

|u− uh|k ≤ Chα−k|u− uh|α.

Lemma 3 ([9] Fractional Poincaré–Friedrichs). For u ∈ Hα0 (Ω), we have

‖u‖L2(Ω) ≤ C |u|Hα0 (Ω),

and for 0 < s < α, s 6= n− 1/2, n ∈ Z+,

|u|Hs0(Ω) ≤ C |u|Hα0 (Ω).

It immediately follows from Lemma 3 that

Lemma 4. For u ∈ Jα0 (Ω), we have

‖u‖L2(Ω) ≤ C‖u‖Hα0 (Ω),

‖u‖L2(Ω) ≤ C‖u‖Jα0 (Ω),

and for 0 < s < α,

‖u‖Hs0(Ω) ≤ C‖u‖Hα0 (Ω).

3. A priori error estimate

Now we discuss the variational solution of Eq. (1). We first introduce a lemma.

Lemma 5. For u ∈ Jα0 (Ω), 0 < β < α, one has

Dαx u = Dβx D
α−β
x u, Dαx u = D

β
x D

α−β
x u.

If the boundary condition of problem (1) is inhomogeneous,
g(x, t) 6= 0, x ∈ ∂Ω,

where g ∈ Hα/2−1/2(∂Ω) is pre-assumed. According to the theorem of a trace operator [10], there exists a ug ∈ Jα−1 such
that

γ0ug = g, x ∈ ∂Ω.
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Now, let u = v + ug ; then Eq. (1) can be changed into an equation with a homogeneous boundary condition:
vt + avx + bDαx v + cv = f (x)−

∂ug
∂t
− a

∂ug
∂x
− bDαx ug − cug , x ∈ Ω, t ∈ (0, T ],

v(x, 0) = ϕ(x)− ug(x, 0), x ∈ Ω,
v(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ],

(2)

where a, b, c, f , ug satisfy suitable conditions for the error estimates.
Now we select a test function w ∈ Jα/20 (Ω), multiply the first equation of Eq. (2) by w, and integrate over Ω; then we

have

(vt , w)+ (avx, w)+ (bDαx v,w)+ (cv,w) = 〈f , w〉 −
(
∂ug
∂t
, w

)
−

(
a
∂ug
∂x
, w

)
− (bDαx ug , w)− (cug , w).

Using Lemma 5 yields

(vt , w)− (v, axw)− (v, awx)− (Dα−1x v, (bw)x)+ (cv,w)

= 〈f , w〉 −
(
∂ug
∂t
, w

)
−

(
a
∂ug
∂x
, w

)
− (bDαx ug , w)− (cug , w).

So the problem (2) is equal to the following variational problem.

Definition 7. There exists a function v ∈ Jα/20 (Ω), which is subject to

A(v,w) = F(w)− B(ug , w), ∀w ∈ ∀J
α/2
0 (Ω) (3)

where

A(v,w) = (vt , w)− (v, axw)− (v, awx)− (Dα−1x v, (bw)x)+ (cv,w),
F(w) = 〈f , w〉,

B(ug , w) =
(
∂ug
∂t
, w

)
+

(
∂ug
∂x
, w

)
+ (Dαx ug , bw)+ (cug , w).

Here we assume that the following conditions hold.

(D2αv,w) ≤ C0‖v‖α‖w‖α,

(D2αv, v) ≥ C1‖v‖2α.
(4)

Let Th be a partition ofΩ , for k ∈ N , and Pk(Ω) denote the space of polynomials onΩ of degree no greater than k; then
we define the finite element space Xh as follows:

Xh = {vh : vh|T ∈ pk(T ),∀T ∈ Th, vh ∈ C0(Ω)},
X0h = {vh ∈ Xh : vh(Q ) = 0,∀Q ∈ ∂Ω}.

Let ∆t denote the step size of the time domain, and let tn = n∆t, n = 0, 1, 2, . . . ,N . For convenience, we set
vn = v(·, tn), n = 0, 1, 2, . . .N . Now we apply the difference method to approximate the time derivative:

vnh − v
n−1
h

∆t
− (vnh , axw)− (v

n
h , awx)− (D

α−1
x vnh , (bw)x)+ (cv

n
h , w) = 〈f

n, w〉 − B(ung , w). (5)

Lemma 6 ([11]). Let Th, 0 < h ≤ 1, denote a quasi-uniform family of subdivisions of a polyhedral domainΩ ⊂ Rd. Let (K ′, P,N)
be a reference finite element such that P ⊂ W l,p(K ′) ∩Wm,q(K ′) is a finite-dimensional space of functions on K ′,N is a basis for
P ′, where 1 ≤ p ≤ ∞, 1 ≤ p ≤ ∞, and 0 ≤ m ≤ l. For K ∈ Th, let (K , PK ,NK ) be the affine equivalent element, Vh = v : v be
measurable and v|K ∈ PK ,∀K ∈ Th. Then there exists a constant C = C(l, p, q) such that[∑

k∈Th

‖v‖
p
W l,p(K)

]1/p
≤ Chm−l+min(0,d/p−d/q) ·

[∑
k∈Th

‖v‖
q
Wm,q(K)

]1/q
. (6)

Lemma 7 ([12]). Let ∆t,H and an, bn, cn, γn (for integer n ≥ 0) be non-negative numbers such that

aN +∆t
N∑
n=0

bn ≤ ∆t
N∑
n=0

γnan +∆t
N∑
n=0

cn + H (7)
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for N ≥ 0. Suppose that ∆tγn < 1, for all n, and set σn = (1−∆tγn)−1. Then

aN +∆t
N∑
n=0

bn ≤ exp

(
∆t

N∑
n=0

σnγn

){
∆t

N∑
n=0

cn + H

}
(8)

for N ≥ 0.

The priori error estimates for the approximation are given in Theorem 1.

Theorem 1. Assume that (3) has a solution u, satisfying utt ∈ L2(0, T , L2(Ω))with ϕ(x) ∈ Hk+1(Ω). If ∆t ≤ ch, then the finite
element approximation is convergent to the solution (2) on the interval (0, T ], as4t, h→ 0. The approximation uh satisfies the
following error estimates:

‖u− uh‖0 ,α/2 ≤ C(h
k+1
‖ut‖0,k+1 + hk+1−

α
2 ‖u‖0,k+1 + hk+

1
2 ‖u‖0,k+1 +∆t‖utt‖0,0 +∆t), (9)

‖u− uh‖∞,0 ≤ C(hk+1‖ut‖0,k+1 + hk+1−
α
2 ‖u‖∞,k+1 + hk+

1
2 ‖u‖∞,k+1 +∆t‖utt‖0,0 +∆t). (10)

Proof of Theorem 1. In order to estimate the error, we first discuss the error at t = tn.
Defining εn = un − unh, we have that the true solution u at t = tn satisfies

(unt , w)+ (cu
n, w)− (un, wax)− (un, awx)+ (Dαx u

n, bw)

= 〈f n, w〉 −
(
∂ung
∂t
, w

)
−

(
∂ung
∂x
, aw

)
+ (Dα−1x ung , bwx)+ (D

α−1
x ung , wbx), (11)

wherew ∈ X0h. Subtracting (5) from (11), we obtain the following equation for εn:(
unt −

unh − u
n−1
h

∆t
, w

)
+ (cεn, w)− (εn, wax)− (εn, awx)+ (Dαx ε

n, bw)

=

(
unt −

unh − u
n−1
h

∆t
+
un − un−1

∆t
−
un − un−1

∆t
, w

)
− (εn, awx)+ (cεn, w)− (εn, wax)+ (Dαx ε

n, bw)

=

(
unt −

un − un−1

∆t
, w

)
+

(
εn − εn−1

∆t
, w

)
+ (cεn, w)− (εn, wax)− (εn, awx)+ (Dαx ε

n, bw)

= 0. (12)

Assume that a, b, c satisfy our discussion. Now let

M = max{‖an‖k, ‖anx‖k, ‖b
n
‖k, ‖cn‖k}.

LetΛn = un − V n, En = V n − unh, in which V
n
∈ Xh; then εn = Λn + En. Also, letw = En. We have

(εn, anEnx ) = (−D1/2x a
n(En +Λn),D1/2∗x En)

≤ (‖anEn‖1/2 + ‖anΛn‖1/2)‖En‖1/2
≤ ‖an‖ · (‖En‖1/2 + ‖Λn‖1/2)‖En‖1/2
≤ C1M(‖En‖21/2 + ‖Λ

n
‖
2
1/2)

≤ C1Mhα/2−1/2hα/2−1/2(‖En‖2α/2 + ‖Λ
n
‖
2
α/2)

= C1Mhα−1(‖En‖2α/2 + ‖Λ
n
‖
2
α/2). (13)

(εn, Enanx) = (E
n
+Λn, Enanx),

and it follows that

(En, Enanx) ≤ C2M‖E
n
‖
2, (14)

(Λn, Enanx) ≤ ‖a
n
x‖ · ‖Λ

n
‖ · ‖En‖ ≤ C3M(‖Λn‖2 + ‖En‖2). (15)

(Dαx ε
n, bnEn) = (Dαx E

n, bnEn)+ (DαxΛ
n, bnEn), (16)

in which

(Dαx E
n, bnEn) ≥

C4
M
‖En‖2α/2. (17)

(DαxΛ
n, bnEn) ≤

C5
M
(‖En‖2α/2 + ‖Λ

n
‖
2
α/2). (18)

(εnt , E
n) = (Ent +Λ

n
t , E

n);
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then one has

(Ent , E
n) =

(
En+1 − En

∆t
, En

)
≥
1
2∆t

(‖En+1‖2 − ‖En‖2), (19)

(Λnt , E
n) ≤

1
2
(‖En‖2 + ‖(Λn+1 −Λn)/∆t‖2). (20)(

unt −
un − un−1

∆t
, En

)
≤

∥∥∥∥unt − un − un−1∆t

∥∥∥∥ ‖En‖
≤
1
2

(∥∥∥∥unt − un − un−1∆t

∥∥∥∥2 + ‖En‖2
)
. (21)

and (
ut −

un − un−1

∆t

)2
=

(
1
∆t

∫ tn

tn−1
utt(·, t)(tn−1 − t)

)2

≤

(
1
∆t

)2 ∫ tn

tn−1
u2tt(·, t)dt

∫ tn

tn−1
(tn−1 − t)2dt

≤ ∆t
∫ tn

tn−1
u2ttdt. (22)

So ∥∥∥∥unt − un − un−1∆t

∥∥∥∥2 = ∆t ∫ tn

tn−1

∫
Ω

u2ttdtdx ≤ C6∆t
∫ tn

tn−1
‖utt‖2dt. (23)

Now we consider the norms over the time domain (0, T ]. We first multiply (12) by ∆t then sum from n = 1 to N , and
apply (13)–(18) and (20)–(22); we have

1
2
(‖EN‖2 − ‖E0‖2)+

N∑
n=1

∆t
M
C4‖En‖2α/2 ≤

N∑
n=1

((C2 + C3)M + 1)∆t‖En‖2 + (∆t)2
N∑
n=1

∫ tn

tn−1
C6‖utt‖2dt

+

N∑
n=1

C5
M
∆t‖En‖2α/2 + h

α−1
N∑
n=1

C1M∆t‖En‖2α/2 +
N∑
n=1

C3M∆t‖Λn‖2

+

N∑
n=1

C5
M
∆t‖Λn‖2α/2 + h

α−1
N∑
n=1

C1M∆t‖Λn‖2α/2 +
N∑
n=1

∆t
∥∥∥∥Λn+1 −Λn∆t

∥∥∥∥2 .
Noting that ‖E0‖2 = 0, and setting (0 <)C7 ≤ (C4 − C5)/M − hα−1C1M , we have

1
2
‖EN‖2 +

N∑
n=1

C7∆t‖En‖2α/2

≤
1
2
‖EN‖2 +

N∑
n=1

(C4 − C5)/M∆t‖En‖2α/2 − h
α−1

N∑
n=1

C1M∆t‖En‖2α/2

≤

N∑
n=1

(M(C2 + C3)+ 1)∆t‖En‖2 +
N∑
n=1

C3M∆t‖Λn‖2

+

N∑
n=1

C5/M ∆t‖Λn‖2α/2 + h
α−1

N∑
n=1

C1M∆t‖Λn‖2α/2

+

N∑
n=1

∆t
∥∥∥∥Λn+1 −Λn∆t

∥∥∥∥2 + C6(∆t)2 N∑
n=1

∫ tn

tn−1
‖utt‖2dt

≤

N∑
n=1

∆t
M
C8‖En‖2 + C9h2(k+1)‖ut‖20,k+1 + C10h

2(k+1− α2 )‖u‖20,k+1
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+ C11h2k+1‖u‖20,k+1 + C12(∆t)
2
N∑
n=1

∫ tn

tn−1
‖utt‖2dt,

in which the interpolation error

N∑
n=1

∆t‖Λn‖2α/2 ≤ C10h
2(k+1− α2 )‖u‖20,k+1.

N∑
n=1

∆t
∥∥∥∥Λn+1 −Λn∆t

∥∥∥∥2 = N∑
n=1

∆t

∥∥∥∥∥ 1∆t
∫ tn

tn−1
1 ·
∂Λ

∂t

∥∥∥∥∥
2

≤

N∑
n=1

∆t
1
∆t2

∫
Ω

(∫ tn

tn−1
1dt

)(∫ tn

tn−1

(
∂Λ

∂t

)2
dt

)
dx

≤ C9h2k+2‖ut‖20,k+1. (24)

Using Lemma7, and supposing that aN = ‖EN‖, bN = ‖EN‖ α2 , γN = C8,H = C9h
2(k+1)
‖ut‖20,k+1+C10h

2(k+1− α2 )‖u‖20,k+1+
C11h2k+1‖u‖20,k+1 + C12∆t

2
‖utt‖20,0, we have

‖EN‖2 ≤ C9h2(k+1)‖ut‖20,k+1 + C10h
2(k+1− α2 )‖u‖20,k+1 + C11h

2k+1
‖u‖20,k+1 + C12∆t

2
‖utt‖20,0.

Thus

‖εn‖20 ,α/2 =

N∑
n=1

∆t‖εn‖2α/2 + O(∆t
2)

≤

N∑
n=1

∆t(‖En‖2α/2 + ‖Λ
n
‖
2
α/2)+ O(∆t

2)

≤ C(T + 1)‖EN‖2α/2 + h
2(k+1−α/2)

‖u‖20,k+1 + O(∆t
2)

≤ C13h2(k+1)‖ut‖20,k+1 + C14h
2(k+1− α2 )‖u‖20,k+1 + C15h

2k+1
‖u‖20,k+1 + C16(∆t)

2
N∑
n=1

∫ tn

tn−1
‖utt‖2dt + O(∆t2)

≤ C(h2k+2‖ut‖20,k+1 + h
2(k+1− α2 )‖u‖20,k+1 + h

2k+1
‖u‖20,k+1 + (∆t)

2
‖utt‖20,0 + O(∆t

2)).

So, we have the result:

‖u− uh‖0,α/2 ≤ C(hk+1‖ut‖0,k+1 + hk+1−
α
2 ‖u‖0,k+1 + hk+

1
2 ‖u‖0,k+1 +∆t‖utt‖0,0 + O(∆t)).

Hence (7) is derived. The estimate for ‖u‖∞,0 can be derived similarly. �

4. Numerical examples

In this section, we present numerical results for the Galerkin approximations which support the theoretical analysis in
Section 3.
Let Sh denote a uniform partition on [0, a], and Xh the space of continuous piecewise linear functions on Sh, i.e. k = 1. In

order to implement the Galerkin finite element approximation, we adapt finite element discretization along the space axis,
and use a finite difference scheme along the time axis. We associate the shape function of space Xh with the standard basis
of hat functions on the uniform grid of size h = 1

n . For φi, i = 0, . . . , n, there exists a closed-form expression for D
α−1φi, and

we note that the fractional derivatives are non-local, with the support of φi being the interval ((i− 1)/n, a]. For this choice
regarding Xh and X0h the approximation property holds, and we have the predicted rates of convergence for∆t = ch2 of

‖u− uh‖0,0 ∼ O(h2),

‖u− uh‖∞,0 ∼ O(h2),

if ϕ(x) is smooth enough.

Example 1. We consider u(x, t) = e−tx2(2− x)2 as the exact solution of the equation in [13]
∂u
∂t
= −u(x, t)+ D1.7x u(x, t)+ f (x, t), 0 ≤ x ≤ 2, 0 ≤ t ≤ 1,

u(x, 0) = x2(2− x)2, 0 ≤ x ≤ 2,
u(0, t) = u(2, t) = 0, 0 ≤ t ≤ 1,

(25)
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Table 1
Numerical error results for Example 1.

h ‖u− uh‖∞,0 Convergence rate ‖u− uh‖0,0 Convergence rate

1/10 3.3580E−003 – 9.3331E−004 –
1/20 8.2381E−004 2.0272 2.0872E−004 2.1607
1/40 2.0499E−004 2.0067 5.0666E−005 2.0425
1/80 5.1190E−005 2.0016 8.8898E−006 2.5107
1/160 1.2793E−005 2.0004 3.1371E−006 1.5027
1/320 3.1982E−006 2.0001 7.8391E−007 2.0006

Table 2
Numerical error results for Example 2.

h ‖u− uh‖∞,0 Convergence rate ‖u− uh‖0,0 Convergence rate

1/5 3.8322E−006 – 7.8445E−007 –
1/10 1.0061E−006 1.9294 1.76363E−007 2.1531
1/20 2.5030E−007 2.0070 4.2823E−008 2.0420
1/40 6.2662E−008 1.9980 1.0626E−008 2.0107
1/80 1.5705E−008 1.9963 2.6516E−009 2.0027
1/160 3.9638E−009 1.98630 6.6271E−0010 2.0004

where

f (x, t) =
e−t

cos(0.85π)

[
24(x2.3 + (2− x)2.3)

Γ (3.3)
−
24(x1.3 + (2− x)1.3)

Γ (2.3)
−
8(x0.3 + (2− x)0.3)

Γ (1.3)

]
.

If we select∆t = ch2 and note that u0 is smooth enough, then we have

‖u− uh‖0,0.85 ∼ O(h2).

‖u− uh‖∞,0 ∼ O(h2).

Table 1 includes numerical calculations over a regular partition of [0,2]. We can see from it that the smaller the size of
the grid, the better the finite element approximation. And we can observe that the experimental rates of convergence agree
very well with the theoretical rates of 2 for the numerical solution.

Example 2. Weconsider another space-fractional differential equation. u(x, t) = e−tx3 is the exact solution of the following
equation in [14]:

∂u
∂t
=
1
6
Γ (2.2)x2.8D1.8x u(x, t)+ f (x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

u(x, 0) = x3, 0 ≤ x ≤ 1,
u(0, t) = 0, u(1, t) = e−t , 0 ≤ t ≤ 1,

where

f (x, t) = −(1+ x)e−tx3.

We select∆t = ch2, and we have

‖u− uh‖0,0.9 ∼ O(h2).

‖u− uh‖∞,0 ∼ O(h2).

Table 2 show that error results for different sizes of space grid. We can still observe that the experimental rates of
convergence are near to the theoretical rates of 2 for the numerical solution.
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