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a b s t r a c t

Let Z ⊆ Pn be a fat point scheme, and let d(Z) be the minimum distance of the linear
code constructed from Z . We show that d(Z) imposes constraints (i.e., upper bounds) on
some specific shifts in the graded minimal free resolution of IZ , the defining ideal of Z . We
investigate this relation in the case that the support of Z is a complete intersection; when
Z is reduced and a complete intersection we give lower bounds for d(Z) that improve upon
known bounds.
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1. Introduction and Notations

Let K be a field of characteristic zero. Let X = {P1, . . . , Ps} ⊂ Pn be a reduced set of points not all contained in a
hyperplane. A fat point scheme Z in Pn with support Supp(Z) = X , and denoted

Z = m1P1 + · · · + msPs

is the zero-dimensional scheme defined by IZ = Im1
P1

∩ · · · ∩ Ims
Ps ⊂ R = K[x0, . . . , xn], where IPi is the defining ideal of the

point Pi. The scheme Z is sometimes called a set of fat points. We callmi themultiplicity of the point Pi. When all themi’s are
equal, we say Z is homogeneous.

To a fat point scheme we associate a linear code with generating matrix

A(Z) =


c1 · · · c1  
m1

· · · cs · · · cs  
ms


,

where each ci is a column vector with entries equal to the homogeneous coordinates of the point Pi. This linear code has
parameters [m1 + · · · + ms, n + 1, d], where d denotes, as usual, the minimum Hamming distance of the code. Depending
on the situation, d (denoted with d(Z)) will be called the minimum distance of the matrix A(Z), or the minimum distance of the
fat point scheme Z .

Note that in the matrix A(Z), if we replace a column ci with any of its (nonzero) scalar multiples, or if we permute in any
way the columns of A(Z), the parameters of this linear code do not change. As a consequence of this simple observation one
can create a fat point scheme Z from any generatingmatrix of any linear code, by identifying the columns of this matrix with
points (fat points, if some columns are proportional) in a projective space. Hansen [11], Gold et al. [7] and the first author
[16] took this approach in the case when Z is reduced (i.e.,mi = 1, or the generatingmatrix has no proportional columns) to
obtain bounds on the minimum distance using homological algebra. In particular, it was shown [7,15,16] that the minimum
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E-mail addresses: stohanea@uwo.ca (Ş.O. Tohǎneanu), avantuyl@lakeheadu.ca (A. Van Tuyl).
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distance d can be bounded below in terms of the graded shifts appearing in the graded minimal free resolution of R/IZ . The
lower bounds of d = d(Z) can be interpreted as upper bounds for the corresponding homological invariants of Z; our main
goal is to consider the same problem, but we drop the condition that Z is reduced.

Let Z ⊆ Pn be any zero-dimensional (arithmetically) Cohen–Macaulay subscheme. Let R = K[x0, . . . , xn], and let I = IZ
be the ideal of Z . Suppose that the graded minimal free resolution of R/I has the form

0 → Fn =

un
j=1

R(−aj,n) → · · · → F1 =

u1
j=1

R(−aj,1) → R → R/I → 0.

We set ti = minj{aj,i}, for each i = 1, . . . , n, and we call sn(Z) = tn − n theminimum socle degree of Z .

Remark 1.1. We are abusing terminology slightly in the above definition. Since R/I is a Cohen–Macaulay ring of dimension
1, we can find a linear form L that is a nonzero divisor on R/I . Then, the ring A = R/(I, L) is an Artinian ring. The socle of
this ring is soc(A) = 0 : m where m =


j≥1 Aj. The socle is an ideal of A; it can be shown that the degrees of the minimal

generators of this ideal are encoded into the graded shifts at the end of the graded minimal resolution of R/I , but shifted by
n (see [12] for more details). We call sn(Z) the minimum socle degree to recognize this connection.

When Z is reduced, the homological lower bounds for the minimum distance mentioned above are expressed in terms
of the minimum socle degree, that is,

d(Z) ≥ sn(Z).

One can observe that the minimum distance puts constraints on the shifts in the graded minimal free resolution of Z:
d(Z)+n ≥ tn ≥ tn−1 +1 ≥ · · · ≥ t1 +n−1. Example 4.1 shows that the minimum distance will never precisely determine
the minimum socle degree. Nevertheless, in [16] it is shown that d(Z) = sn(Z) is attained for a family of examples due to J.
Migliore.

The goal of this paper is to obtain similar constraints for the graded minimal free resolution of a fat point scheme. Once
we add multiplicities to the points, even when the support is as nice as possible (e.g., complete intersection), the shifts in
the resolution change with no visible pattern.

In this paper, we take the point-of-view of describing how d(Z), the minimum distance of a linear code constructed from
Z , can be used to bound homological invariants of IZ . One could invert this point-of-view by studying how homological
invariants are related to the minimum distance, and linear codes in general. The references [7,11,15] took this second
approach. Because some of our results do not require char(K) = 0, these results could also be used to study linear codes.
We see our results as complementing ongoing research to algebraically study linear codes. For example, the references
[3,17] provide an entry point for readers who would like to learn more about coding theory from an algebraic geometric
perspective. Feng et al. [4] present a version of Bézout’s Theoremusing resultants to address a lower bound for theminimum
distance of a special class of algebraic geometric codes. And more recently, Sarmiento et al. [14] used algebraic methods to
study problems arising from coding theory.

Our paper is structured as follows. In Section 2.1 we present a short introduction to the study of the minimum distance
of a linear code. We consider the relationship between the minimum distance of the linear code created from a fat point
scheme Z and the minimum distance of the linear code constructed from X = Supp(Z) (Theorem 2.4). The bounds obtained
are optimal, as shown by examples. Since we have not found this result in the literature, we decided to write down the
detailed proof, even though the result seems to be natural. In Section 2.2, Theorem 2.8 finds an upper bound for the first
homological invariant of the fat point scheme Z in terms of theminimumdistance of the associated linear code. The invariant
considered is t1, the minimal degree of a generator of IZ . In Section 3 we present our main result, Theorem 3.7, which gives
an upper bound for the minimum socle degree of the fat point scheme in terms of the minimum distance of its support. The
main tool used is the machinery of separators of fat points developed in [10]. In Section 4, we specialize to the case that the
support of the fat points Z in Pn is a complete intersection. In particular, we use Bézout’s Theorem in Corollary 4.8 to give
new lower bound on d(Z).

2. Minimal degree of hypersurfaces containing Z

2.1. The minimum distance of a linear code

Let K be any field, and let n ≥ 1 and s ≥ n + 1 be two integers. A linear code C of length s and dimension n + 1 is the
image of an injective K-linear map φ : Kn+1

→ Ks. The minimum (Hamming) distance d of C is the minimum number of
nonzero entries in a nonzero element (codeword) in C. The numbers s, n + 1 and d are called the parameters of C, and the
code is called an [s, n + 1, d]-code.

Any matrix representation of φ is called a generating matrix. This representation is an (n + 1) × s matrix with entries in
K, of rank n + 1. Usually one writes this matrix representation of φ in the standard bases of Kn+1 and Ks. We can reverse
the process: if A is an (n + 1) × s matrix of rank n + 1, we can create a linear code having A as a generating matrix, by
constructing the map φ from A, using the standard bases.
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Let c1, . . . , cs ∈ Kn+1 be s ≥ n + 1 vectors which have the property that no vector is a scalar multiple of another vector.
That is, for every i ≠ j, ci ≠ ecj for every 0 ≠ e ∈ K. Let

A(X) =


c1 · · · cs

,

and assume that the vectors ci have been picked so that rank(A(X)) = n + 1. We call this matrix reduced. With the same
vectors, fix integersm1, . . . ,ms, and set

A(Z) =


c1 · · · c1  
m1

· · · cs · · · cs  
ms


. (2.1)

When m1 = · · · = ms = 1, then A(Z) = A(X). If mi > 1, then we say A(Z) is non-reduced, and we call A(X) the reduced
matrix associated to A(Z).

Definition 2.1. If A is an (n + 1) × s matrix with entries in a field K with rank n + 1, then theminimum distance of A is

d(A) = min{d | there exists s − d columns of A that span an n-dimensional space}.

If A = A(X), respectively, A = A(Z), we will denote d(A) by d(X), respectively d(Z).

Remark 2.2. If C ⊆ Ks is a linear code with parameters [s, n + 1, d], then d is equal to the minimum distance of any
generating matrix of C, as we defined above.

We give a simple linear algebra argument for this fact. Suppose that

A =

 a1,1 a1,2 · · · a1,s
...

...
...

an+1,1 an+1,2 · · · an+1,s


is a generating matrix for C. Denote with r1, . . . , rn+1 the rows of A, and with c1, . . . , cs the columns. It is enough to show
that there exists a codeword v (so a linear combination of the ri’s) with j zero entries in positions i1, . . . , ij if and only if the
dimension of the vector space spanned by ci1 , . . . , cij is ≤n.

(⇒) Let v = u1r1 + · · · + un+1rn+1, ui ∈ K be a codeword with the first j entries equal to zero. This means that

u1a1,1 + · · · + un+1an+1,1 = 0, . . . , u1a1,j + · · · + un+1an+1,j = 0.

Equivalently,

c1, . . . , cj ∈ {(x1, . . . , xn+1) ∈ Kn+1
| u1x1 + · · · + un+1xn+1 = 0}.

So we have j points of Kn+1 on a hyperplane, which implies

dim span⟨c1, . . . , cj⟩ ≤ n.

(⇐) Suppose dim span⟨c1, . . . , cj⟩ ≤ n. If we consider the matrix whose ith row is given by ci, i.e., take the transpose of
the matrix with columns given by ci’s, then this matrix has rank at most n. But this means that the homogeneous system of
equations in the variables y1, . . . , yn+1

a1,1y1 + · · · + an+1,1yn+1 = 0
...

a1,jy1 + · · · + an+1,jyn+1 = 0

must have a nontrivial solution (u1, . . . , un+1). This nowmeans that the codeword v = u1r1 + · · · + un+1rn+1 has the first j
entries equal to zero.

Remark 2.3. Suppose we are given any t ≥ n+1 vectors in a1, . . . , at ∈ Kn+1, such that A =

a1 · · · at


has rank n+1.

Then, rescaling any proportional vectors or permuting columns of A does not change the value of the minimum distance
d(A) for this matrix.

The value of d(Z) is related to d(X) as follows:

Theorem 2.4. Let A(Z) be a matrix of the form (2.1) and assume that the columns of A(Z) have also been permuted so that
m1 ≥ m2 ≥ · · · ≥ ms. If A(X) is the reduced matrix associated to A(Z), and d(X) = d, then

m1 + · · · + md ≥ d(Z) ≥ ms−d+1 + · · · + ms.

In addition, if m1 = · · · = ms = m, then d(Z) = md(X).
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Proof. Let

Λ =

W = {ci1 , . . . , cie} ⊆ {c1, . . . , cs} | dim(span⟨W ⟩) = n} ,

i.e., Λ is the collection of all e columns that span an n-dimensional space. In particular, since d(X) = d, we can find s − d
columns ci1 , . . . , cis−d such that {ci1 , . . . , cis−d} ∈ Λ. So, if W ∈ Λ, then n ≤ |W | ≤ s − d, where the first inequality comes
from the fact that one needs at least n vectors to span an n-dimensional space.

Computing d(Z) is equivalent to finding the maximum number of column vectors of A(Z) that span an n-dimensional
space. If any column of A(Z) is used to span this n-dimensional space, we should also take all copies of that column; each
extra column does not contribute to the dimension (being a scalar multiple of the first column) but it contributes to the total
number of columns being used.

Thus, ifM = m1 + · · ·+ms, we can find e distinct columns ci1 , . . . , cie such that the followingM − d(Z) columns of A(Z)

{ci1 , . . . , ci1  
mi1

, . . . , cie , . . . , cie  
mie

}

span an n-dimensional subspace of Kn+1. But then {ci1 , . . . , cie} ∈ Λ. Thus

M − d(Z) = max{mi1 + · · · + mie | {ci1 , . . . , cie} ∈ Λ}.

SoM − d(Z) ≥ mi1 +· · ·+mie for allW = {ci1 , . . . , cie} ∈ Λ. Because there must existW ∈ Λ with |W | = s− d, we obtain
that

M − d(Z) ≥ mi1 + · · · + mis−d ,

for some i1, . . . , is−d ∈ [s].
If one has a (finite) decreasing (not necessarily strictly) sequence of numbers, then the sumof any k terms of this sequence

is greater than or equal to the sum of the last k terms of the sequence. In our case the sequence ism1 ≥ m2 ≥ · · · ≥ ms, and
k = s − d. So

M − d(Z) ≥ md+1 + · · · + ms,

and therefore

m1 + · · · + md ≥ d(Z).

Alternatively, we can write

d(Z) = min

mj1 + · · · + mjs−e

 {j1, . . . , js−e} = [s] \ {i1, . . . , ie}
with {ci1 , . . . , cie} ∈ Λ


.

Because any W ∈ Λ has |W | ≤ s − d, the smallest sum we can have contains s − (s − d) = d terms. Moreover, since
m1 ≥ m2 ≥ · · · ≥ ms, we must have

d(Z) ≥ ms−d+1 + · · · + ms.

Whenm1 = · · · = ms = m, our two bounds givemd ≥ d(Z) ≥ md. �

Remark 2.5. When m1 = · · · = ms = m, then the corresponding linear code is sometimes called a m-fold repetition code
(see [18]).

Example 2.6. Both of the bounds of Theorem 2.4 can be attained. Consider the following two matrices with entries in F2,
the finite field with two elements:

A(Z1) =

 1 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 1 1
0 0 0 0 0 1 1 1 1


and A(Z2) =

 0 0 1 0 0
1 1 0 1 0
1 1 0 0 1


.

These two matrices have the same reduced associated matrix

A(X) =

 1 0 0 0
0 1 0 1
0 0 1 1


,

which has d = d(X) = 1.
For A(Z1)we have d(Z1) = 3, andm1 = 3,m2 = m3 = m4 = 2. So the upper bound in Theorem 2.4 is attained. For A(Z2),

we have d(Z2) = 1, and m1 = 2,m2 = m3 = m4 = 1. In this case, the lower bound in Theorem 2.4 is attained.
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2.2. An upper bound for t1

Let K be any field and let Z ⊂ Pn
K be a fat point scheme defined by IZ ⊂ R = K[x0, . . . , xn]. Let X be the support of Z , so

X is a reduced finite set of points. Assume that they are not all contained in a hyperplane in Pn.
As described above, let A(X) be the reduced matrix associated to X and let A(Z) the non-reduced matrix associated to Z .

Let d(X), and d(Z) respectively, be the minimum distances of these matrices.

Remark 2.7. We can reinterpret d(X) as a geometric condition. Let hyp(X) denote the maximum number of points of X
contained in a hyperplane. Then

d(X) = |X | − hyp(X).

We can observe this by noting that the columns corresponding to the points in the hyperplane must span a vector space of
dimension n.

The ring R/IZ has a graded minimal free resolution as given in the introduction. Let α(IZ ) := t1 = min{u | (IZ )u ≠ 0}. So
α(IZ ) is the minimal degree of a hypersurface containing Z .

Theorem 2.8. Let Z = m1P1 + · · · + msPs ⊆ Pn be a fat point scheme. Set m(Z) = max{m1, . . . ,ms}. Then

d(Z) ≥ α(IZ ) − m(Z).

Proof. We first consider the case that A(Z) = A(X), i.e., mi = 1 for i = 1, . . . , s for any integer s ≥ n + 1. Suppose that
d(X) < α(IX ) − 1. Because X does not lie in a hyperplane, α(IX ) ≥ 2. From Remark 2.7, there is a hyperplane of equation
H = 0 that contains s − d(X) of the points of X . For the remaining d(X) points, say Q1, . . . ,Qd(X), let Li be any linear form
in the ideal of the point Qi. Then the hypersurface defined by G = H · L1 · · · Ld(X) passes through all the points of X , and
degG = 1 + d(X) < α(IX ), a contradiction. So d(X) ≥ α(IX ) − 1.

We now proceed by induction on the tuple (s, (m1, . . . ,ms)), that is, we assume that the statement holds for all tuples
of the form (s, (a1, . . . , as)) with

(1, . . . , 1  
s

) ≼ (a1, . . . , as) ≺ (m1, . . . ,ms),

or for all tuples of the form (s − 1, (a1, . . . , âi, . . . , as)) where s − 1 ≥ n + 1 and

(1, . . . , 1  
s−1

) ≼ (a1, . . . , âi, . . . , as) ≺ (m1, . . . , m̂i, . . . ,ms).

Here ˆ denotes the removal of an element from a tuple, and (a1, . . . , an) ≼ (b1, . . . , bn) if and only if ai ≤ bi for all i.
Let

A(Z) =


c1 · · · c1  
m1

· · · cs · · · cs  
ms


.

Denote d(Z) = d and A(Z) = A. From the definition, we can find d columns such that M − d is the maximum number of
columns in A that span an n-dimensional vector space. Here, M = m1 + · · · + ms. Let Ω denote the set of these M − d
columns.

Let c be any column of A, with c /∈ Ω . Such a column exists, because if every column of A belonged to Ω , then the rank
of A would not be n + 1.

Let A′ be the matrix obtained from A after removing the column c . We now consider two cases.
Case 1. rank(A′) = n + 1.
Because c /∈ Ω , then Ω consists of columns of A′, and the columns in Ω span an n-dimensional vector space. If we let d′

denote the minimum distance of A′, we then have |Ω| ≤ (M − 1) − d′. But because |Ω| = M − d, we obtain d ≥ d′
+ 1.

After permuting the columns of A, we can assume that we have removed the first column of A to construct A′. We then
associate to A′ the fat point scheme Z ′

= (m1 − 1)P1 + m2P2 + · · · + msPs.
Let F ∈ (IZ ′)α(IZ ′ ) be any form of smallest degree in IZ ′ , and let L ∈ (IP1)1 be any linear form in the ideal IP1 . Then

FL ∈ (IZ )α(IZ ′ )+1, whence

α(IZ ′) + 1 ≥ α(IZ ).

If m1 ≥ 2, then by induction we have that d′
= d(Z ′) ≥ α(Z ′) − m(Z ′). Similarly, if m1 = 1, then we must have

s − 1 ≥ n + 1. This is because if we remove the first column from A, the columns of A′ all correspond to points in the set
{P2, . . . , Ps}. Since the matrix A′ has rank n+ 1, wemust have at least n+ 1 distinct points in this set. But then by induction,
we also know that d′

= d(Z ′) ≥ α(Z ′) − m(Z ′).
Becausem(Z) ≥ m(Z ′), when we put together our pieces, we find the desired bound:

d(Z) ≥ d(Z ′) + 1 ≥ α(IZ ′) − m(Z ′) + 1 ≥ α(IZ ) − m(Z).
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Case 2. rank(A′) = n.

If rank(A′) = n, then the column c only appears in A exactly once. Furthermore, all the M − 1 columns of A′ span an
n-dimensional vector space, and therefore

M − 1 ≤ M − d,

and so d = 1, because the minimum distance must be positive.
After permuting the columns of A, we can assume that c is the first column c1. Moreover, the distinct columns c2, . . . , cs in

A span an n-dimensional vector space. This means that the points associated to these columns are contained in a hyperplane
defined by a linear form H . So

Hm(Z)
∈ Im2

2 ∩ · · · ∩ Ims
s .

Let L ∈ I1 be a linear form vanishing at the point associated to c1. Then L · Hm(Z)
∈ IZ , and therefore m(Z) + 1 ≥ α(IZ )

which gives us

d = 1 ≥ α(IZ ) − m(Z)

for this case as well. �

When Z = X is reduced, the bound we obtained in the previous theorem can only be attained in a very special situation.

Theorem 2.9. Let X = {P1, . . . , Ps} be a reduced set of points, not all contained in a hyperplane. Then d(X) = α(IX ) − 1 if and
only if s − 1 points of X lie on a hyperplane.

Proof. (⇐) The above theorem gives d(X) ≥ α(IX ) − 1. On the other hand, the set of points X do not lie on a hyperplane,
so α(IX ) ≥ 2. In addition, if s − 1 points of X lie on a hyperplane, this implies that the minimum distance of A(X)
is 1 since the s − 1 columns corresponding to the points on the hyperplane span an n-dimensional vector space. So,
1 = d(X) ≥ α(IX ) − 1 ≥ 2 − 1, which gives the desired conclusion.

(⇒) Suppose that s′ < s − 1 is the maximum number of points of X that lie on a hyperplane. Let H be the linear form
defining this hyperplane. By definition, s− d(X) = s′. Pick any two points of X not in this hyperplane, and let L be any linear
form that vanishes at these two points. For any of the remaining t = s − (s′ + 2) ≥ 0 points, let Li be any linear form
vanishing at that point. Then G = H · L · L1 · · · Lt is a form in the ideal of the points of X . Furthermore

degG = t + 2 = s − s′ = s − (s − d(X)) = d(X) = α(IX ) − 1.

We have a contradiction since (IX )i = (0) for all i < α(IX ). �

Example 2.10. When Z is not reduced, one can attain the bound in Theorem 2.8 as well. Let P1 = [0 : 1 : 0], P2 = [1 :

0 : 0], P3 = [1 : 1 : 0], P4 = [0 : 0 : 1] be four points in P2. Consider Z = 2P1 + 2P2 + P3 + P4. We have α(IZ ) = 3 and
m(Z) = 2.

We have

A(Z) =

 0 0 1 1 1 0
1 1 0 0 1 0
0 0 0 0 0 1


,

which has d(Z) = 1.

Example 2.11. Since there are no restrictions on the base field K, the statement in Theorem 2.8 can have applications in
coding theory; it gives a lower bound for the minimum distance of A(Z). This lower bound does not depend on d(X), where
X = Supp(Z), as Theorem 2.4 does.

Furthermore, the lower bound of Theorem 2.8 improves the bound of Theorem 2.4 in certain cases. For example, let
X = {P1, . . . , P6} be six points in P2 where P4, P5, P6 all lie on a line, and none of P1, P2, or P3 lie on this line, and moreover,
there is no line that passes through these three points. By our choice of points, hyp(X) = 3, and thus d(X) = 6 − 3 = 3.

Now consider the fat point scheme Z = 5P1 + 5P2 + 5P3 + P4 + P5 + P6. We have m1 = m2 = m3 = m(Z) = 5, and
m4 = m5 = m6 = 1. Theorem 2.4 gives the lower bound d(Z) ≥ m4 + m5 + m6 = 3. However, for this set of fat points,
α(IZ ) = 9, whence by Theorem 2.8 we have d(Z) ≥ α(IZ )−m(Z) = 9−5 = 4. So, the lower bound of Theorem 2.8 is better
in this case.

3. The minimum socle degree of a homogeneous fat point scheme

Let K be a field of characteristic zero. Let Z = mP1 + · · · + mPs ⊂ Pn be a homogeneous fat point scheme with
X = Supp(Z) = {P1, . . . , Ps} not contained in a hyperplane. With the notations above, in this section we prove one of
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the main results of the paper:

sn(Z) ≤ md(X).

(Note that we assume K has characteristic zero so that we can make use of a result found in [10] on separators of fat points.
In particular, the result that we require from [10] is based upon a mapping cone construction of a graded minimal free
resolution of IZ ; themaps that appear in this constructionmay change if we consider a field of characteristic p > 0. A careful
analysis of [10] would be required to determine if the results of this section still hold in nonzero characteristics.)

Before we prove this result, we will make some remarks on the results obtained in the previous section for the case of
homogeneous fat points. First, as observed in Theorem 2.4, d(Z) = md(X). Second, the result in Theorem 2.8 is immediate
in this case: if f ∈ IX is of degree α(IX ), then f m ∈ IZ , and hencemα(IX ) ≥ α(IZ ). With d(Z) = md(X) and d(X) ≥ α(IX ) − 1,
we indeed obtain that d(Z) ≥ α(IZ ) − m.

An interesting question remains: When is this bound attained? A simple computation shows that the bound is attained
whenever d(X) = 1 and α(IZ ) = mα(IX ). Now, looking at Example 2.10, with Z = mP1 + mP2 + mP3 + mP4, when m = 2
we have α(IZ ) = 4 = 2α(IX ), whereas whenm ≥ 3, α(IZ ) ≤ 2m − 1.

In general there is no control on α(IZ ) as we vary m. As we can see in the second part of the example below, some
‘‘random’’ behavior happens in general for sn(Z) when Z is a homogeneous fat point scheme.

Example 3.1. Let X = {P1, P2, P3, P4, P5} ⊆ P2 where P1 = [1 : 0 : 0], P2 = [0 : 1 : 0], P3 = [0 : 0 : 1], P4 = [1 : 1 : 0],
and P5 = [1 : 3 : 1]. Set Z = mP1 + mP2 + mP3 + mP4 + mP5, with m ≥ 1. We have that d(X) = 2 ≥ 2 = α(IX ), and
d(Z) = md(X) = 2m. For m = 1, . . . , 7, we calculate the minimum socle degree of IZ :

m 1 2 3 4 5 6 7
s2(Z) 2 4 6 8 10 12 14

Let X = {P1, P2, P3, P4} ⊆ P2 where P1 = [1 : 0 : 0], P2 = [0 : 1 : 0], P3 = [0 : 0 : 1], and P4 = [1 : 1 : 0], and
set Z = mP1 + mP2 + mP3 + mP4 with m ≥ 1. We have d(X) = 1 = 2 − 1 = α(IX ) − 1 and d(Z) = md(X) = m. For
m = 1, . . . , 7, we calculate s2(Z):

m 1 2 3 4 5 6 7
s2(Z) 1 3 5 6 8 10 11

Before we state and prove Theorem 3.7, we shall need the notion of a separator of a fat point, as found in [10].

Definition 3.2. Let Z = m1P1+· · ·+msPs ⊆ Pn be a set of fat points, and suppose that Z ′
= m1P1+· · ·+(mi−1)Pi+· · ·+msPs

for some i = 1, . . . , s. (If mi = 1, we simply omit the point Pi in Z ′.) We call F ∈ R = K[x0, . . . , xn] a separator of Pi of
multiplicity mi if F ∈ IZ ′ \ IZ .

When all of themis equal one in the above definition, we recover the definition of a separator of a reduced point as found
in [1,2,6]. We now apply [10, Theorem 5.4].

Theorem 3.3. Let Z = m1P1+· · ·+msPs ⊆ Pn be a set of fat points, and suppose that Z ′
= m1P1+· · ·+(mi−1)Pi+· · ·+msPs

for some i = 1, . . . , s. Let F be any separator of Pi of multiplicity of mi of smallest degree, i.e., if F ′ is any other separator of Pi of
multiplicity mi, then deg F ′

≥ deg F . Then

deg F ≥ sn(Z).

Proof. Note that [10, Theorem 5.4] actually proves something stronger: if G is anyminimal generator of the R-module IZ ′/IZ ,
then degG + n appears as a shift in the last module in the graded minimal free resolution of IZ . Because F will be a minimal
generator of IZ ′/IZ of smallest degree, deg F+nwill appear as a shift in the lastmodule in the gradedminimal free resolution,
and thus deg F + n − n ≥ sn(Z). �

We need one other result. In Remark 2.7, hyp(X) denotes the maximum number of points of a reduced set of points X
contained in somehyperplane. To obtain themaximumnumber of points ofX contained in somehypersurface of degree a, by
[13], one should compute hyp(va(X)), where va is the Veronese embedding of degree a of Pn into PNa , where Na =

n+a
a


−1.

Let us denote

d(X)a = |X | − hyp(va(X)).

Observe that d(X)1 = d(X).

Remark 3.4. As an aside, d(X)a is the minimum distance of the evaluation code C(X)a (see [11,17] for more details).
However, we will not need this interpretation.

The following lemma will then constitute a key tool needed to prove our main result:

Lemma 3.5 ([15, Proposition 2.1]). Let X = {P1, . . . , Ps} ⊆ Pn be a set of distinct reduced points. If d(X)b ≥ 2 for some b, then
for all 1 ≤ a ≤ b − 1, we have d(X)a ≥ d(X)a+1 + 1 and therefore d(X)a ≥ b − a + 2.
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Remark 3.6. Here is an intuitive, geometrical proof of the above lemma. Suppose that s − d(X)a points of X lie on a
hypersurface of degree a. Then we need to have at least s − d(X)a + 1 points lying on a hypersurface of degree a + 1.
Indeed, if you take the hypersurface V (F) of degree a containing the s − d(X)a points, and any hyperplane V (L) through
one of the remaining points, then the hypersurface V (F · L) of degree a + 1 will contain s − d(X)a + 1 points. So,
d(X)a+1 ≤ s − (s − d(X)a + 1), i.e., d(X)a+1 + 1 ≤ d(X)a.

We come to our main theorem.

Theorem 3.7. Let Z = mP1 + · · · + mPs ⊆ Pn be a homogeneous set of fat points with X = Supp(Z) not contained in a
hyperplane.

(i) If d(X) ≥ α(IX ), then sn(Z) ≤ md(X).
(ii) Otherwise, if d(X) = α(IX ) − 1, then sn(Z) ≤ 2m − 1.

Proof. From Theorem 2.4, we have that d(Z) = md(X).
For each Pi ∈ X , let

δi = min{deg F | F(Q ) = 0 for each Q ∈ X \ {Pi} but F(Pi) ≠ 0}.

Let δ = mins
i=1{δi} be theminimumdegree. After relabeling, wemay assume that δ = δ1. Let X ′

= X \{P1} and let F ∈ IX ′ \ IX
be a separator of degree δ.

Let G ∈ (IX )α(IX ). Then

F · Gm−1
∈ IW \ IZ ,

whereW = (m − 1)P1 + mP2 + · · · + mPs. In other words, F · Gm−1 is separator of P1 of multiplicitym. So

δ + (m − 1)α(IX ) ≥ ∆(Z),

where ∆(Z) is the smallest degree of a separator of P1 of multiplicity m. By Theorem 3.3, we then have

δ + (m − 1)α(IX ) ≥ ∆(Z) ≥ sn(Z).

(i) If d(X) ≥ α(IX ), then δ ≥ 2. Otherwise, if δ = 1, then s − 1 points of X will lie in a hyperplane. But by Corollary 2.9,
this can only happen if d(X) = α(IX ) − 1.

Also, d(X)δ−1 ≥ 2. If d(X)δ−1 ≤ 1, then there is a hypersurface of degree δ − 1 that contains either all the points of X ,
or all but one point of X . But this would contradict our choice of δ; it is the smallest degree of a form that passes through
all the points of X except one. So, by Lemma 3.5 with b = δ − 1 and a = 1, we have d(X) ≥ δ. With this fact, and since
d(X) ≥ α(IX ), we obtain

d(Z) = md(X) = d(X) + (m − 1)d(X) ≥ δ + (m − 1)α(IX ) ≥ ∆(Z) ≥ sn(Z).

(ii) If d(X) = α(IX )−1, then s−1 points of X lie on a hyperplane by Corollary 2.9. As shown in the proof of this corollary,
this also implies d(X) = 1. Let V (H) be the hyperplane through the s − 1 points, and let L be a linear form that vanishes at
the remaining point off the hyperplane (say P1). Then

Hm
· Lm−1

∈ IW \ IZ

whereW = (m − 1)P1 + mP2 + · · · + mPs. Hence, Hm
· Lm−1 is a separator of P1 of multiplicitym. Thus, by Theorem 3.3,

2m − 1 ≥ sn(Z). �

Remark 3.8. Looking at Example 3.1, observe that the first part of this example gives that for each m = 1, . . . , 7 the lower
bound of Theorem 3.7(i) is attained. The second part shows that for m = 1, 2 and 3 the lower bound of Theorem 3.7(ii) is
also attained.

We end this section with a question based upon our results.

Question 3.9. Can we generalize the lower bound of Theorem 3.7 to non-homogeneous fat points? Is it true that d(Z) ≥

sn(Z)−m(Z)+1,where m(Z) is the maximummultiplicity of a point in Z, for any Z? In other words, because sn(Z) ≥ α(IZ )−1,
can Theorem 2.8 be improved to d(Z) ≥ sn(Z) − m(Z) + 1 ≥ α(IZ ) − m(Z)?

4. A case study: complete intersections

Reduced matrices of the form A(X) were studied by Hansen [11] and Gold et al. [7]. In both cases, the authors focused on
the case that the associated set of reduced points X was a complete intersection. (Their results were later generalized in [15]
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to the case that X was Gorenstein, and in [16] to the case that X was any reduced set of points.) Building upon their work,
we consider matrices of the form A(Z) when the support of the fat points Z is a complete intersection.

Recall that a set of points of X ⊆ Pn is a complete intersection of type (d1, . . . , dn) if there exists a regular sequence of
homogeneous forms F1, . . . , Fn ∈ R with deg Fi = di such that IX = (F1, . . . , Fn). We usually denote X by CI(d1, . . . , dn).
Because the Fi’s defining a complete intersection are homogeneous, any permutation of the Fi’s is also a complete intersec-
tion. So, we canmake the assumption that d1 ≤ d2 ≤ · · · ≤ dn. Because we are interested in the case that A(X) has full rank,
we can also assume that 2 ≤ d1. If d1 = 1, then the set of points X would be contained in a hyperplane.

Recall that the theme of this paper is to study the shifts in the graded minimal free resolution in terms of the minimum
distance of A(Z). While some bounds can be found, the following example shows that this will not be enough.

Example 4.1. Consider the following two sets of points X1, X2 ⊆ P2, both examples of complete intersections of the form
CI(2, 3). In the first case the conic is irreducible, while in the second case the conic is reducible.

The graded minimal free resolutions of R/IX1 and R/IX2 are the same, i.e.,

0 → R(−5) → R(−2) ⊕ R(−3) → R → R/I → 0 with I = IX1 or IX2 .

We have s2(X1) = s2(X2) = 5 − 2 = 3. If A1 and A2 are the corresponding matrices (i.e., the columns of these matrices
will be given by the homogeneous coordinates in the algebraic closure of K of the points), we see from Remark 2.7, that
d(A1) = 6 − 2 = 4, and d(A2) = 6 − 3 = 3.

Indeed the bound in Theorem 3.7, with m = 1, is satisfied for both cases, that is, d(Ai) ≥ s2(Ai) for i = 1, 2. But this
example also shows that one cannot rely on the graded minimal free resolution alone to find the minimum distance.

4.1. Homogeneous fat points with complete intersection support

As shown in Theorem 3.7, we can bound d(Z) in terms of sn(Z). In the case that Supp(Z) is a complete intersection, we
can get an explicit value for sn(Z) when all the multiplicities are equal.

Lemma 4.2. Let Z = mP1 + · · · + mPs ⊆ Pn be a set of fat points with Supp(Z) = CI(d1, d2, . . . , dn). Then

sn(Z) = md1 + d2 + d3 + · · · + dn − n.

Proof. The defining ideal of IZ is ImX with X = Supp(Z). But ImX is a power of a complete intersection, so one can use the
formula of [9, Theorem 2.1]. �

If we want to see for what such Z are the bounds in Theorem 3.7 attained, we obtain the following.

Theorem 4.3. Let X = CI(d1, . . . , dn) ⊆ Pn with n ≥ 2, and let Z be the homogeneous set of fat points of multiplicity m whose
support is X. Then

md(X) = sn(Z) if and only if X = CI(2, 2).

Proof. First, we show that we can exclude the second part of Theorem 3.7 from consideration. Indeed, suppose that
d(X) = α(IX ) − 1. By the proof of Corollary 2.9, we must have α(IX ) = d1 = 2, and thus Theorem 4.2 implies that
sn(Z) = 2m + d2 + · · · + dn − n. From Theorem 3.7, we have sn(Z) ≤ 2m − 1, and therefore, d2 + · · · + dn − n ≤ −1. But
2 = d1 ≤ d2 ≤ · · · ≤ dn implies that 2(n − 1) − n ≤ d2 + · · · + dn − n ≤ −1, thus giving us n − 2 ≤ −1, that is, n ≤ 1,
thus giving the contradiction. Thus, we can assume that d(X) ≥ α(IX ) = d1.

Suppose sn(Z) = md(X). From Theorem 3.7, m = 1, we have d(X) ≥ sn(X) = d1 + · · · + dn − n and, from Lemma 4.2,
sn(Z) = md1 + d2 + · · · + dn − n.

Denote sn(Z) = U and msn(X) = V . We then have U = (m − 1)d1 + V/m. Now we will have U ≥ V if and only if
(m − 1)d1 + V/m ≥ V . But this inequality is equivalent to

m(m − 1)d1 ≥ (m − 1)V .
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Somd1 ≥ V . But V = msn(X), so d1 ≥ sn(X) = d1 + d2 + · · · + dn − n. We thus get U ≥ V if and only if n ≥ d2 + · · · + dn.
But 2 ≤ d2 ≤ · · · ≤ dn, so we have n ≥ 2(n − 1), i.e., 2 ≥ n. But this forces n = 2, d2 = 2, and d1 = 2.

Thus, unless X = CI(2, 2), we have msn(X) > sn(Z), and thereforemd(X) ≠ sn(Z).
If X = CI(2, 2), then s2(Z) = m · 2 + 2 − 2 = 2m. Since d(X) = 2 we have indeed that s2(X) = md(X). �

Lemma 4.2 also lets us recover a result of Gold et al. [7] as a corollary; their result is the case when all the multiplicities
equal one.

Corollary 4.4. Let X = {P1, . . . , Ps} ⊆ Pn be a reduced set of points. If X = CI(d1, . . . , dn), then

d(X) ≥ d1 + d2 + d3 + · · · + dn − n.

Proof. By Theorem 3.7, d(X) ≥ sn(X). Now use Theorem 4.2. �

4.2. Bézout’s Theorem

It is known that the bound of Corollary 4.4 is far from optimal. For complete intersections of the form X =

CI(d1, . . . , dn) ⊆ Pn, we will use Bézout’s Theorem to improve known bounds.
There are many ways one can state Bézout’s Theorem in Pn. The version we shall use can be found in Chapter 6.2 of [5].

We thank the anonymous referee for pointing out that this version is valid also when K is an algebraically closed field of
positive characteristic.

We first recall that the degree of a scheme W ⊆ Pn, denoted by deg(W ), is defined to be (dimW )! times the leading
coefficient of the Hilbert polynomial ofW .

Theorem 4.5 (Bézout’s Theorem). Let X be a projective subscheme of Pn with dim X ≥ 1. If f ∈ K[x0, . . . , xn] is a homogeneous
form such that no component of X is contained in V (f ), the variety defined by f , then

deg(X ∩ V (f )) = deg(f ) · deg(X).

To make use of this theorem, we recall two standard facts:

• IfW is a reduced finite set of points, then deg(W ) = |W |.
• IfW = CI(d1, . . . , dr), then deg(W ) = d1 · · · dr .

First, a general result:

Theorem 4.6. Let Y be a curve in Pn with no component contained in a hyperplane. Let V (f ) be a hypersurface of degree a > 1
such that X = Y ∩ V (f ) is a reduced zero-dimensional scheme. Then X has minimum distance

d(X) ≥ (a − 1) deg(Y ).

Proof. Suppose that Y has a component W contained in V (f ). Then W ⊆ X . Since dim(X) = 0, then dim(W ) = 0, and so
W = W1 ∪ · · · ∪Wm, where eachWi is set-theoretically a point in Pn. Since a point is always contained in a hyperplane, we
have contradicted our assumption that Y has no component in a hyperplane. So we can apply Bézout’s Theorem to obtain

|X | = deg(X) = a · deg(Y ).

We have that d(X) = |X | − hyp(X), so it suffices to show that hyp(X) ≤ deg(Y ). Suppose that h = hyp(X) > deg(Y ) and
thatV (L) is the hyperplane containing the hpoints ofX . Since no component of Y is contained inV (L), thendim(Y∩V (L)) = 0
and furthermore we can apply Bézout’s Theorem once more to obtain that

deg(Y ∩ V (L)) = deg(L) · deg(Y ) = deg(Y ),

since deg(L) = 1. Since X ⊂ Y , then X ∩ V (L) ⊆ Y ∩ V (L). Therefore the h points of X lying on V (L) should be contained in
Y ∩ V (L). But then deg(Y ∩ V (L)) ≥ h, which contradicts the assumption that h > deg(Y ). �

Example 4.7. We can construct sets of points such that the bound in Theorem 4.6 is attained. Let Y ⊂ Pn be an irreducible
curve, not contained in an hyperplane. Let g be a form of degree a−1 ≥ 1 and let L be a linear form such that X = V (L ·g)∩Y
is a reduced zero-dimensional scheme.

Since V (L·g) = V (L)∪V (g), then V (L)∩Y ⊆ X , is a reduced zero-dimensional scheme of degree deg(V (L)∩Y ) = deg(Y ).
So the hyperplane V (L) contains deg(Y ) points of X . This implies that hyp(X) ≥ deg(Y ). But from Theorem 4.6 we have
hyp(X) ≤ deg(Y ), and therefore we get an equality.

As a corollary, we improve the bound on d(X) when X is complete intersection with an additional condition.

Corollary 4.8. Let X = CI(d1, . . . , dn) ⊆ Pn, with 2 ≤ d1 ≤ · · · ≤ dn. If IX = (F1, . . . , Fn), then for each i = 1, . . . , n let Xi be
the complete intersection CI(d1, . . . , d̂i, . . . , dn), with ideal IXi = (F1, . . . , F̂i, . . . , Fn). In addition, suppose that there exists an
index j ∈ {1, . . . , n} such that Xj has no component contained in a hyperplane. Then

d(X) ≥ (d1 − 1)d2d3 · · · dn.
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Proof. Because X is a reduced complete intersection, |X | = d1 · · · dn. Also, for each i, Xi is a complete intersection curve of
degree deg(Xi) = d1 · · · d̂i · · · dn.

Let j be the index such that Xj has no component contained in a hyperplane. From Theorem 4.6, with Y = Xj, and f = Fj,
we obtain

d(X) ≥ (dj − 1)d1 · · · d̂j · · · dn.

Since d1 ≤ d2 ≤ · · · ≤ dn, then d2 · · · dn ≥ d1 · · · d̂j · · · dn. Hence, the assertion. �

We expect that the hypothesis in Corollary 4.8 that there exists an Xj with no component contained in a hyperplane can
be dropped. We make the following conjecture:

Conjecture 4.9. Let X = CI(d1, . . . , dn) ⊆ Pn, with 2 ≤ d1 ≤ · · · ≤ dn. Then d(X) ≥ (d1 − 1)d2d3 · · · dn.

When n = 2, we only need Bézout’s Theorem for curves to prove Conjecture 4.9.

Theorem 4.10. Let X = CI(d1, d2) ⊆ P2, with 2 ≤ d1 ≤ d2. Then d(X) ≥ (d1 − 1)d2.

Proof. Let h = hyp(X), and suppose that h > d2. Therefore, there is a line (since we are in P2) that contains h > d2 points
of X . Let L be the form that defines this line, and suppose that IX = (F1, F2). Bézout’s Theorem for curves in P2 implies that
L|F1 since V (L) ∩ V (F1) meet at h > d1 points. Similarly, L|F2 since V (L) ∩ V (F2) meet at h > d2 points. But then L divides
gcd(F1, F2), contradicting the assumption that F1 and F2 form a regular sequence. �

Remark 4.11. The bound of Theorem 4.10 improves the bound of Gold et al. [7] (see Corollary 4.4) when 3 ≤ d1. Indeed,
we have d1d2 − d2 > d1 + d2 − 2 if and only if d1d2 − d1 = d1(d2 − 1) > 2(d2 − 1) = 2d2 − 2 if and only if d1 ≥ 3. When
2 = d1, the two bounds are the same, i.e, (d1 − 1)d2 = d1 + d2 − 2 = d2.
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