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Abstract

Supersymmetric effective potential of a 5D super-Yang–Mills model compactified onS1/Z2, i.e., on an intervall of extra
dimension, is estimated at the 1-loop level by the auxiliaryfield tadpole method. For the sake of infinite towers of Kalu
Klein excitation modes of bulk fields involved in the tadpoles, there arises a definite bulk effect of linear growth of the e
potential along with the cutoffΛ which is greatly suppressed byl to produce a finite contribution. Incorporating the tree poten
and a Fayet–IliopoulosD-term, the effective potential is minimized at a specific value ofl, corresponding to an intermedia
mass scale 1011–14GeV, where the supersymmetry is restored.
 2004 Elsevier B.V.

1. Introduction

Recently theories of extra-dimensions have attractedattention. Among them a 5-dimensional (5D) super-Ya
Mills (super-YM) theory with mirror-plane boundaries is very interesting since it has a possibility to lead to a
realistic model of particle theory. In a previous Letter[1], we have analyzed the background configuration ba
on the Mirabelli–Peskin–Hebecker[2,3] model and obtained the 1-loop effective potential for some special c
in a 5D bulk-boundary theory compactified onS1/Z2 orbifold, i.e., on an interval of lengthl. One of virtues of
the model is that the coupling of a 5D super-YM multiplet to a 4D orientifold boundary is explicitly given in a
off-shell formulation.

In this Letter we try to evaluate a full 1-loop effective potential of 4D boundary in the same framework[1]
except adding a superpotential in the boundary. We usethe auxiliary field tadpole method (AFTM) by Miller[4]
based on the tadpole method by Weinberg[5], without eliminating auxiliary fields by their equation of motion. An
advantage of this method is that onlyF andD auxiliary field tadpoles are sufficient to reconstruct the effec
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potential since the spin-0 tadpole contributions are generated automatically by the use of a supersymmetric
boundary condition.

The model is generically non-renormalizable and should be viewed as an effective theory valid up to so
mass scale associated with an ultraviolet cutoffΛ. However, we require that it should be renormalizable in the l
of l → 0.

Although the effective potential to be evaluated is 4D, we have a definitebulk effectwhich comes from the
contribution of whole Kaluza–Klein (KK) excitation modes of the bulk fields involved in the tadpole diag
Such a bulk effect is very interesting since it might implement new aspects of breakings of gauge symm
and/or supersymmetry through the minimization of the effective potential. In particular, by minimizing the ef
potential which contains the tree level potential together with an additional contribution of Fayet–Iliopoul
D-term, we find a case that SUSY is restored at a specific value of the radiusl of extra dimension correspondin
to an intermediate mass scale≈ 3× 1011 or 7× 1013 GeV for the ultraviolet cutoffΛ ≈ MGUT or MPl.

2. 5D super-Yang–Mills model

Let us consider the 5D flat space–time with the signature(+ − − − −). The space of the fifth component
taken to beS1 with the periodicity 2l and theZ2-orbifold conditionx5 ∼ −x5. We take a 5D SUSY action such

(1)S =
∫

d5X
{
Lblk + δ

(
x5)Lbnd+ δ

(
x5 − l

)
L′

bnd

}
,

whereX ≡ (x0, x1, x2, x3, x5),
∫

dX5 ≡ ∫
d4x

∫ l

−l
dx5, Lblk is a 5D bulk Lagrangian andLbnd andL′

bnd denote
a 4D boundary Lagrangian on a “wall” atx5 = 0 and a hidden sector Lagrangian on the other “wall” atx5 = l,
respectively.

The bulk dynamics is given by the 5D super-YM theory which is made of a vector fieldAM (M = 0,1,2,3,5),
a scalar fieldΦ, a doublet of symplectic Majorana fieldsλi (i = 1,2), and a triplet of auxiliary scalar fieldsXa

(a = 1,2,3):

(2)Lblk = − 1

2
tr(FMN)2 + tr(∇MΦ)2 + tr

(
iλ̄iγ M∇Mλi

)+ tr
(
Xa

)2 − tr
(
λ̄i
[
Φ,λi

])
,

where all bulk fields are of the adjoint representation of the gauge groupG: AM = AMαT α , etc., tr[T αT β ] = δαβ/2
and∇MΦ = ∂MΦ − ig[AM,Φ]. This system has the symmetry of 8 real supercharges.

We can project outN = 1 SUSY multiplet, which has 4 real super charges, by assigningZ2-parity to all fields in
accordance with the 5D SUSY. A consistent choice is given as:P = +1 for Am (m = 0,1,2,3), λL,X3; P = −1
for A5, Φ, λR , X1, X2. (The fields ofP = −1 vanish on the boundariesx5 = 0, l.) Then,V ≡ (Am,λL,X3−∇5Φ)

and	 ≡ (Φ + iA5,−i
√

2λR,X1 + iX2) constitute anN = 1 vector supermultiplet in Wess–Zumino gauge a
a chiral scalar supermultiplet, respectively. EspeciallyX3 − ∇5Φ ≡ D(5) plays the role ofD-field on the wall,
namelyD(5)|x5=0,l = X3 − ∂5Φ ≡ (2l)−1/2D.1

We introduce a 4D chiral supermultiplet2 S ≡ (φ,ψ,F ) of the fundamental representation which is localiz
on the wall, whereφ, ψ andF stand for a complex scalar field, a Weyl spinor and an auxiliary field of com
scalar, respectively. This is the simplest matter content on the wall. Using theN = 1 SUSY property, we can fin

1 It looks thatD → 0 asl → 0 at first sight. However, if we introduce a dimensionless effective 4D gauge coupling,ĝ2 ≡ g2/(2l) which is

fixed for l → 0, we havegD(5)|
x5=0 = ĝD irrespective ofl.

2 We do not introduce extra 5D matter multiplets(the hypermultiplets) differently from[3].
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the following boundary Lagrangian with a definite supersymmetric coupling between bulk and boundary fi

(3)

Lbnd= S†egV S
∣∣
θ2θ̄2 + W(S)

∣∣
θ2

= ∇mφ†∇mφ + ψ†iσ̄m∇mψ + F †F − √
2g
(
φ†λt

Lσ 2ψ + ψ†σ 2λ∗
Lφ
)+ gφ†D(5)φ

−
[
mα′β ′

(
φα′Fβ ′ − 1

2
ψα′ψβ ′

)
+ 1

2
λα′β ′γ ′

(
φα′φβ ′Fγ ′ − ψα′ψβ ′φγ ′

)
+ h.c.

]
,

where∇m ≡ ∂m − igAm, α′, β ′ andγ ′are the suffices of the fundamental representation and we have tak
following superpotential:

(4)W(S) = 1

2
mα′β ′Sα′Sβ ′ + λα′β ′γ ′

3! Sα′Sβ ′Sγ ′ ,

with the coefficientsmα′β ′ andλα′β ′γ ′ being such that the gauge symmetry is respected.
Since the hidden sector is irrelevant to the present purpose, we do not specify its LagrangianL′

bnd.

3. Effective Lagrangian for AFTM

The 1-loop SUSY effective potentialV1-loop can be calculated only by the scalar loop (tadpole) up to theF -
andD-independent terms in the off-shell treatment in which the auxiliary fieldsF andD are not eliminated by
their equations of motion. This is because the auxiliary fields cannot have the Yukawa coupling with fermions an
vectors. This method is called “auxiliary field tadpole method (AFTM)”[4].

The evaluation of the 1-loop effective potentialV1-loop according to AFTM is by the following recipe:

(1) Find an effective Lagrangian by translating auxiliary and spin-0 fields such that “original field”→ “classical
part (VEV)” + “quantum part”.

(2) Write an effective action of the translated theory with the effective Lagrangian plus the source terms,
aside all terms quadratic in the quantum fields to getL(2) and calculate from the generating functionalfull
propagators of those which couple with the auxiliary fields.

(3) Evaluate a 1PI 1-point vertex functionΓ (1) for the relevant tadpole diagrams and its momentum sp
representation, up to the delta function for the momentum conservation, which is nothing but the
auxiliary field tadpole amplitudêΓ (1)

pext=0 in the momentum space atzero external momentum.
(4) Integrate the equation

(5)
∂V1-loop

∂〈auxiliary field〉 = −Γ̂
(1)
pext=0,

to obtainV1-loop, where〈· · ·〉 means the VEV.
(5) Determine the final form ofV1-loop by making use of SUSYboundary condition, i.e.,

V1-loop(〈auxiliary field〉 = 0) = 0.

To begin with, we put the following conditions:

(6)Am = 0 (m = 0,1,2,3), λi = λ̄i = 0, ψ = 0

to secure the scalar property of the vacuum. The extra (fifth) component of the bulk vectorA5 is not taken to be
zero because it is regarded as a 4D scalar on the wall.

Then, we split all the scalar fields (Φ,X3,A5;φ,F ) into thequantum field(which is denoted again by the sam
symbol) and theclassical field(VEV) (ϕ ≡ 〈Φ〉, χ3 ≡ 〈X3〉, a5 ≡ 〈A5〉; η ≡ 〈φ〉, f ≡ 〈F 〉) as follows:

(7)Φ → ϕ + Φ, X3 → χ3 + X3, A5 → a5 + A5, φ → η + φ, F → f + F.
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We allow the classical part of bulk fieldsϕ, χ3, a5 to depend in general on the extra coordinatex5. These VEVs
do not violate theZ2 symmetry as far as they obey the boundary condition.

The quadratic part of action which is relevant for the present purpose is given by

(8)S(2)[Φ,A5;φ,F ] =
∫

d5X
[
L(2)

blk + δ
(
x5)L(2)

bnd+ source terms
]
,

(9)

L(2)
blk = 1

2
∂MΦα∂MΦα + 1

2
∂MA5α∂MA5α − gfαβγ

{
∂5ϕαA5βΦγ + ∂5Φα(a5βΦγ + A5βϕγ )

}
− g2fαβτ fγ δτ a5αϕβA5γ Φδ − g2

2

{
fαβτ (a5αΦβ + A5αϕβ)

}2
,

(10)

L(2)
bnd= ∂mφ†∂mφ + ĝ

{
d̂αφ†T αφ − ∂5Φα

(
η†T αφ + φ†T αη

)}+ F †F − ĝ2

2
δ(0)

(
η†T αφ + φ†T αη

)2
−
[
φα′(mα′β ′ + λα′γ ′β ′ηγ ′)Fβ ′ + 1

2
λα′β ′γ ′φα′φβ ′fγ ′ + h.c.

]
,

whered̂α ≡ 〈Dα〉 = (2l)1/2(χ3
α − ∂5ϕα), φ†T αφ ≡ φ

†
α′(T α)α′β ′φβ ′ , etc. and the 5D auxiliary fieldX3 has been

integrated out at the price of giving rise to a singular term (∝ δ(0)) [2].

4. Mass-matrix and the 1PI vertex function

We are now ready for the calculation of the 1-loop effective potential.
The effective action(8) can be expressed as

(11)S(2) =
∫

d5X

[
1

2
Ψ †MΨ + Ψ †J

]
,

where

(12)Ψ
†
A = (

φ
†
α′, φt

α′, F
†
α′ , F t

α′ , Φt
α, At

5α

)
,

(13)J t
A = (

J t

φ
†
α′

, J t
φα′ , J t

F
†
α′

, J t
Fα′ , J t

Φα
, J t

A5α

)
,

with A = (α′, α), B = (β ′, β) andJ ’s denote sources.
We can perform the integration of(11)w.r.t. x5 by KK-expandingΦ andA5 as follows;

(14)Φα

(
x, x5)= 1√

l

∞∑
n=1

Φnα(x)sin

(
nπ

l
x5
)

,

(15)A5α

(
x, x5)= 1√

l

∞∑
n=1

Anα(x)sin

(
nπ

l
x5
)

.

We obtain

(16)S(2) =
∫

d4x

[
1

2
Ψ̂ †MΨ̂ + Ψ̂ †Ĵ

]
,

where

(17)Ψ̂ † = (
φ

†
α′, φt

α′ , F
†
α′, F t

α′, Φ̂t
α, Ât

5α

)
,

(18)Ĵ t
A = (

J t

φ
† , J t

φα′ , J t

F
† , J t

Fα′ , Ĵ t
Φα

, Ĵ t
A5α

)
,

α′ α′
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l to
with

(19)Φ̂t
α = (Φ1α, Φ2α, . . .),

(20)Ât
α = (A1α, A2α, . . .),

(21)Ĵ t
Φα

= (JΦ1α
, JΦ2α

, . . .),

(22)Ĵ t
A5α

= (JA1α
, JA2α

, . . .),

and

(23)(MAB) =


Aα′β ′ Bα′β 0

Cαβ ′ M
Φ̂αΦ̂β

M
Φ̂αÂ5β

0 M
Â5αΦ̂β

M
Â5αÂ5β


 ,

(24)Aα′β ′ =



Mφ†φ Mφ†φ† 0 Mφ†F †

Mφφ Mφφ† MφF 0

0 MF †φ† I 0

MFφ 0 0 I




α′β ′

,

(25)Bα′β =



M

φ†Φ̂

M
φΦ̂

0

0




α′β

,

(26)Cαβ ′ = (
M

Φ̂φ
, M

Φ̂φ†, 0, 0
)
αβ ′ ,

with

M
φ

†
α′φβ′ = −�δα′β ′ + ĝd̂γ

(
T γ

)
α′β ′ − g2δ(0)

(
T γ η

)
α′
(
η†T γ

)
β ′ ,

M
φα′φ†

β′
= −�δα′β ′ + ĝd̂γ

(
T γ

)
β ′α′ − g2δ(0)

(
η†T γ

)
α′
(
T γ η

)
β ′ ,

M
φ

†
α′φ†

β′
= −λ∗

α′β ′γ ′f
†
γ ′ + g2δ(0)

(
T γ η

)
α′
(
T γ η

)
β ′ ,

Mφα′φβ′ = −λα′β ′γ ′fγ ′ + g2δ(0)
(
η†T γ

)
α′
(
η†T γ

)
β ′ ,

M
F

†
α′φ†

β′
= (Mφ†F †)α′β ′ = −(m∗

α′β ′ + λ∗
α′γ ′β ′η

†
γ ′
)≡ χ

†
α′β ′ ,

MFα′φβ′ = (MφF )α′β ′ = −(mα′β ′ + λα′γ ′β ′ηγ ′) ≡ χα′β ′ ,

M
φ

†
α′Φnβ

= −g
(
T βη

)
α′
(
nπ/l3/2),

M
Φnαφ

†
β′

= −g
(
T αη

)
β ′
(
nπ/l3/2),

Mφα′Φnβ = −g
(
η†T β

)
α′
(
nπ/l3/2),

MΦnαφβ′ = −g
(
η†T α

)
β ′
(
nπ/l3/2),

(27)MΦmαΦnβ = −(� + (nπ/l)2)δmnδαβ.

The explicit form of sourceŝJ ’s is not required in the following computation. The matrix elements(M
Φ̂Â5

)αβ ,

(M
Â5Φ̂

)αβ and(M
Â5A5

)αβ do not depend onfα′ , f
†
α′ andd̂α so that they are irrelevant to the effective potentia

be estimated.
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on
The generating functionalZ[Ĵ ] is given by

(28)lnZ[Ĵ ] = −1

2

∫
d4x d4y Ĵ †(x)iM−1(x, y)Ĵ (y),

from which we can extract afull propagator∆F (x − y)ij throughδ2 lnZ[Ĵ ]/δĴj δĴ
†
i , namely

(29)∆F(x − y)ij = −M−1
ij = − mji

detM ,

wheremji denotes thej ith minor ofM.
The 1PI vertex functionΓ (1) corresponding to the auxiliary field tadpole is defined as the proper Green functi

with the propagator of external line amputated, i.e.,

(30)〈0|TBA(x)|0〉prop=
∫

d4y ∆F (x − y)BAΓ (1)BA(y),

where BA stands for the renormalized Heisenberg fieldsF α′ , F
†
α′ or Dα corresponding tofα′ , f

†
α′ or d̂α ,

respectively.
The momentum spacerepresentation̂Γ (1)BA of Γ (1)BA(y) is defined in general by

(31)
∫

d4y eipyΓ (1)BA(y) ≡ (2π)4δ4(p)Γ̂ (1)BA(p).

Then, asΓ (1)BA(y) is written by the propagator∆F(y − y)ij = −M−1(y − y)ij andM depends linearly onfα′ ,

f
†
α′ andd̂α , we find[4]

(32)Γ̂ (1)BA ≡ Γ̂
(1)BA

pext=0 = Γ̂ (1)BA(0) = −1

2

∂

∂b̂A

∫
d4k

(2π)4
lndetM(k),

whereb̂A ≡ 〈BA〉 andM(k) is the momentum representation ofM(x) (23):

(33)M(k) =

A(k) B(k) 0

C(k) M
Φ̂Φ̂

(k) M
Φ̂Â5

(k)

0 M
Â5Φ̂

(k) M
Â5Â5

(k)


 .

The estimation proceeds as

Γ̂ (1)BA = −1

2

∂

∂b̂A

∫
d4k

(2π)4
ln
[
detM

Φ̂Φ̂
(k)det

{
A(k) −B(k)M

Φ̂Φ̂
(k)−1C(k)

}
× detM

Â5Â5
(k)det

{
M

Â5Â5
(k) −M

Φ̂Â5
(k)D−1(k)M

Â5Φ̂
(k)

}]

(34)= −1

2

∂

∂b̂A

∫
d4k

(2π)4
lndet

{
A(k) −B(k)M

Φ̂Φ̂
(k)−1C(k)

}+ O
(
ĝ5, ĝ4λ

)
,

where

(35)D =
(A(k) B(k)

C(k) M
Φ̂Φ̂

(k)

)
.
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Thus, we obtain

(36)

Γ̂ (1)BA = −1

2

∂

∂b̂A

×
∫

d4k

(2π)4

1

2l
lndet







−k2 − χ†χ + ĝd̂T

−g2δ(0)(T η)(η†T )
−λ†f † − g2δ(0)(T η)(T η)t

−λf − g2δ(0)(η†T )t (η†T )
−k2 − χχ† + ĝd̂T t

−g2δ(0)(η†T )t (T η)t




+ g2
(

δ(0) − 1

2
k coth(lk)

)(
(T η)(η†T ) (T η)(T η)t

(η†T )t (η†T ) (η†T )t (T η)t

)
+ O

(
g4)




≈ −1

2

∂

∂b̂A

∫
d4k

(2π)4

1

2l
tr ln∆(b̂),

(37)

∆(b̂) =
[
k2 + χ†χ − ĝd̂T + 1

2
g2k coth(lk)(T η)

(
η†T

)][
k2 + χχ† − ĝd̂T t + 1

2
g2k coth(lk)

(
η†T

)t
(T η)t

]

−
[
λ†f † + 1

2
g2k coth(lk)(T η)(T η)t

][
λf + 1

2
g2k coth(lk)

(
η†T

)t(
η†T

)]
,

where we have performed a Wick rotation and used the formula

(38)
∑
k5

(k5)2

k2 + (k5)2 = 2l

(
δ(0) − 1

2
k coth(lk)

)
,

with k5 being summed over the valuesπn/l(n = integer), i.e., over whole KK modes. An interesting observat
here is that theδ(0)-singularity coming from the KK mode summation has been neatly cancelled by that fro
elimination of the 5D auxiliary fieldX3.

5. 1-loop effective potential

The effective potentialV1-loop is nothing but a generator of̂Γ (1)(0), namely,

(39)
∂V1-loop

∂b̂A

= −2lΓ̂
(1)BA

Pext=0,=
1

2

∂

∂b̂A

∫
d4k

(2π)4 lndetM(k),

whereΓ̂
(1)BA

Pext=0 = Γ̂ (1)BA(0) has been multiplied by 2l in order forV1-loop to be 4D.Eq. (39)is integrated to give

(40)V1-loop = 1

2

∫
d4k

(2π)4 tr ln∆
(
f,f †, d̂

)+ K
(
η,η†),

whereK is an integration constant.
Finally, we apply theSUSY boundary condition

(41)V1-loop
(
f = f † = d̂ = 0

)= 0,
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term
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of the
and obtain

(42)

V1-loop = 1

2

∫
d4k

(2π)4 tr
[
ln∆

(
f,f †, d̂

)− ln∆(0,0,0)
]

= 1

2

∫
d4k

(2π)4 tr ln

[
1− 2ĝ(d̂αT α)

k2 + χ†χ
+ G− − lk coth(lk)H

(k2 + χ†χ)2 + O
(
λ4, ĝ4, ĝ2λ2, ĝ3λ

)]
,

where

(43)G± ≡ ĝ2(d̂αT α
)2 ± (

λ†α′
f

†
α′
)(

λβpfβ ′
)
,

(44)

H ≡ ĝ2{(λ†α′
f

†
α′
)(

η†T α
)t (

η†T α
)+ (

T αη
)(

T αη
)t (

λαfα′
)}/

2

+ ĝ3{(d̂αT α
)(

η†T β
)t (

T βη
)t + (

T βη
)(

η†T β
)(

d̂αT α
)}/

2.

The resultant effective potential(42) is now ready for being integrated w.r.t. the four momentum. Be
doing so, it is useful to comment on the renormalizability. Higher-dimensional field theories are generically no
renormalizable. The present 5D super-YM model is not exceptional and must be viewed as an effective the
up to some high mass scale associated with an ultraviolet cutoffΛ. However, it should be required that the pres
model is renormalizable in the limit ofl → 0.

If T has a component such as trT = 0, i.e., the gauge group has a U(1) factor, which we denote as U(1)X, the
term proportional tôgT in (42)provides a dominant contribution, namely

(45)V1-loop ≈ 1

2

∫
d4k

(2π)4 tr ln

[
1− 2ĝd̂T

k2 + χ†χ

]
,

the integral of which yields a quadratic divergence. As(45)is independent ofl, the quadratic divergence remains
the limit of l → 0 and will spoil the non-renormalization theorem. To get around it, we introduce additional chir
scalar supermultiplets with trQX = 0 in the boundary and require that only one ofthe chiral scalar supermultiplet
sayφ, the U(1)X-charge of which is normalized to be 1, has a non-trivial VEVη.

The factorlk coth(lk) in (42)alters the highk behaviour of the integrand and yields a term which is linear iΛ

but suppressed byl. In fact, we obtain

V1-loop ≈ −1

2

∫
d4k

(2π)4

trG+ + lk coth(lk) trH
(k2 + χ†χ)2

≈ 1

16π2

[ Λ∫
0

dk
k3 trG+

(k2 + χ†χ)2 +
{ k̃∫

0

dk
k3

(k2 + χ†χ)2 +
Λ∫

k̃

dk l coth(lk)

}
trH

]

(46)≈ 1

32π2

[
ln

(
Λ2

χ†χ

)
trG+ − lΛ trH

]
+ finite part,

where terms that vanish asΛ goes to infinity have been neglected and we have split the integral of the
proportional to trH into two regions, 0� k � k̃ andk̃ � k � Λ, assuming|χ | � k̃ � l−1.

The leading term in r.h.s. of(46) is apparently linealy divergent. However, the cutoffΛ is multiplied by the
lengthl of the extra dimension which may suppress the growth ofΛ so as to give a finite and significant contributi
to the effective potential. This is nothing but a bulk effect and plays an important role in the minimization
effective potential as will be described in the next section.
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6. Minimization of the effective potential

The utility of effective potential is to search a true vacuum by its minimization. Our effective potent
however, SUSY so that it vanishes trivially at the minimum pointf = d̂ = 0. In order to examine its physic
property, therefore, it is appropriate to introduce a term such as FID-term3 into the boundary LagrangianLbnd and
observe how the spontaneous breaking of SUSY as well as that of gauge symmetry is realized. For this
we choose the gauge group to be U(1)X discussed in the previous section.

The effective potential to be minimized is then as follows:

(47)V eff = Vtree+ V1-loop + VFI,

(48)Vtree= −f †f + ηtmf + η†mf ∗ + 1

2
ηtλf η + 1

2
η†λ†f †η∗ − 1

2
d̂ 2 − ĝη†d̂η,

(49)V1-loop = −α tr
{(

λ†f †η†2 + η2λf
)
/2+ ĝη†d̂η

}
,

(50)VFI = −ξ d̂,

whereVtree is a tree level potential which is directly read from(2) and(3), V1-loop is the dominant part of(46)with

(51)α ≡ lΛĝ2

32π2 ,

andVFI comes from the FID-termLD = ξD(5).
In order to trace essential features of our analysis, we assume that the components of each classical scalar

vanish except for a certain real component which we denote by the same symbol. Then, we have

(52)V eff(f, d̂, η) = −f 2 + 2mfη + λf (1− α)η2 − 1

2
d̂ 2 − (1+ α)ĝd̂η2 − ξ d̂.

The auxiliary fieldsf , d̂ are written as functions ofη through the conditions∂V eff/∂f = ∂V eff/∂d̂ = 0 as follows;

(53)f = mη + λ

2
(1− α)η2 ≡ f̃ ,

(54)d̂ = −ξ − (1+ α)ĝη2 ≡ d̃,

by which we eliminatef , d̂ from V eff:

(55)

V eff(f̃ , d̃, η) = V eff(η) =
{

λ2(1− α)2

4
+ (1+ α)2ĝ 2

2

}
η4 + λm(1− α)η3 + {

m2 + (1+ α)ĝξ
}
η2 + ξ2

2
.

From now on, we assume thatφ is massless (m = 0) for simplicity. Then, if ĝξ > 0, V eff(η) has a minimum
at η = 0 with a minimum valueξ2/{2(1 + 2α)}, which measures the SUSY breaking scaleMSUSY. The gauge
symmetry is not broken. If̂gξ < 0, on the other hand,V eff(η) is minimized at

(56)η2 = −2(1+ α)ĝξ

λ2(1− α)2 + 2(1+ α)2ĝ2
≡ η̃2,

with the minimum value

(57)V eff(η = η̃) = Ṽ eff = (1− α)2λ2

(1− α)2λ2 + 2(1+ α)2ĝ2

ξ2

2
,

3 Such aD term has been introduced into the hidden sector in[2].
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Fig. 1.α-dependence of̃V eff for λ = ĝ. Fig. 2.η-dependence ofV eff for ĝ = 0.1 andξ = 100 TeV2.

which is a function ofα for givenλ, ĝ andξ and has an absolute minimum atα = 1 whereṼ eff = 0 as shown
in Fig. 1. Therefore, the size of the extra dimension is settled atl−1 = Λĝ2/32π2 making SUSY restored in
the true vacuum. For example,l−1 ≈ 3.0 × 1011 GeV (l−1 = 7.2 × 1013 GeV) for Λ = MGUT ≈ 1016 GeV
(Λ = MPl = 2.4× 1018 GeV) andĝ ≈ 0.1.

At α = 1, (55)becomes

(58)V eff(η) = 2

(
ĝη2 + ξ

2

)2

,

for any λ, which has minima atη = ±√|ξ/2ĝ| ≡ η̃ (hencef̃ = d̃ = 0) as shown inFig. 2, providedĝξ < 0.
Namelyφ plays the role of Higgs field which breaks the gauge symmetry with the breaking scale〈φ〉 = η̃, while
SUSY is restored in spite of the presence of FID-term.4 It is notMSUSY but the gauge symmetry breaking scalη̃

thatξ affects.

7. Concluding remarks

We have estimated a SUSY effective potential of the 5D super-YM model with the extra dimension comp
on S1/Z2 at the 1-loop level. Under such assumptions that the quadratic divergence does not arise, its d
part is apparently linealy divergent and proportional tolΛ, i.e., a product of the size of extra dimension and
cutoff scale. Ifl is small but much bigger than the “cutoff size”Λ−1 corresponding to the Planck, string or GU
scale, the divergence is suppressed and the term proportional tolΛ of 1-loop effective potential proves to be fini
and not negligible. This is just the bulk effect which originates from taking in all the KK excitation modes
bulk field Φ and reveals an interesting situation. In fact, taking the tree level contributions and the FID-term into
account, we find that the effective potential is minimized at a specific value ofl, where SUSY is restored but th
gauge symmetry is broken. It is remarkable that the value ofl corresponds to an intermediate energy scale w
new ingredients of gauge theory are expected to be disclosed.

As an approach to regard the extra-space radius as a dynamical variable, the radion model is, at pres
promising. There, the radius parameterl is regarded as a vacuum expectation value of the field “radion”[6,7]. It
would be more complete to treat the result ofSection 6in the framework of radion model. In order to incorpora

4 Such a phenomenon is known to occur forα = 0, i.e., at the tree level, too, only ifλ = 0 as far aŝgξ < 0. In our case (α = 1), (55) is valid
irrespectively ofλ.
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the radion and the dilaton in a multiplet, we are naturally led to consider 5D supergravity (SUGRA). Cons
of FI-terms in the 5D SUGRA has been investigated in[8]. It remains as a future work to examine the conclus
of our model in connection with the radius stabilization in this context.

Such a phenomenon that the radiative correction appears to be proportional tolΛ seems inherent in gaug
theories with extra dimensions compactified on flat space. Indeed, it has been observed that the renormali
group running of the gauge coupling constants changes from “logarithmic” to “linear” in a 5D version of m
SUSY Standard Model with the flat extra dimension compactified onS1/Z2 [9]. This fact is due to the presence
infinite towers of KK states and causes an acceleratedunification of strong, electromagnetic and weak coupling
only a little aboveµ0 ≡ l−1. However, if the extra 5th dimension is warped as in the case of Randall–Sun
(RS)[6], the gauge coupling running can be logarithmic[10,11]. It is, therefore, worth to try to compute the SUS
effective potential in the 5D super-YM model with the RS background and examine whether it is minimi
a non-trivial value of the radius of extra dimension or not. The bulk effect to our SUSY effective poten
principally due to the contribution from the bulk propagator ofΦ. Since the interaction ofΦ with φ’s takes place
only in the 4D boundary, the relevantloop amplitude including theΦ-propagator might not be affected byx5-
dependent cutoff[11] in the RS background, so that the “linear” growth of effective potential along with the c
would have a popssibility to be retained even if the extra dimension is warped. The details will be discusse
forthcoming paper[12].
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