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The object of the present paper is to give two general multiple integral trans- 
formations of the H-function of several complex variables, which was defined and 
studied elsewhere by the authors (cf., e.g., [lo], [ll] and [12]). It is shown howthe 
main formulas (1.8) and (1.14) below, involving Fox’s H-function ([4], p, 408) and 
the Laguerre polynomi&, respectively, are related to each other and, of course, to 
& number of results given recently in the literature (see [l] and [5] through [9] ). 
Several possible eppliotions of the operational techniques provided by these results 
(and their various special cases) when viewed se multidimensional integral trans- 
formations are also indioated briefly. 

1. INTRODUCTION AND THE MAIN RESULTS 

Following the notations explained fairly fully in the earlier papers [ll] 
and [12], let 

(1.1) 
0, A: (p’, v’); . . . ; (p(n), Y’“‘) 

5, c: [B’, 0’1; . . . . [B(n), D(n)] 
0 

y 
z, 

denote the B-function of ra complex variables 21, . . . . Zn (see also [lo], 
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p. 271 et seq.). Also, let the associated positive numbers 

(1.2) 1 
ep, j= 1, . . . . A; c$p, j= 1, . . . . BW; 
?&j=l, . ..) c; rp,j=l, . . . . D(i); i=l, . ..) n, 

be constrained by the inequalities 

Then it is known that the multiple Mellin-Barnes contour integral defining 
the H-function (1.1) would converge absolutely when 

(1.5) Iarg (zi)l<$Ai 3t, i=l, . . . . 12, 

it being understood that the points zi = 0, i = 1, . . ., n, and various 
exceptional parameter values, are excluded, and that (cf. [ll], p. 131): 

(1.6) 
0, 2: (p’, d); . . . . (p(n), Y’“‘) 

HA, 17: [B’, 0’1; . . . . [B(n), II@)] 

i 

jzrl, . . . . 
= 

where, with i = 1, . . ., 7t, 

(l-7) 

We now state our main results given by the following multiple integral 
transformations : 



0,1: (p’, v’); . . . . (p(S), Y’“‘) 
'HA, (7: [B', D']; . . . . [B(n), J)(n)] dxl "* dxn 

=[-%@I, . . . . k,,) H 
0, n+m+A: (p’, v’); . . . . (p(n), Y’“‘) 

n+q+A, l+p+C: [B’, D’]; . . . . [B(n), D(n)] 

( 
[l - eh : +5, . * -, p/~ha, P -g5-fln: &% ***, %mll,a, 
[l-X$-a: &-?I, . . . . Rn - ~1, [l - q - Sq : Rlq, . . . , R,&,, 

[(a): 8’, . . . . 
II(c): $9 ***, 

e(n)]: [(b’): 4’1; . . . . [(W): cpq;Zl 
yq: [(cl’): 8-J; . . . . [(cm): 6(n)]; ’ ***’ 

z 
n > ’ 

where, for convenience, 

(1.9) @@I, . . . . I&)= (a1 . . . Q-1 k;P1'ul . . . KQd"", 

and 

(1.11) S=a+l+ +@ 
CT1 *** a,’ 

it being understood, for example, that 

[ 4: l-4, . . . . Pq m 

abbreviates the array of m groups of parameters: 

hl: pu;, . . . . ,u:n) 1 [ , . . . . hm: p-k --., ,d? 1 > mZ1. 

The integral formula (1.8) is valid under the following (sufficient) 
conditions : 

(i) b>O, ut>O, ~20, t#‘>O, vi,j E (1, . . . . n>; 
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(ii) Conditions corresponding appropriately to (1.3), (1.4) and (1.5) are 
satisfied by each of the multivariable H-functions occurring in (1.8) ; 

(iii) Re (ec)>O, i=l, . . . . n, and 

(1.12) Re (A’)> - i &or‘- min Re $ , 
i-1 1sJsm 1 0) 

where 0~1, . . . . am are given by (1.7), and 
(iv) m, p, q are integers such that l$mSq and ~20, .q>O, j=l, . . ..p. 

Yj>O, j= 1, ***, q, 

(1.13) SC= jl Q- #il n<o, v= ,g I+- , g+l JJj- E g>o, 
I-1 

and larg (C)l< 4~. {H ere zt[z] denotes the familiar H-function of 
C. Fox ([a], p. 408; see also [9], p. 310).) 

0, A: (p’, v’); . . . ; (/!m, v(n)) 
*1 

3x1 

* *A, c: [B’, II’]; . . . . [B(n), mq 

. ( > : 
t-lx1 . . . dxn 

&X2 

; ..*; (p(“),W+l) 
= ~-~y-s~(h, . ..> w flA+;$++21: giy;+;j; . . . . LB(%)+1 D@)] 

, 5 , 

( 

[l-S: Q/01, . . . . &Jon], [l-S+&: a/01, . . . . &J&j, [(a): 8’, . . . . wq: 

[l-f.l++++: Sl/Ul, . . . . 8,/O,], [(c): y’, . ..) ym]: 

[l -cl/a: 8&l], C(V) : +‘I; . . . ; [l - ef$h : s&J, [(btn)) : #@)I ; 

[(cl’): 6’1; . . . . [(&n,): (yn,]; L *-*’ La 
> 

’ 

where J%‘(Z) denotes the Laguerre polynomial of order (Y and degree m 
in z, mB0, 5~0, oc>O, atr>O, Re (&>O, Vi E (1, . . . . n>, 

(1.15) Re (S) > - <il (wa/ur), Re (y)>O, 

ma, -a-, kn), 8 and 1x1, . . . . OI~ being given, as before, by (1.9), (1.11) and 
(1.7), respectively, 

(1.16) &=z&&)-q’“‘, i=l, . . . . rt, 
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and conditions corresponding appropriately to (1.3), (1.4) and (1 A) are 
assumed to hold for the multivariable H-functions involved. 

BEBUICK. Since H$!‘[[] vanishes exponentially when 151 + 00 and the 
relevant parts of Condition (iv) of (1.8) hold true, and since Re (y) > 0 
in (1.14), the convergence of our integral formulas (1.8) and (1.14) at 
their upper limit of integration can be guaranteed under the conditions 
stated already if we assume that, for some x1, . . . . xn, 

w7) 
0, it: (p’, y’); . . . . (p(n), y(n)) 

54, 0: [I?‘, D-j; . . . . [B(n), D(n)] 
? 

0 
in 

=o 
( 

lzp . . . IW) , A#% min ((zll, . . . . IhI} + 9 

which would evidently complement the asymptotic expansions given 
by (1.7). 

2. PROOFS OF TEE INTEGRAL FORBXULAS (1.8) AND (1.14) 

For convenience, let 2 r&s and 2 L#‘& denote the n-term sums 

(2.1) i$l r&t and $l #)&, vj E (1, . . . . n), 

respectively. Also let 

A = y . . . 7 x:1’-’ . . . x2-l 
0 0 

f (k,xp + . . . + knx2) 

P-2) 
0, I: (p’, d); . . . ; (p(n), Y’“‘) 

a& 

* BA, 0: [B’, 0’1; . . . . [J-pa), D(n)] 

( > 

*ix dxl *** dxn, 
n n 

where the XC are defined by (l.lO), and the function f is so prescribed 
that the multiple integral converges. 

On replacing the multivariable H-function occurring in (2.2) by its 
Mellin-Barnes contour integral given by [lo, p. 271, Eq. (4.1)], if we 
interchange the order of the resulting (x1, . . . , x,)- and (61, . . . , &)-integrals, 
which is evidently justifiable under the various (sufkient) conditions 
stated with (1.8) in case f is specialized by (2.7) below, we find that 

A = (2nl&n al . . . S 
d 

x:1 . . . Z$vIqh) ..* @n(Sn)Y(h, **-, En) n 

(2.3) . $ ... $ ~~l+"r's-l...~~+~B'4-l(k,~~l +...+~~x~)~~~i 

( 

. f(klx~+...+kmx+xl . . . dxn)d& . . . d&b, 
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where w=j/x, the @i(&) and !P(&, . . . . En) are defined by Equations 
(4.2) and (4.3) in [lo, p. 2721. 

Now we interpret the innermost (21, . . . . x,)-integral by appealing to 
the following form of a known relationship [l, p. 1731: 

i 
$ . . . T x~~-~...x~-~+x~ +...+ k.C)axl . . . aih 

(2.4 1 
1 =@(b, . . . . kn) 

r($...r(E) jz zE+...+ E-1 fan, 

ri!i+ +c?! 
( *** Ul > CT% 0 

where, as before, @(kl, . . . . i&J is given by (1.9), and 

Thus (2.3) assumes the form 

where @(kl, . . . . kn), Rr and S are given by (1.9), (1.10) and (l.ll), 
respectively, and 

If, in the integral relationship (2.6), we set 

evaluate the z-integral by means of the special case (when n== 0) of a 
familiar formula expressing the Mellin transform of Fox’s H-function (see, 
for example, [9], p. 311, Eq. (3.3) with x on its left-hand side replaced 
by zx), and then interpret the resulting (51, . . ., S‘n)-integral as an H-function 
of n variables, we shall be led fairly easily to our integral formula (1.8) 
under the various (sufficient) conditions stated already. 
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In order to derive the integral formula (1.14), we first replace the 
multivariable H-function occurring on its left-hand side by the Mellin- 
Barnes contour integral [lo, p. 271, Eq. (4.1)], invert the order of the 
resulting multiple integrals, and then apply the known relationship (2.4). 
On evaluating the innermost z-integral by appealing to a slightly modified 
version of the well-known integral [3, p. 292, Eq. (l)], involving Laguerre 
polynomials, if we interpret the resulting multiple (Mellin-Barnes) contour 
integral as an H-function of n variables, we shall arrive at the desired 
integral formula (1.14) under the conditions stated already. The various 
steps just indicated are essentially similar to those in our derivation of 
(1.8), and we omit the details. 

3. APPLICATIONS 

It is fairly easy to observe that, when Q= 1, j= 1, . . ., p, and yj= 1, 
j=l , . . . . q, the (single) H-function occurring in our integral formula (1.8) 
would reduce at once to the relatively more familiar G-function of Meijer 
(see, for example, [3], p. 434). {As a matter of fact, the H-function is 
known to reduce to the G-function in the not-too-obvious cases when 
ej=yk=& 6>0, j=l, . . . . 1, and k=l, . . . . p, or when the E’S and y’s are 
(positive) rational numbers.) And for special choices of the various para- 
meters and the variable involved, the function e:(C) can be further 
reduced not only to the Bessel functions J&), Y,(z) and K(z), the 
Whittaker functions M,,,(z) and lV~,,.,(x), and so on, but also to such 
products as 

et cetera. Thus, by appealing to the known relationships [3, pp. 440 and 
4421 

(3.1) 

(3.2) 

and 
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we can easily obtain, as specid cases of our result (1.8), certain multi- 
dimensional extensions of the double and triple integral transformations 
discussed in our earlier paper [9], in the references cited there [op. cit., 
pp. 309 and 3131, and in the recent paper by C. M. Joshi and M. L. Prajapat 
[5, p. 163, Eq. (2.5)]. Indeed, Joshi and Prajapat [q. cit., p. 166, Eq. (3.6)] 
have also given a three-dimensional extension of our double integral 
transformation [9, p. 312, Eq. (3.6)], involving Fox’s H-functions, and 
their triple integral transformation just mentioned would evidently reduce, 
in certain very special cases, to the main results in a subsequent paper by 
L. K. Bhagchandani [l, p. 131, Eq. (2.3); p. 132, Eq. (2.5)]. {Incidentally, 
Bhagchandani’s main results [Zoc. cit.] are rather straightforward 
extensions of those in a 1967 paper by Srivastava and Joshi [8, p. 18, Eq. 
(2.2); p. 19, Eq. (2.3)], a reference to which is conspicuously missing in 
Bhagchandani’s 1977 paper [l] notwithstanding the fact that these two 
papers (published exactly a decade apart) follow each other noticeably 
closely.) We remark in passing that the special cases of our results 
(1.8) and (1.14) when n= 2 correspond essentially to the main integral 
formulas derived in a recent paper by S. L. Kalla, K. C. Gupta and 
S. P. Goyal [6]. 

We now show how our integral formula (1.14) can alternatively be 
deduced as a confluent case of (1.8). Indeed, if in (1.8) we let r{ + 0 and 
#’ + 0, j#i, where i, j E (1, . . . . n}, set [=r, p= 1, q=m=2, and #=~~, 
vi E (1, . . . . n}, and further specialize B,! by appealing to (3.3) and the 
known relationship [3, p. 4321 

(3.4) 
1 

Wp+m++. f c (2) = ( - l)m 7n! z?++ e+ l;ln2”’ (z), 

m=O, 1, 2, . . . . 

we shall arrive at our integral formula (1.14) expressing the multi- 
dimensional Laguerre transformation of the H-function of several complex 
variables. As a matter of fact, this method of derivation of (1.14) from 
(1.8) can be applied mutatis mutandis to obtain similar multidimensional 
integral transforms with a fairly wide variety of special kernels. 

For 1 =A = C= 0, the multivariable H-function occurring on the left- 
hand sides of (1.8) and (1.14) would obviously reduce to the product of n 
H-functions of Fox, and if in (1.8) we further set ~8 = 0, $0 =D(() = 1 and 
v(f)=B(Q=O, vi E (2, . ..) n}, and proceed qpropriately to the limits when 
IQ SP’ , , . . . . 8$--f 0, i=2, . . . . n, using the well-known fact that 

we shall obtain a multidimensional integral transformation which is easily 
written in the following (slightly modified) form: 

(3.6) r . . . 7 z”1’-’ . . . a@-’ (kl$ + . ..+ I&“) 
0 
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where 1, m, p, q and L, M, P, Q are integers constrained by 051 Sq, 
Osmsp, OSLSQ, and OSMSP, 0~~0, j=l, . . . . p, $f>O, j=l, . . . . q, 
y,>O, j=l, . . . . P, c9,>0, j=l, . . . . Q, &>O, a>O, &>O, Re (er)>O, 
vi E (1, . . . . n), r20, larg (u)/<*U7~, larg(v)l<+V5 u,v#O, 

and 

(3.8) <Re(S)< - max 

@(b, *em, kn) andS being defined, as before, by (1.9) and (l.ll), respectively, 

81 
(3.9) R=r+,+...+Z, w = k,‘l’*’ . . . le,-““/“” u-’ v, 

and, for convenience, (9, &J,)m+r,p abbreviates the array of p -m parameter 
pairs 

(h+l, em+d, . . . . tap, e,), 

for integers m and (p such that 0 I m 5p, so that the abbreviation (bj, #~)l,~ 
would represent the array of q parameter pairs 

and so on. 
Obviously, this last result (3.6) can also be derived directly by applying 

the relationship (2.4) in conjunction with the Mellin transform of Fox’s 
H-function. 

Two further special cases of (3.6) are worthy of mention here. For n = 2, 
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it would evidently correspond to the main double integral transformation 
in an earlier paper by Srivastava, Gupta and Handa [7, p. 403, Eq. (6)]. 
On the other hand, if in (3.6) we set Icp = ua = 1, ri E (1, . . . , n}, it will 
yield yet another result due to Joshi and Prajapat [5, p. 167, Eq. (3.8)]. 

Finally, we should remark that, by appealing to the known relationship 
[lo, p. 272, Eq. (4.7)], the multivariable H-functions occurring in our 
main results (1.8) and (1.14) can be reduced, under various special cases, 
to the generalized Lauricella functions of several complex variables, which 
include a great many of the useful functions of hypergeometric type (in 
one and more variables) as their particular cases. These and the other 
possible specializations indicated in this section would easily lead to several 
interesting applications (of the types discussed, for example, in [l], [5], 
[8] and [9]) of the operational techniques provided by (1.8) and (1.14) 
when viewed as multidimensional integral transformations, and we leave 
the details involved as conceivably fruitful exercises for the interested 
reader. 
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