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a b s t r a c t

In this paper some exact expressions for the first and second Zagreb indices of graph
operations containing the Cartesian product, composition, join, disjunction and symmetric
difference of graphswill be presented.We apply some of our results to compute the Zagreb
indices of arbitrary C4 tube, C4 torus and q-multi-walled polyhex nanotorus.
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1. Introduction

Throughout this paper we consider only simple connected graphs, i.e. connected graphs without loops and multiple
edges. For a graph G, V (G) and E(G) denote the set of all vertices and edges, respectively. For a graph G, the degree of a
vertex v is the number of edges incident to v and denoted by degG(v).
A topological index Top(G) of a graph G, is a number with this property that for every graph H isomorphic to G,

Top(H) = Top(G). The Wiener index is the first and most studied topological indices, both from theoretical point of view
and applications. It is equal to the sum of distances between all pairs of vertices of the respective graph, see for details [3,4,
19].
The Zagreb indices have been introduced more than thirty years ago by Gutman and Trinajestic, [6]. They are defined as:

M1(G) =
∑
v∈V (G)

deg(v)2,

M2(G) =
∑
uv∈E(G)

deg(u) deg(v).

We encourage the reader to consult [1,7,16,22–24] for historical background, computational techniques and mathematical
properties of Zagreb indices.
The Cartesian product G×H of graphs G and H has the vertex set V (G×H) = V (G)× V (H) and (a, x)(b, y) is an edge of

G×H if a = b and xy ∈ E(H), or ab ∈ E(G) and x = y. If G1,G2, . . . ,Gn are graphs then we denote G1×· · ·×Gn by
⊗n
i=1 Gi.

In the case that G1 = G2 = · · · = Gn = G, we denote
⊗n
i=1 Gi by G

n. The Wiener index of the Cartesian product graphs
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was studied in [5,17]. In [15], Klavzar, Rajapakse and Gutman computed the Szeged index of the Cartesian product graphs.
The present authors, [10–14,20], computed some exact formulae for the hyper-Wiener, vertex PI, edge Wiener, edge PI and
edge Szeged indices of some graph operations.
The join G = G1 + G2 of graphs G1 and G2 with disjoint vertex sets V1 and V2 and edge sets E1 and E2 is the graph union

G1 ∪ G2 together with all the edges joining V1 and V2. If G = H + · · · + H︸ ︷︷ ︸
n times

then we denote G by nH .

The composition G = G1[G2] of graphs G1 and G2 with disjoint vertex sets V1 and V2 and edge sets E1 and E2 is the graph
with vertex set V1 × V2 and u = (u1, v1) is adjacent with v = (u2, v2)whenever (u1 is adjacent with u2) or (u1 = u2 and v1
is adjacent with v2), see [8, p. 185].
The disjunction G ∨ H of graphs G and H is the graph with vertex set V (G)× V (H) and (u1, v1) is adjacent with (u2, v2)

whenever u1u2 ∈ E(G) or v1v2 ∈ E(H).
The symmetric difference G ⊕ H of two graphs G and H is the graph with vertex set V (G) × V (H) and E(G ⊕ H) =

{(u1, u2)(v1, v2) | u1v1 ∈ E(G) or u2v2 ∈ E(H) but not both}. In [17], Sagan et al. computed some exact formulae for the
Wiener polynomial of various graph operations containing Cartesian product, composition, join, disjunction and symmetric
difference of graphs. In [10], the present authors computed vertex and edge PI indices of the join and composition of graphs.
Here the Padmakar–Ivan (PI) index of a graph G is defined as PI(G) =

∑
e∈E(G)[neu(e|G)+ nev(e|G)], where neu(e|G) denotes

the number of edges lying closer to the vertex u than the vertex v, and nev(e|G) is the number of edges lying closer to the
vertex v than the vertex u. In this definition, edges equidistant from both ends of the edge e = uv are not counted, see
for detail [20,9]. The aim of this paper is to continue this program for computing the Zagreb indices of these operations on
graphs.
Throughout this paper our notation is standard and taken mainly from [2,18]. Kn denotes a complete graph on n vertices.

IF H and G are graphs in which V (H) ⊆ V (G) and E(H) ⊆ E(G) then we call H to be a subgraph of G. H is called a spanning
subgraph of G, if V (H) = V (G). If H is a spanning subgraph of G then we write H ≤ss G. A graph G is called to be quasi
multi-walled nanotorus (q-multi-walled nanotorus as short), if G is isomorphic to the Cartesian product of a path Pn and an
arbitrary nanotorus T , see [21].

2. The first Zagreb index of graph operations

In this section, some exact formulae for the first Zagreb index of the Cartesian product, composition, join, disjunction and
symmetric difference of graphs are presented. We begin with the following crucial lemma related to distance properties of
some graph operations.

Lemma 1. Let G and H be graphs. Then we have:

(a)

|V (G× H)| = |V (G ∨ H)| = |V (G[H])|
= |V (G⊕ H)| = |V (G)||V (H)|,

|E(G× H)| = |E(G)||V (H)| + |V (G)||E(H)|,
|E(G+ H)| = |E(G)| + |E(H)| + |V (G)||V (H)|,
|E(G[H])| = |E(G)||V (H)|2 + |E(H)||V (G)|,
|E(G ∨ H)| = |E(G)||V (H)|2 + |E(H)||V (G)|2 − 2|E(G)||E(H)|,
|E(G⊕ H)| = |E(G)||V (H)|2 + |E(H)||V (G)|2 − 4|E(G)||E(H)|.

(b) G× H is connected if and only if G and H are connected,
(c) If (a, c) and (b, d) are vertices of G× H then dG×H((a, c), (b, d)) = dG(a, b)+ dH(c, d),
(d) The Cartesian product, join, composition, disjunction and symmetric difference of graphs are associative and all of them are
commutative except from composition.

(e)

dG+H(u, v) =


0 u = v
1 uv ∈ E(G) or uv ∈ E(H) or

(u ∈ V (G) & v ∈ V (H))
2 otherwise,

(f)

dG[H]((a, b), (c, d)) =


dG(a, c) a 6= c
0 a = c & b = d
1 a = c & bd ∈ E(H)
2 a = c & bd 6∈ E(H),
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(g)

dG∨H((a, b), (c, d)) =

{0 a = c & b = d
1 ac ∈ E(G) or bd ∈ E(H)
2 otherwise,

(h)

dG⊕H((a, b), (c, d)) =

{0 a = c & b = d
1 ac ∈ E(G) or bd ∈ E(H) but not both
2 otherwise,

(i) degG×H((a, b)) = degG(a)+ degH(b),
(j) degG[H]((a, b)) = |V (H)| degG(a)+ degH(b),
(k)

degG+H(a) =
{
degG(a)+ |V (H)| a ∈ V (G)
degH(a)+ |V (G)| a ∈ V (H),

(l) degG∨H((a, b)) = |V (H)| degG(a)+ |V (G)| degH(b)− degG(a) degH(b),
(m)degG⊕H((a, b)) = |V (H)| degG(a)+ |V (G)| degH(b)− 2 degG(a) degH(b).

Proof. The parts (a–e) are consequence of definitions and some well-known results of the book of Imrich and Klavzar, [8].
For the proof of (f–m) we refer to [13]. �

From now on, we write deg(u) as deg
G
(u), if there is no confusion.

Theorem 1. Let G1,G2, . . . ,Gn be graphs with Vi = V (Gi) and Ei = E(Gi), 1 ≤ i ≤ n, and V = V (
⊗n
i=1 Gi). Then

M1
(⊗n

i=1 Gi
)
= |V |

∑n
i=1

M1(Gi)
|Vi|
+4|V |

∑n
i6=j,i,j=1

|Ei||Ej|
|Vi||Vj|

. In particular, M1(Gn) = n|V (G)|n−2(M1(G)|V (G)|+4(n−1)|E(G)|2).

Proof. We first prove the case n = 2. By Lemma 1(i), degG1×G2(a, b) = degG1(a) + degG2(b). So, M1(G1 × G2) =∑
a∈V1

∑
b∈V2
[degG1(a)

2
+ degG2(b)

2
+ 2 degG1(a) degG2(b)] = |V1|M1(G2) + |V2|M1(G2) + 8|E1||E2|. On the other hand,

by Lemma 1(a) and an inductive argument, one can see that |E(
⊗n
i=1 Gi)| = |V |

∑n
i=1
|Ei|
|Vi|
and |V | =

∏n
i=1 |Vi|. We now

apply Lemma 1(d) to deduce that

M1

(
n⊗
i=1

Gi

)
= M1

(
n−1⊗
i=1

Gi × Gn

)

= |V |
n−1∑
i=1

M1(Gi)
|Vi|

+ 4|V |
n−1∑

i6=j,i,j=1

|Ei||Ej|
|Vi||Vj|

+
|V |
|Vn|
M1(Gn)+ 8

∣∣∣∣∣E
(
n−1⊗
i=1

Gi

)∣∣∣∣∣ |En|
= |V |

n∑
i=1

M1(Gi)
|Vi|

+ 4|V |
n∑

i6=j,i,j=1

|Ei||Ej|
|Vi||Vj|

.

The second part is a simple substitution of above equation. �

It is easy to see that M1(Cn) = 4n, n ≥ 3, M1(P1) = 0 and M1(Pn) = 4n − 6, n > 1. Furthermore, if G is a connected
graph with n vertices, then M1(G) ≤ (n − 1)2n, with equality if and only if G is isomorphic to a complete graph with n
vertices. Suppose Tn denotes the set of all trees with exactly n vertices. Then it is easy to see that the path Pn and the star Sn
have the minimum and maximum ofM1 in Tn, respectively. On the other hand, if H is a subgraph of G thenM1(H) ≤ M1(G).
Therefore, the minimum ofM1 on the set of all connected graphs with n vertices is the same as the minimum ofM1 on T (n).
This implies that Pn and Kn take the minimum and maximum Zagreb index M1 on the set of all connected graphs with n
vertices.

Example 1. Consider the graph G whose vertices are the N-tuples b1b2 · · · bN with bi ∈ {0, 1, . . . , ni − 1}, ni ≥ 2, and let
two vertices be adjacent if the corresponding tuples differ in precisely one place. Such a graph is called a Hamming graph.
It is well-known fact that a graph G is a Hamming graph if and only if it can be written in the form G =

⊗N
i=1 Kni and so

the Hamming graph G is usually denoted as Hn1,...,nN . Apply the previous theorem to compute the first Zagreb index of a
Hamming graph. Then M1(G) = M1(

⊗N
i=1 Kni) = (

∏N
i=1 ni)(

∑N
i=1(ni − 1))

2. The case that n1 = n2 = · · · = nN = 2, the
graph G is well-knows as a hypercube of dimension N and denoted by QN . By our calculation,M1(QN) = N22N .

Example 2. In [20], the authors computed PI index of C4 tubes and tori. In this example, we compute the first Zagreb index
of these molecular graphs. Suppose R and S denote a C4 tube and torus, respectively. Then R = Pn × Cm and S = Ck × Cm,
k,m ≥ 3 and n ≥ 2. By above calculations and Theorem 1, we haveM1(R) = 16mn− 14m andM1(S) = 16mk.
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Fig. 1. The graph of a nanotorus.

Example 3. Let T = T [p, q] be the molecular graph of a nanotorus, Fig. 1. Then T has exactly pq vertices, 3/2(pq) edges,
M1(T ) = 9|V (T )| and for a q-multi-walled nanotorusG = Pn×T ,M1(G) = (13n−6)|V (T )|+8(n−1)|E(T )| = pq(25n−18).

Theorem 2. Let G1,G2, . . . ,Gn be graphs with Vi = V (Gi), Ei = E(Gi), 1 ≤ i ≤ n, G = G1 + G2 + · · · + Gn and V = V (G).
Then

M1(G) =
n∑
i=1

(M1(Gi)+ |Vi|(|V | − |Vi|)2 + 4|Ei|(|V | − |Vi|)).

In particular, M1(nH) = nM1(H)+ n(n− 1)2|V (H)|3 + 4n(n− 1)|E(H)||V (H)|.

Proof. By Lemma 1(d), G ∼= Gi+ (G1+ · · ·Gi−1+Gi+1+ · · · +Gn) and |V | =
∑n
i=1 |Vi|. So degG(v) = degGi(v)+ |V | − |Vi|,

for each v ∈ Vi. ThusM1(G) =
∑n
i=1
∑|Vi|
j=1(degGi(vj)+

∑n
k6=i,k=1 |Vk|)

2
=
∑n
i=1(M1(Gi)+|Vi|(|V |−|Vi|)

2
+4|Ei|(|V |−|Vi|)).

The second part is a direct consequence of above equation. �

Example 4. Consider a complete n-partite graph G = Km1,m2,...,mn containing v = |V (G)| vertices, Fig. 2. By definition of
this graph, V = V (G) can be partitioned into subsets V1, V2, . . . , Vn of V such that for every i, 1 ≤ i ≤ n, there is no edge
between the vertices of Vi. It is easy to see that Km1,m2,...,mn is the join of n empty graphs G1, . . . ,Gn with exactlym1, . . . ,mn
vertices, respectively. So by previous theoremM1(Km1,m2,...,mn) = (

∑
mi)3 +

∑
m3i − 2(

∑
mi)(

∑
m2i ).

Theorem 3. Let G and H be graphs. Then

(a)

M1(G[H]) = |V (H)|3M1(G)+ |V (G)|M1(H)+ 8|V (H)||E(H)||E(G)|,

(b)

M1(G ∨ H) = (|V (G)||V (H)|2 − 4|E(H)||V (H)|)M1(G)+M1(H)M1(G)+ (|V (H)||V (G)|2 − 4|E(G)||V (G)|)M1(H)
+ 8|E(G)||E(H)||V (G)||V (H)|,

(c)

M1(G⊕ H) = (|V (G)||V (H)|2 − 8|E(H)||V (H)|)M1(G)+ 4M1(G)M1(H)
+ (|V (H)||V (G)|2 − 8|E(G)||V (G)|)M1(H)+ 8|E(G)||E(H)||V (G)||V (H)|.

Proof. Apply Lemma 1(j), we have M1(G[H]) =
∑
a∈V (G)

∑
b∈V (H)[|V (H)|

2 degG(a)2 + 2|V (H)| degG(a) degH(b) +
degH(b)2] = |V (H)|3M1(G)+ |V (G)|M1(H)+ 8|V (H)||E(H)||E(G)|. To prove (b) and (c) it is enough to apply Lemma 1(l &
m) and similar arguments as above. �
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Fig. 2. The complete n-partite graph.

The line graph L(G) of a graph G is a graph such that each vertex of L(G) represents an edge of G and any two vertices of
L(G) are adjacent if and only if their corresponding edges share a common endpoint in G. Suppose L0(G) = G, L1(G) = L(G)
and Ln(G) = L(Ln−1(G)). Then we have 2|E(Ln(G))| = M1(Ln−1(G)) − 2|E(Ln−1(G))|. To see this, we notice that every
edge of Ln−1(G) is a vertex of Ln(G) and so

∑
v∈V (Ln(G)) degLn(G)(v) =

∑
uv∈E(Ln−1(G))[degLn−1(G)(u) + degLn−1(G)(v) − 2] =

M1(Ln−1(G)) − 2|E(Ln−1(G))|. Thus using the values of M1(G),M1(L(G)), . . . ,M1(Ln−1(G)), one can compute the size of
E(L(G)), E(L2(G)), . . . , E(Ln(G)).
In the end of this section we prove a simple inequality between PI(G), M1(G) and |E(L(G))|. To do this, we assume that

V (G) = {v1, v2, . . . , vn}. Then

PI(G) =
∑
e∈E(G)

[neu(e|G)+ nev(e|G)]

≥

∑
uv∈E(G)

(deg(v)+ deg(u)− 2)

=

n∑
i=1

deg(vi)2 − 2|E(G)|

= M1(G)− 2|E(G)| = 2|E(L(G))|.

3. The second Zagreb index of graph operations

In this section, the second Zagreb index of the Cartesian product, composition, join and disjunction of graphs are
investigated. We begin again with the Cartesian product of graphs.

Theorem 4. Let G and H be graphs. Then M2(G× H) = |V (G)|M2(H)+ |V (H)|M2(G)+ 3|E(H)|M1(G)+ 3|E(G)|M1(H).

Proof. By Lemma 1(i),

M2(G× H) =
∑

(a,b)(c,d)∈E(G×H)

degG×H(a, b) degG×H(c, d)

=

∑
u∈V (G)

∑
bd∈E(H)

(degG(u)+ degH(b))(degG(u)+ degH(d))
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+

∑
v∈V (H)

∑
ac∈E(G)

(degG(a)+ degH(v))(degG(c)+ degH(v))

= |V (G)|M2(H)+ |V (H)|M2(G)+ 3|E(H)|M1(G)+ 3|E(G)|M1(H). �

A graph G is called r-regular, if for every u, v ∈ V (G), deg(u) = deg(v) = r . It is clear that if G is r-regular then
M2(G) = r

2M1(G) =
nr3
2 , where n = |V (G)|. In the special case that r = n − 1 or 2, we have M2(Kn) =

n(n−1)3

2 and
M2(Cn) = M1(Cn) = 4n. On the other hand,M2(Pn) = 4(n− 2), n > 2. Moreover,M2(P1) = 0 andM2(P2) = 1.

Corollary. Let G1,G2, . . . ,Gn be graphs with Vi = V (Gi) and Ei = E(Gi), 1 ≤ i ≤ n, and V = V (
⊗n
i=1 Gi) and

E = E(
⊗n
i=1 Gi). ThenM2

(⊗n
i=1 Gi

)
= |V |

∑n
i=1(

M2(Gi)
|Vi|
+ 3M1(Gi)(

|E|
|Vi|
−
|V ||Ei|
|Vi|2

)) + 4|V |
∑n

i,j,k=1
i6=j,i6=k,j6=k

|Ei||Ej||Ek|
|Vi||Vj||Vk|

. In particular,

M2(Hn) = n|V (H)|n−3(|V (H)|2M2(G)+ 3(n− 1)|E(H)||V (H)|M1(H)+ 4(n− 1)(n− 2)|E(H)|3).

Proof. By Theorems 1 and 4 and an inductive argument, we have

M2

(
n+1⊗
i=1

Gi

)
= M2

(
n⊗
i=1

Gi × Gn+1

)

= |Vn+1|

|V | n∑
i=1

M2(Gi)
|Vi|

+

n∑
i=1

3M1(Gi)
(
|E|
|Vi|
−
|V ||Ei|
|Vi|2

)
+ 4|V |

n∑
i,j,k=1

i6=j,i6=k,j6=k

|Ei||Ej||Ek|
|Vi||Vj||Vk|


+ |V |M2(Gn+1)+ 3|E|M1(Gn+1)+ 3|En+1|

(
|V |

n∑
i=1

M1(Gi)
|Vi|

+ 4|V |
n∑

i6=j,i,j=1

|Ei||Ej|
|Vi||Vj|

)

= |V ||Vn+1|
n+1∑
i=1

[
M2(Gi)
|Vi|

+ 3M1(Gi)
(
|Vn+1||E| + |En+1||V |

|Vi|
−
|V ||Vn+1||Ei|
|Vi|2

)]

+ 4|V ||Vn+1|
n+1∑
i,j,k=1

i6=j,i6=k,j6=k

|Ei||Ej||Ek|
|Vi||Vj||Vk|

.

For the second part, it is enough to substitute G1, . . . ,Gn by H . �

Example 5. In Example 2, we compute the first Zagreb index of C4 tubes and tori. In this example, the second Zagreb index
of these molecular graphs are computed. With notation as Example 1, we have M2(R) = 32mn − 38n and M2(S) = 32mk,
m, n, k ≥ 3.

Example 6. In Example 1, the first Zagreb index of Hamming graphs are computed. By previous corollary, one can see that

M2(Hm1,m2,...,mn) =

n∏
i=1
mi

2

(
n∑
i=1

(mi − 1)3 + 3
n∑

i6=j,i,j=1

mi(mi − 1)(mj − 1)

)

+

n∏
i=1
mi

2

 n∑
i,j,k=1

i6=j,i6=k,j6=k

(mi − 1)(mj − 1)(mk − 1)

 .
Example 7. Let T = T [p, q] be the molecular graph of a nanotorus, Fig. 1. ThenM2(T ) = 9|E(T )| = 27

2 pq and for a q-multi-
walled nanotorus G(n) = Pn × T , M2(G(n)) = (31n − 35)|V (T )| + (21n − 18)|E(T )| =

pq
2 (125n − 124), when n > 2. On

the other hand,M2(G(1)) = 27
2 pq andM2(G(2)) = 24|E(T )| + 28|V (T )| = 64pq.

Theorem 5. Let G1,G2, . . . ,Gn be graphs with Vi = V (Gi), Ei = E(Gi), 1 ≤ i ≤ n, G = G1 + G2 + · · · + Gn and V = V (G).
Then

M2(G) =
n∑
i=1

[M2(Gi)+ (|V | − |Vi|)(M1(Gi)+ (|V | − |Vi|)|Ei|)] −
1
2

n∑
i=1

[2|Ei| + |Vi|(|V | − |Vi|)]2

+
1
2

[
n∑
i=1

(2|Ei| + |Vi|(|V | − |Vi|))

]2
.
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In particular, if G1 = · · · = Gn = H thenM2(nH) = nM2(H)+n(n−1)|V (H)|(M1(H)+(n−1)|V (H)||E(H)|)+
( n
2

)
(2|E(H)|+

(n− 1)|V (H)|2)2.

Proof. There are two type of edges in G1 + · · · + Gn. Both of the ends of a first type edge belong to Gi, for some i. An edge of
second type connects a vertex of Gi to a vertex of Gj, i 6= j. So by Lemma 1(k) and this fact that G ∼= Gi + (G1 + · · ·Gi−1 +
Gi+1 + · · · + Gn), degG(v) = degGi(v)+ |V | − |Vi|, for each v ∈ Vi. Thus

M2(G) =
∑
ab∈E

degG(a) degG(b)

=

n∑
i=1

∑
uv∈Ei

(degGi(u)+ |V | − |Vi|)(degGi(v)+ |V | − |Vi|)

+
1
2

n∑
i6=j,i,j=1

∑
u∈Vi

∑
v∈Vj

(degGi(u)+ |V | − |Vi|)(degGj(v)+ |V | − |Vj|)

=

n∑
i=1

(M2(Gi)+ (|V | − |Vi|)M1(Gi)+ |Ei|(|V | − |Vi|)2)

+
1
2

n∑
i6=j,i,j=1

[2|Ei| + |Vi|(|V | − |Vi|)][2|Ej| + |Vj|(|V | − |Vj|)],

as desired. The second part is a direct consequence of above equation. �

Example 8. Consider a complete n-partite graph G = Km1,m2,...,mn containing v = |V (G)| vertices. By definition, Km1,m2,...,mn
is the join of n empty graphs G1, . . . ,Gn with exactlym1, . . . ,mn vertices, respectively. So by Theorem 5,M2(Km1,m2,...,mn) =(
(
∑n
i=1 mi)

2
−
∑n
i=1 m

2
i

2

)
.

Theorem 6. Let G and H be graphs. Then

(a)

M2(G[H]) = |V (H)|4M2(G)+ |V (G)|M2(H)+ 3|V (H)|2|E(H)||M1(G)| + 2|V (H)||E(G)|M1(H)+ 4|E(G)||E(H)|2,

(b)

M2(G ∨ H) = ((|V (G)|2 − 2|E(G)|)2 − 2|V (G)|2|E(G)|)M2(H)
+ ((|V (H)|2 − 2|E(H)|)2 − 2|V (H)|2|E(H)|)M2(G)
+ (2|V (G)|2|V (H)||E(G)| − 4|E(G)|2|V (H)|)M1(H)
+ (2|V (H)|2|V (G)||E(H)| − 4|E(H)|2|V (G)|)M1(G)
− |V (G)||V (H)|M1(H)M1(G)+ 2|V (H)|M2(G)M1(H)
+ 2|V (G)|M2(H)M1(G)− 2M2(H)M2(G)+ 4|E(H)||E(G)|(|V (H)|2|E(G)| + |V (G)|2|E(H)|).

Proof. (a) By Lemma 1(j),

M2(G[H]) =
∑
w∈V (G)

∑
uv∈E(H)

(|V (H)| degG(w)+ degH(u))(|V (H)| degG(w)+ degH(v))

+

∑
ab∈E(G)

∑
v∈V (H)

∑
u∈V (H)

(|V (H)| degG(a)+ degH(u))(|V (H)| degG(b)+ degH(v))

= |V (H)|4M2(G)+ |V (G)|M2(H)+ 3|V (H)|2|E(H)||M1(G)| + 2|V (H)||E(G)|M1(H)+ 4|E(G)||E(H)|2.

(b) By Lemma 1(l), we have

M2(G ∨ H) =
∑
a∈V (G)

∑
c∈V (G)

∑
bd∈E(H)

degG∨H(a, b) degG∨H(c, d)+
∑
b∈V (H)

∑
d∈V (H)

∑
ac∈E(G)

degG∨H(a, b) degG∨H(c, d)

− 2
∑
ac∈E(G)

∑
bd∈E(H)

degG∨H(a, b) degG∨H(c, d)

=

∑
a∈V (G)

∑
c∈V (G)

∑
bd∈E(H)

[|V (G)||V (H)|(degG(a) degH(d)+ degH(b) degG(c))+ degG(a) degG(c) degH(b) degH(d)

+ |V (H)|2 degG(a) degG(c)+ |V (G)|
2 degH(b) degH(d)− |V (H)| degG(a) degG(c)(degH(d)+ degH(b))
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− |V (G)| degH(b) degH(d)(degG(a)+ degG(c))] +
∑
b∈V (H)

∑
d∈V (H)

∑
ac∈E(G)

[|V (G)||V (H)|(degG(a) degH(d)

+ degH(b) degG(c))+ degG(a) degG(c) degH(b) degH(d)+ |V (H)|
2 degG(a) degG(c)+ |V (G)|

2 degH(b) degH(d)
− |V (H)| degG(a) degG(c)(degH(d)+ degH(b))− |V (G)| degH(b) degH(d)(degG(a)+ degG(c))]

−

∑
ac∈E(G)

∑
bd∈E(H)

[|V (G)||V (H)|(degG(a)+ degH(d))(degH(b)+ degG(c))+ 2 degG(a) degG(c) degH(b) degH(d)

+ 2|V (H)|2 degG(a) degG(c)+ 2|V (G)|
2 degH(b) degH(d)− 2|V (H)| degG(a) degG(c)(degH(d)+ degH(b))

− 2|V (G)| degH(b) degH(d)(degG(a)+ degG(c))],

which completes the proof. �

Finally, using a similar method, one can prove the following exact formula for the second Zagreb index of symmetric
difference of graphs:

Theorem 7. Let G and H be graphs. Then

M2(G⊕ H) = ((|V (G)|2 − 2|E(G)|)2 − 4|V (G)|2|E(G)|)M2(H)+ ((|V (H)|2 − 2|E(H)|)2 − 4|V (H)|2|E(H)|)M2(G)
+ (2|V (G)|2|V (H)||E(G)| − 8|E(G)|2|V (H)|)M1(H)+ (2|V (H)|2|V (G)||E(H)| − 8|E(H)|2|V (G)|)M1(G)
− 2|V (G)||V (H)|M1(H)M1(G)+ 8|V (H)|M2(G)M1(H)
+ 8|V (G)|M2(H)M1(G)− 16M2(H)M2(G)+ 4|E(H)||E(G)|(|V (H)|2|E(G)| + |V (G)|2|E(H)|)

We end the paper with the following simple but elegant lemma:

Lemma 2. Let H be a subgraph of G then M1(H) ≤ M1(G) and M2(H) ≤ M2(G).

Using Lemma 2, one can see that for arbitrary connected graphs G and H , since G× H ≤ss G[H] ≤ss G ∨ H ,M1(G× H) ≤
M1(G[H]) ≤ M1(G ∨ H), M2(G × H) ≤ M2(G[H]) ≤ M2(G ∨ H), M1(G × H) ≤ M1(H[G]) ≤ M1(G ∨ H) and
M2(G×H) ≤ M2(H[G]) ≤ M2(G∨H). On the other hand,G×H ≤ss G⊕H ≤ss G∨H and soM1(G×H) ≤ M1(G⊕H) ≤ M1(G∨H)
and M2(G × H) ≤ M2(G ⊕ H) ≤ M2(G ∨ H). By previous lemma, clearly Kn has the maximum Zagreb index M2 on the set
of all connected graphs with n vertices. It is also easy to prove the path Pn and the star Sn have the minimum and maximum
of M2 between n-vertex trees, respectively. Therefore, by Lemma 2, the minimum of M2 on the set of all connected graphs
with n vertices is the same as the minimum ofM2 on n-vertex trees.
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