
Immunity

Article
Macrophage-Restricted Interleukin-10
Receptor Deficiency, but Not IL-10 Deficiency,
Causes Severe Spontaneous Colitis
Ehud Zigmond,1,2 Biana Bernshtein,1 Gilgi Friedlander,3 Catherine R. Walker,4 Simon Yona,1 Ki-Wook Kim,1 Ori Brenner,5

Rita Krauthgamer,1 Chen Varol,2 Werner Müller,4 and Steffen Jung1,*
1Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
2The Research Center for Digestive Tract and Liver Diseases, Tel Aviv-Sourasky Medical Center and Sackler Faculty of Medicine,
Tel-Aviv University, Tel-Aviv 64239, Israel
3Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
4Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
5Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 76100, Israel
*Correspondence: s.jung@weizmann.ac.il

http://dx.doi.org/10.1016/j.immuni.2014.03.012
SUMMARY

Interleukin-10 (IL-10) is a pleiotropic anti-inflamma-
tory cytokine produced and sensed bymost hemato-
poietic cells. Genome-wide association studies and
experimental animal models point at a central role
of the IL-10 axis in inflammatory bowel diseases.
Here we investigated the importance of intestinal
macrophage production of IL-10 and their IL-10
exposure, as well as the existence of an IL-10-based
autocrine regulatory loop in the gut. Specifically, we
generated mice harboring IL-10 or IL-10 receptor
(IL-10Ra) mutations in intestinal lamina propria-
resident chemokine receptor CX3CR1-expressing
macrophages. We found macrophage-derived IL-10
dispensable for gut homeostasis and maintenance
of colonic T regulatory cells. In contrast, loss of IL-
10 receptor expression impaired the critical condi-
tioning of these monocyte-derived macrophages
and resulted in spontaneous development of severe
colitis. Collectively, our results highlight IL-10 as a
critical homeostatic macrophage-conditioning agent
in the colon and define intestinal CX3CR1

hi macro-
phages as a decisive factor that determines gut
health or inflammation.

INTRODUCTION

Themammalian intestinal tract represents a unique environment,

in which a single epithelial cell layer separates deeper tissues

from a dense and potentially harmful microbiota community.

Coevolution of the host immune system and the microbiome

has generated an environment of mutual benefit. Failure to main-

tain the exquisite balance of host and microbiota in genetically

predisposed individuals results in chronic inflammatory bowel

disorders (IBD) including Crohn’s disease (CD) and ulcerative

colitis (UC).
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A critical feature of the gut landscape is ongoing tissue

renewal, with a continuously replaced epithelial cell layer (van

der Flier and Clevers, 2009) and an equally dynamic immune

cell composition (Hapfelmeier et al., 2010; Lathrop et al.,

2011). Intestinal macrophages match this dynamic state with a

short half-life that is unique among tissue macrophages (Jaens-

son et al., 2008). Thus, recent studies revealed that most tissue

macrophages are established prebirth and subsequently main-

tain themselves through longevity and limited self-renewal (Gin-

houx et al., 2010; Schulz et al., 2012; Yona et al., 2013). Intestinal

macrophages rely in contrast on the constant replenishment by

blood monocytes (Bogunovic et al., 2009; Varol et al., 2009),

potentially attracted by the tonic low-grade inflammatory stim-

ulus present in the gut. Newly arriving Ly6C+ blood monocytes

are in the healthy mouse intestine conditioned to acquire a

noninflammatory gene-expression profile and differentiate into

chemokine receptor CX3CR1
hi macrophages (Bain et al., 2013;

Rivollier et al., 2012; Zigmond et al., 2012). Also human lamina

propria macrophages display an anergic phenotype under

steady-state conditions (Smythies et al., 2005). Under acute in-

flammatory settings, the conditioning of murine Ly6C+ blood

monocytes is impaired and they give rise to proinflammatory

cells that promote disease (Zigmond et al., 2012). Local macro-

phage differentiation and conditioning thus have emerged as a

key element for the maintenance of gut homeostasis (Zigmond

and Jung, 2013); however, the molecular cues that locally influ-

ence this process remain poorly understood.

Interleukin-10 (IL-10) is a pleiotropic cytokine whose activity is

aimed at limiting inflammatory responses (Bogdan et al., 1991;

Moore et al., 2001). In the gut, IL-10 is produced by T cells,

B cells, and macrophages, as well as certain nonhematopoietic

cells, usually after activating stimuli (Saraiva and O’Garra, 2010).

Most hematopoietic cells also sense IL-10 via expression of a

dedicated IL-10 receptor, composed of an IL-10-binding chain

(IL-10Ra) and an accessory molecule shared with other recep-

tors of IL-10 superfamily members (IL-10Rb) (Moore et al.,

2001). Genome-wide association studies (GWASs) revealed a

central role of the IL-10 axis in IBD pathogenesis. Sequence var-

iants in the IL-10 locus predispose to UC development, without

however affecting the CD risk (Franke et al., 2008). Homozygous
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IL-10RA and IL-10RB loss-of-function mutations that impair

ligand-triggered signaling cause severe early onset colitis

(Glocker et al., 2009). Highlighting conservation, IL-10-deficient

mice develop spontaneous enterocolitis (Kühn et al., 1993).

Moreover, also animals that harbor a STAT3 transcription factor

deficiency in myeloid cells, including neutrophils and intestinal

macrophages, succumb to colitis (Takeda et al., 1999). Activity

of STAT3 is however not restricted to the IL-10 receptor but

also serves the receptors of IL-5, IL-6, epidermal growth factor

(EGF) and others.

Here we report on the specific roles of IL-10 production and IL-

10 sensing by intestinal CX3CR1
hi macrophages in gut homeo-

stasis. Specifically, we took advantage of Cx3cr1
cre animals

(Yona et al., 2013) to generate mice with macrophage-restricted

IL-10 or IL-10Ra deficiencies. We have shown that IL-10 produc-

tion by macrophages was dispensable for gut homeostasis and

T regulatory (Treg) cell maintenance in the mouse. In contrast,

animals harboring intestinal macrophages that fail to sense IL-

10 due to the IL-10Ra deficiency developed a spontaneous

severe UC-like disorder. This defines IL-10 as critical homeostat-

ic macrophage conditioning agent in the colon and highlights

CX3CR1
hi macrophages as decisive factor for gut health or

inflammation.

RESULTS

Resident Macrophages Accumulate and Gain
Proinflammatory and Migratory Traits in an IL-10-
Deficient Environment
IL-10-deficient animals develop severe spontaneous colitis

(Kühn et al., 1993) driven by commensal microbiota (Rakoff-

Nahoum et al., 2006). To evaluate CX3CR1
hi macrophages in

this chronic IBD model, we backcrossed IL-10�/� mice (Kühn

et al., 1993) to Cx3cr1gfp mice (Jung et al., 2000). Reporter

gene introduction facilitates the identification of these cells (Varol

et al., 2009; Zigmond et al., 2012). In our animal facility, IL-10�/�

Cx3cr1gfp/+ mice develop spontaneous intestinal inflammation

mainly restricted to the large bowel. Flow cytometric and immu-

nohistochemical analysis of colons of these mice revealed the

accumulation of CX3CR1
hi macrophages (Figures 1A and 1B).

Although the majority of gut macrophages exhibited high

expression of the chemokine receptor, akin to resident cells, Il-

10�/� Cx3cr1gfp/+ mice notably also displayed a CX3CR1
int cell

infiltrate, recently reported to be associated with acute colitis

(Bain et al., 2013; Zigmond et al., 2012) (Figure 1A; see Fig-

ure S1A available online). To study molecular aspects of resident

CX3CR1
hi macrophages under chronic inflammation, we per-

formed a microarray analysis on cells purified from the colonic

lamina propria of 6-week-old IL-10�/� Cx3cr1gfp/+ mice, i.e., a

time before overt histological disease signs, and compared

them to CX3CR1-GFPhi macrophages of Cx3cr1gfp/+ animals

(Figure S1A). Comparative transcriptome analysis revealed a

marked proinflammatory signature of macrophages isolated

from IL-10�/� mice with high expression of Trem1, Nos2, IL-

23a, Ccl5, and Serum amyloid A3 (Saa3) mRNA. Il10�/�, but
notWTmacrophages, also upregulatedmRNA of the C-type lec-

tin Clec9A, a steady state marker of CD8a+ dendritic cells (DCs)

(Poulin et al., 2012), as well as mRNA of CCR7, a chemokine

receptor granting migration potential toward mesenteric lymph
nodes (mLN) (Jang et al., 2006). Notably, Il10�/� Cx3cr1gfp/+

macrophages also displayed reduced mRNA expression of the

metalloproteinase subunit meprin A, reported to confer ulcera-

tive colitis susceptibility (Banerjee et al., 2009) and of the

DC-specific ICAM-3 grabbing nonintegrin (DC-SIGN) isoform

A (CD209a) (Figure 1C). Quantitative PCR (qPCR) analysis

confirmed the differential expression of these genes (Figure 1D).

Under steady-state conditions, CX3CR1
hi macrophages are

nonmigratory (Schulz et al., 2009), as indicated by their lack of

CCR7 expression. Accordingly, CX3CR1
hi cells are absent from

the mLN, a feature that also extends to acute inflammation

(Schulz et al., 2009; Figure S1B). In accordance with the

observed CCR7 expression in our array analysis, mLN of

Il10�/� Cx3cr1gfp/+ mice harbored though a sizable population

of CX3CR1
hi cells (Figure 1E). Moreover, the CX3CR1

hi cells in

the inflamed mLN expressed CD11c, MHC II, and the Fc recep-

tor CD64, akin to lamina propria-resident colonic macrophages

(Figure 1F). These data are consistent with the recent notion

that CX3CR1
hi macrophages might under chronic inflammation

migrate from the tissue to the LN (Diehl et al., 2013).

Collectively, this demonstrates that resident CX3CR1
hi macro-

phages fail in absence of IL-10 to adopt a noninflammatory

signature but gain proinflammatory and migratory capacity.

Furthermore, these data suggest that macrophages might be

key initiators of the pathology in this system.

Cultured Macrophages Are Subject to an IL-10-Based
Autocrine Regulatory Loop Curbing Activation and
Proinflammatory Activity
CX3CR1

hi macrophages are established major producers of in-

testinal IL-10 (Hadis et al., 2011; Murai et al., 2009), and also

sense this cytokine by virtue of their IL-10R expression (Pils

et al., 2010a). Indeed, qPCR analysis demonstrated unique

high expression of IL-10 and IL-10Ra mRNA by macrophages

among immune cells sorted from the colonic lamina propria (Fig-

ure 2A). To investigate the physiological importance of macro-

phage-derived IL-10 and the consequences of macrophages

exposure to IL-10 in the gut, we generated mice with macro-

phage-restricted IL-10 or IL-10Ra mutations. Specifically, we

crossed Cx3cr1
cre animals (Yona et al., 2013) to mice harboring

conditional mutant IL10 or IL10ra loci (Pils et al., 2011b; Roers

et al., 2004).

FACS analysis of the colonic lamina propria of Cx3cr1
cre

rosa26-rfpfl/fl reporter mice revealed that almost all intestinal

macrophages were affected by this transgenic system, whereas

only a third of the CD11c+ CD11b� DCs, which represent the

main colonic DC population, displayed reporter gene activation.

Rearrangements were also detected in two thirds of CD103+

CD11b+ DCs and CD103� CD11b+ DCs (Figure 2B) (data not

shown). T cells reported to express CX3CR1 at low percentages

are largely spared by this system with less than 6% percent of

CD4+ CD25�, CD4+CD25+ and CD8+ T cells being affected, a

frequency that did not change upon inflammation (Figures S2A

and S2B). qPCR analysis of colonic tissue of Cx3cr1creIl10fl/fl

mice revealed reduced IL-10 mRNA expression as compared

to Il10fl/fl littermates, supporting the notion of macrophages as

significant colonic IL-10 source (Figure 2C).

To probe for the existence of an IL-10-based autocrine

regulatory loop, we established monocyte-derived macrophage
Immunity 40, 720–733, May 15, 2014 ª2014 Elsevier Inc. 721
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Figure 1. Resident Macrophages Accumulate and Gain Proinflammatory and Migratory Traits in IL-10-Deficient Environment

(A and B) Flow cytometry analysis (A) and histology (B) of colons of 6-month-old Il10�/�Cx3cr1gfp/+ andCx3cr1gfp/+ mice. Percentages of macrophages are out of

CD45+ living cells. Data are pooled from two independent experiments (n = 3–4) and depict the percentage of CX3CR1
hi cells out of CD45+ living cells. Statistical

comparisons were performed with the Student’s t test.

(C) Scatterplot presenting the differentially expressed genes in 6-week-old Il10�/� versus WT resident colonic macrophages. Genes are plotted based on their

expression level (log2 intensity). Genes downregulated or upregulated above 2-fold are colored in green and red, respectively (based on microarray data).

Specific genes that participate in selected biological pathways are indicated

(D) Graphical summary of qPCR analysis showing the mRNA ratio of indicated molecules between Il10�/� andWT resident macrophages sorted from the colonic

lamina propria of 6-week-old mice. Data represent mean ± SEM of three independent experiments with sorted cells from a pool of six mice per experiment.

(E) Flow cytometry analysis of mesenteric lymph nodes of 6-month-old Il10�/�Cx3cr1gfp/+ and Cx3cr1gfp/+ mice and graphical summary of the prevalence of

CX3CR1-GFPhi macrophages out of CD11c+ MHC II+ cells. Data are pooled from three independent experiments (n = 3–4) and depict the number of CX3CR1
hi

macrophages out of CD11c+ MHC II+ cells. Statistical comparisons were performed with the Student’s t test.

(F) Flow cytometry analysis of mesenteric lymph nodes of 6-month-old Il10�/�Cx3cr1
gfp/+ mice. CD45+ Dapi� cells were gated for CD11bhi CX3CR1

neg neutrophils

(red), CX3CR1
hi cells (green), and CX3CR1

int cells (blue). Data are representative of two independent experiments (n = 3).
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cultures by exposing CD115+ bone marrow (BM) fractions

of Cx3cr1gfp/+, Cx3cr1creIl10fl/fl, and Cx3cr1creIl10rafl/fl mice to

Csf-1 (M-CSF). This protocol yielded a homogeneous popula-
722 Immunity 40, 720–733, May 15, 2014 ª2014 Elsevier Inc.
tion of F4/80+MHC II+ macrophages displaying uniform high

CX3CR1-GFP expression (Figure 2D). Following LPS stimu-

lation, WT and Cx3cr1creIl10rafl/fl, but not Cx3cr1creIl10fl/fl
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Figure 2. IL-10-Based Autocrine Regulatory Loop

(A) qPCR analysis for IL-10 (upper) and IL-10Ra (lower) mRNA performed on RNA extracted from cells sorted from the colonic lamina propria ofCx3cr1gfp/+ mice.

MF, macrophages; DC, CD103+CD11b� dendritic cells; CD4, CD4+ T cells; CD8, CD8+ T cells; Eos, Eosinophils; PC, Plasma cells. Data are pooled from two

independent experiments (n = 10). Results are shown as mean ± SEM.

(B) Flow cytometry analysis of mononuclear phagocytes in the colonic lamina propria of Cx3cr1crerosa26-rfpfl/fl mice. Data are representative of three inde-

pendent experiments.

(C) qPCR for IL-10 mRNA performed on RNA extracted from the colons of Cx3cr1creIl10fl/fl and Il10fl/fl mice. Data are pooled from two independent experiments

(n = 3). Results are shown as mean ± SEM.

(D) Flow cytometry analysis of macrophages derived from BM of Cx3cr1gfp/+ mice at day 6 of culture. Data are representative of three independent

experiments.

(E) BM-derived macrophages from Cx3cr1gfp/+,Cx3cr1creIl10fl/fl, andCx3cr1creIl10rafl/fl mice were stimulated with LPS. Supernatants were analyzed by ELISA for

IL-10. Data are pooled from two independent experiments. Results are shown as mean ± SEM.

(legend continued on next page)
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macrophages, secreted IL-10 (Figure 2E), establishing efficient

rearrangement of the ‘‘floxed’’ Il10 loci in the latter cells. Macro-

phages stimulated with LPS responded by secretion of TNF-a

and IL-6 (Figure 2F), and upregulated CD40 and TREM-1 (Fig-

ure 2G). Proinflammatory cytokine secretion by IL-10- and IL-

10Ra-deficient macrophages was significantly higher than that

of WT cells. Simultaneous addition of recombinant IL-10 and

LPS reduced IL-6 and TNF-a production byCx3cr1
creIl10fl/fl mac-

rophages to WT amounts, whereas Cx3cr1creIl10rafl/fl macro-

phages remained unaffected (Figure 2F). Collectively, these

data corroborate the previously reported autocrine regulatory

loop (Siewe et al., 2006; Pils et al., 2010a).

Macrophage-Restricted IL-10 Deficiency Does Not
Result in Spontaneous Enterocolitis or Impaired T
Regulatory Cell Compartment
To probe the importance of macrophage-derived IL-10 and the

above described IL-10-based autoregulatory loop in the control

of physiological macrophage hyperactivation, we monitored

Cx3cr1crell10fl/fl mice and control littermates weekly for body

mass gain and health. Mice harboring IL-10-deficient resident

CX3CR1
hi macrophages developed normally and did not display

any signs of colitis assessed by endoscopic and histological ex-

amination up to the age of six months (Figures 3A–3E). Notably,

macrophage-derived IL-10 was proposed to be critical for gut

homeostasis through its impact on Treg cells (Murai et al.,

2009; Hadis et al., 2011; Liu et al., 2011). Comparison of the in-

testinal Treg cell pool of Cx3cr1creIl10fl/fl mice to that of their

Il10fl/fl littermates revealed, however, no difference in the preva-

lence of these cells (Figures 3F and 3G). This was in contrast to

colitic Il10�/� mice that displayed lower percentages of Treg

cells (out of total CD4+ T cells), likely due to inflammation-

associated CD4+ non-Treg cell infiltrates (Figures 3F and 3G).

Although unchallenged Cx3cr1creIl10fl/fl mice did not develop

spontaneous gut pathology, they could be more susceptible to

challenge. To test this issue, we subjected Cx3cr1creIl10fl/fl

mice and their Il10fl/fl littermates to the acute dextran sodium sul-

fate (DSS) colitis model (Okayasu et al., 1990). Colitis severity

and recovery were, however, similar in both groups of animals

as evaluated by body mass change and colonoscopy (Figures

3H–3J). Collectively, these data establish that CX3CR1
hi macro-

phage-derived IL-10 is dispensable for the maintenance of gut

homeostasis, potentially due to redundant IL-10 sources.

Macrophage-Restricted IL-10 Receptor Deficiency
Results in Severe Enterocolitis
To evaluate the significance of IL-10 receptor expression by resi-

dent macrophages, we evaluated Cx3cr1creIl10rafl/fl mice and

control littermates weekly for well-being. Cx3cr1creIl10rafl/fl

males exhibited growth retardation compared to their Il10rafl/fl

littermates, with reduced body mass and about 20 percent

reduction in average weight at the age of 6 months, similar

to IL-10-deficient animals (Figure 4A). Moreover, all male
(F) ELISA for IL-6 and TNF-a performed on culture supernatants of BM-derived

Cx3cr1creIl10fl/fl, and Cx3cr1creIl10rafl/fl mice. Data are pooled from three indepen

comparisons were performed with one-way ANOVA followed by Bonferroni (*p <

(G) BM-derived macrophages from Cx3cr1gfp/+ and Cx3cr1creIl10rafl/fl were analy

two independent experiments.
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Cx3cr1creIl10rafl/fl mice, but none of their Il10rafl/fl littermates,

developed progressive rectal prolapse (Figure 4B). Female

Cx3cr1creIl10rafl/fl mice were less affected, with a milder reduc-

tion in body mass and about 60 percent incidence of rectal pro-

lapse (Figure S3). Il10rafl/fl animals were cohoused up to an age

of 12 months with their sick Cx3cr1creIl10rafl/fl littermates. How-

ever, they did not display any sign of pathology, arguing against

an emergence of dominant colitogenic microbiota in this exper-

imental system. Colonoscopy assessment revealed features

compatible with chronic colitis (Figures 4C and 4D). Histological

assessment revealed chronic inflammation characteristics only

in Cx3cr1creIl10rafl/fl mice with normal appearance of their

Il10rafl/fl littermates (Figures 4E and 4F). Histopathological alter-

ations in Cx3cr1creIl10rafl/fl mice included multifocal infiltrates

composed of mononuclear cells, neutrophils, and lymphocytes

in the lamina propria, submucosa, and rarely transmural, accom-

panied by epithelial hyperplasia, erosions, and ulcers (Figures 4E

and 4F). Changes were most prominent in the cecum and distal

colon, whereas only few mice displayed mild inflammatory infil-

trates in their terminal ileum. Multiplex cytokine analysis of sera

and supernatants of colon explant cultures disclosed a signifi-

cant increase in IL-6, IL-17, and IL-10 in Cx3cr1creIl10rafl/fl

mice (Figure 4G). Histological staining revealed prominent accu-

mulation of T cells and neutrophils in the lamina propria of

Cx3cr1creIl10rafl/fl mice (Figure 4H). Collectively, this established

that CX3CR1
hi macrophages have to sense IL-10 to maintain gut

homeostasis. Together with the above data obtained from

CX3CR1
hi macrophages isolated from Il10�/� mice, these find-

ings highlight IL-10 as a critical conditioning factor of the mono-

cyte-derived cells.

IL-10 Receptor-Deficient Macrophages Exhibit a
Proinflammatory Expression Signature
Next we performed a microarray analysis on resident CX3CR1

hi

macrophages freshly isolated from the colonic lamina propria

of 6-week-old Cx3cr1creIl10rafl/fl mice (pre-colitis onset), and

compared them to cells isolated from Cx3cr1gfp/+ animals (Fig-

ure S4). Hierarchical sample clustering demonstrated high

resemblance of replicate data sets (Figure 5A). Microarray anal-

ysis revealed 156 upregulated and 176 downregulated genes

that had significantly changed at least 2-fold in IL-10Ra-deficient

versus WT macrophages (Figure 5B; Tables S1A and S1B). The

genes upregulated in Il10ra�/� macrophages revealed a marked

proinflammatory signature similar to the profile of macrophages

isolated from Il10�/� mice (Figure 1C), including elevation of

Trem-1, Nos2, IL-23a, Ccl5, Clec9A, Ccr7, and Saa3 mRNA.

qPCR analysis confirmed the differential expression of these

genes (Figure 5C). Because IL-10R-deficient intestinal macro-

phages initiated the inflammatory process in the Cx3cr1cre

Il10rafl/fl model, their gene signature might offer insights into

pathogenesis and potential therapeutic IBD targets. Accord-

ingly, comparison of genes upregulated in colonic Cx3cr1cre

Il10rafl/fl macrophages with IBD susceptibility genes retrieved
macrophages treated with LPS or LPS and IL-10 isolated from Cx3cr1gfp/+,

dent experiments. Results for (E) and (F) are shown as mean ± SEM. Statistical

0.05).

zed by flow cytometry for specific surface markers. Data are representative of



Figure 3. Mice Harboring Macrophage-Restricted IL-10 Mutations Display neither Developmental Abnormalities nor Intestinal Pathology

(A) Graphical summary of body mass follow up of male Cx3cr1creIl10fl/fl and Il10fl/fl mice. ns, nonsignificant.

(B) Graphical summary of endoscopic colitis grades for 6-month-old Cx3cr1creIl10fl/fl and their Il10fl/fl littermates.

(legend continued on next page)
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from GWASs (Jostins et al., 2012) revealed considerable overlap

(Figure 5D). Interestingly, this included a signature of altered lipid

metabolism with a shift in eicosanoid synthesis from leukotriene

to prostaglandin, suggesting a potential rise of prostaglandin E2

(PGE2). Local concentrations of this highly bioactive fatty-acid-

derived lipid compound, which has been implicated in the

IBD pathophysiology and correlates with UC disease severity

(Lauritsen et al., 1988), are determined by the balance of

PGE2 synthesis by cyclooxygenases (COX1 and COX2) and

PGE2 degradation by 15-hydroxyprostaglandin dehydrogenase

(Hpgd) (Figure 5E). Cx3cr1creIl10rafl/fl macrophages displayed

reduced expression of Hpgd mRNA, a finding confirmed by

qPCR (Figure 5F). The cells furthermore exhibited a reduction

of arachidonate 5-lipoxygenase (Alox5) and leukotriene C4 syn-

thase (Ltc4s) expression, i.e., two enzymes required for leuko-

triene synthesis (Figure 5E). Moreover, culture supernatants

of Cx3cr1creIl10Rafl/fl colon explants displayed significantly

elevated PGE2, as compared to littermate controls (Figure 5G).

Finally, and supporting the notion of an increased PGE2 concen-

tration due to reduced degradation in immediate vicinity of the

mutant macrophages, we detected a number of genes reported

to be induced by PGE2 in the gene-expression signature of the

Cx3cr1creIl10rafl/fl macrophages, most notably Il23a and Ccr7

(Muthuswamy et al., 2010; Sheibanie et al., 2007). Collectively,

the molecular profiling defined the impact of the inability of the

CX3CR1
hi macrophages to sense IL-10 and thus the impaired

conditioning of their monocytic progenitors.

DISCUSSION

Here we investigated the role of the IL-10 axis in the establish-

ment of the noninflammatory gene-expression signature of

intestinal CX3CR1
hi macrophages. We have shown that macro-

phage production of IL-10 is dispensable for gut homeostasis.

In contrast, macrophages unable to sense IL-10 fail to acquire

a mandatory noninflammatory gene signature resulting in overt

spontaneous colitis.

IBD are considered polygenic diseases that develop in genet-

ically susceptible individuals under certain environmental condi-

tions (Cho, 2008). GWASs revealed strong association of the

allelic variants of the IL10 and IL10R genes with IBD, and in

particular UC. This suggested impaired IL-10 signaling as key

afflicted pathway in the development of human intestinal inflam-

mation (Engelhardt et al., 2013; Franke et al., 2008). Indeed,

severe early onset colitis in children can be amonogenic disease

caused bymutations in IL-10 or its receptor (Glocker et al., 2009).

However, the cell type that requires silencing by IL-10 to main-

tain gut homeostasis has remained elusive. Our finding that
(C) Representative colonoscopy images of indicated mice.

(D) Representative histological images of cecum and rectum of 6-month-old Cx3

(E) Graphical summary of histological severity score of indicated mice.

(F) Flow cytometry analysis of CD4+ CD25+FoxP3+ regulatory T cells in the lam

percentage of CD25+ FoxP3+ T cells out of CD4+ T cells.

(G) Graphical summary of regulatory T cell prevalence in the lamina propria of in

(H) Graphical summary of body mass changes following DSS challenge of Cx3cr

(I) Graphical summary of endoscopic colitis grades in days 7 and 10 following D

(J) Representative colonoscopy images of indicated mice in day 10 following DS

Data are representative of at least three independent experiments (n = 5), results

Student’s t test (B, E, I), or one-way ANOVA followed by Bonferroni (G).
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mice harboring IL-10R-deficient colonic lamina propria macro-

phages develop spontaneous colitis that is in its severity compa-

rable to Il10�/� mice highlights CX3CR1
hi macrophages as

critical initiators of the inflammatory process. Of note, the trans-

genic Cx3cr1cre system also partially affected intestinal DCs.

Impaired IL-10R signaling in these cells, potentially resulting in

enhanced effector T cell responses, could therefore contribute

to the development of gut inflammation in our model. This should

be evaluated in the future as experimental models that allow the

specific conditional targeting of intestinal DC subsets become

available.

Homeostatic resident CX3CR1
hi macrophages are derived

from Ly6C+ monocytes (Bogunovic et al., 2009; Varol et al.,

2009) and in the healthy colon locally conditioned to be anergic

and noninflammatory (Zigmond and Jung, 2013). Resident

CX3CR1
hi macrophages are nonmigratory, as indicated by their

lack of expression of the chemokine receptor CCR7 (Schulz

et al., 2009; Zigmond et al., 2012) that is required for tissue exit

(Jang et al., 2006). Accordingly, in steady-state conditions, but

also during chemical-induced acute colitis, mLN lack CX3CR1
hi

cells. Recently, it was suggested that dysbiosis caused by anti-

biotica exposure andSalmonella infection, triggers expression of

CCR7 by CX3CR1
hi cells and their migration toward mLN (Diehl

et al., 2013). Here we corroborate this finding by showing that

CX3CR1
hi macrophages of both Il10�/� and cx3cr1creIl10rafl/fl

mice display CCR7 expression. Moreover, CCR7 was also found

to be expressed by monocyte culture-derived macrophages of

patients harboring IL-10R loss-of-function mutations (Shouval

et al., 2014). Interestingly, analysis of Il10�/�cx3cr1gfp/+ mice re-

vealed the presence of CX3CR1
hi cells in their mLN. Although we

cannot exclude that these cells arose locally from blood mono-

cytes that entered the inflamed LN (Tamoutounour et al.,

2012), their CD64, CD11c, MHC II, and CCR7 expression would

be consistent with their lamina propria origin. Collectively, these

data suggest that the absence of migratory capacity of intestinal

CX3CR1
hi macrophages requires active enforcement by environ-

mental cues, rather than being an inherent epigenetically pre-

programmed feature of these monocyte-derived cells.

The spontaneous colitis of IL-10-deficient animals (Kühn et al.,

1993) and most likely also that observed in cx3cr1creIl10rafl/fl

model are driven by the commensal gut microbiota (Rakoff-

Nahoum et al., 2006). Thus, a Myd88 deficiency in macrophages

can restore homeostasis in Il10�/� mice (Hoshi et al., 2012). As

opposed to other models of gut inflammation (Elinav et al.,

2011), we however found no evidence for a selection of a colito-

genic microbiota. Interestingly, Helicobacter hepaticus-bearing

WT mice, but not animals lacking these bacteria, respond to

antibody-mediated IL10R neutralization by colitis development
cr1creIl10fl/fl and Il10fl/fl mice.

ina propria of Cx3cr1creIl10fl/fl, Il10fl/fl, and Il10�/� mice. Graph depicts the

dicated mice out of CD4+ T cells.

1creIl10fl/fl and Il10fl/fl mice.

SS initiation in indicated mice.

S initiation.

are shown as mean ± SEM. Statistical comparisons were performed using the



Figure 4. Mice Harbor Macrophage-Restricted IL-10Ra Mutation Developed Spontaneous Colitis and Growth Retardation

(A) Graphical summary of body mass follow up of male Cx3cr1creIl10Rafl/fl, Il10rafl/fl, and Il10�/� mice.

(B) Graphical summary of rectal prolapse incidence of indicated male mice.

(C) Graphical summary of endoscopic colitis grades for 6-month-old male Cx3cr1creIl10rafl/fl mice and their Il10rafl/fl littermates. Data are representative of two

independent experiments (n = 6–7).

(D) Representative colonoscopy images of indicated mice.

(legend continued on next page)
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(Kullberg et al., 2006). Of note, sentinels in our facility were typed

Helicobacter-positive.

Our data establish that colon-resident macrophages require

IL-10 to prevent their hyperactivation in the gut. Colonic macro-

phages also constitutively express IL-10 mRNA (Zigmond et al.,

2012), and we have shown that BM culture-derived macrophage

are subject to an autocrine regulatory loop that controls their

response to LPS in vitro and has been previously noted (Pils

et al., 2010a; Siewe et al., 2006). Cx3cr1creIL10 fl/fl mice did

however not develop signs of colitis. Hence, cells other than

macrophages must provide the critical homeostatic IL-10 that

suppresses colonic macrophage hyperactivation. Notably, IL-

10 can be produced by most hematopoietic cells (Moore et al.,

2001). Moreover, even certain nonimmune cells, such as intesti-

nal stroma and epithelium, have been proposed to express IL-10

(Colgan et al., 1999; Ina et al., 2005; Poulin et al., 2012). Several

studies have highlighted the critical importance of IL-10 produc-

tion by CD4+ T cells. Mice harboring a CD4+ T cell-restricted IL-

10-deficiency develop spontaneous colitis (Roers et al., 2004),

similar to IL10-deficient mice. The main homeostatic IL-10 pro-

ducers in the gut are, aside from CX3CR1
hi macrophages,

Foxp3� Type I regulatory (Tr1) cells and Foxp3+ Treg cells. In

the colon, IL-10-producing T regulatory cells are mainly of the

FoxP3+ type (Banerjee et al., 2009; Maynard et al., 2007), sug-

gesting that Foxp3+ Treg cells, rather Tr1 cells, are the prime

IL-10 source preventing colitis. Supporting this notion, Rudensky

and colleagues established by using Foxp3CreIl10fl/fl mice that

mere impairment of IL-10 production by Foxp3+ Treg cells is suf-

ficient to cause spontaneous inflammation that was restricted to

the large, but not small intestine (Rubtsov et al., 2008). Interest-

ingly though, IL-10-deficient Foxp3+ Treg cells retained the

potential to suppress T effector cells, both in in vitro assays, as

well as the CD45RB+ T cell transfer model of colitis (Murai

et al., 2009; Rubtsov et al., 2008). Why Foxp3+ Treg cell-derived

IL-10 was required to maintain gut homeostasis hence remained

elusive. Our data suggest that colonic Foxp3+ Treg cell-derived

IL-10 is critical to ensure the homeostatic noninflammatory

gene-expression signature of intestinal CX3CR1
hi macrophages

(Rivollier et al., 2012; Zigmond et al., 2012). In absence of Treg

cell-derived IL-10, these cells respond to the abundant microbial

stimuli in the gut with the production of proinflammatory cyto-

and chemokines triggering inflammation. Such a scenario is

supported by the fact that local macrophage elimination amelio-

rates gut inflammation in IL-10-deficient mice (Watanabe et al.,

2003). Finally, it has been shown that Treg cells can reverse

intestinal inflammation in H. hepaticus-infected Rag2�/� and

Tbx21�/�rag2�/� mice, corroborating the assumption of a T

effector cell-independent regulatory role of these cells (Maloy

et al., 2005).

Of note, the Rudensky group established thatmice harboring a

Foxp3+ Treg cell-restricted Il10ra deficiency develop sponta-
(E) Representative histological images of cecum and rectum of 6-month-old Cx3

(F) Graphical summary of histological severity score of indicated mice (n = 5).

(G) Graphical summary of IL-10, IL-6, and IL-17 concentrations in colon explants

6-month-old Cx3cr1creIl10rafl/fl and Il10rafl/fl mice.

(H) Immunofluorescence analysis for CD3 (T cells) and Ly6G (Neutrophils)

represents 50 mm.

Statistical comparisons were performed with the Student’s t test (A, C, F, G), (*p
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neous, albeit less severe colitis (Chaudhry et al., 2011).

Numbers of Foxp3+ Treg cells were found increased in these

foxp3CreIl10r fl/fl mice, however, notably, these cells failed to pro-

duce IL-10. As IL-10 suppresses Th17 cells (Huber et al., 2011),

this colitis phenotype had been interpreted as a failure to control

T cell-mediated inflammation (Chaudhry et al., 2011). Our

present results offer an alternative, though not mutually exclu-

sive explanation. Thus, as in foxp3creIl10fl/fl mice, impaired

production of IL-10 by Treg cells in foxp3creIl10rafl/fl mice likely

compromises the conditioning of Ly6C+ monocytes and the

establishment of noninflammatory CX3CR1
hi macrophages that

is critical for gut homeostasis.

This study highlights the central role CX3CR1
hi macrophages

play in IBD pathophysiology. IL-10Ra-deficient macrophages

express a battery of proinflammatory cytokines that can trigger

deleterious T cell responses, as indicated by the elevated IL-17

and IL-6 serum titers. Of note, Rag-deficient Il10�/� mice

develop colitis only upon transfer of T cells (Liu et al., 2011; Murai

et al., 2009) and gut inflammation in this model hence depends

on effector T cells. In addition, Shouval et al. recently showed

that colitis development in a model that relies an IL-10Rb

deficiency in innate immune cells requires adaptive immunity

(Shouval et al., 2014).

Interestingly, our microarray gene-expression analysis re-

vealed that intestinal CX3CR1
hi macrophages of IL-10-deficient

animals share an expression signature with cells isolated from

animals harboring the macrophage-specific Il10ra ablation.

Both populations upregulated mRNA, encoding CCL5 a known

proinflammatory chemokine involved in human and murine coli-

tis (Mazzucchelli et al., 1996; Kucuk et al., 2006), as well as

inducible nitric oxide synthase (iNOS), a molecule produced by

proinflammatory macrophages (MacMicking et al., 1997) and

involved in colonic injury (Beck et al., 2004). Another important

molecule upregulated by proinflammatory intestinal macro-

phages was p19 (II23a) which heterodimerizes with p40 to create

the cytokine IL-23. IL-23 is important for the activation of Th17

cells (Yen et al., 2006), which are involved in our chronic colitis

model. Finally, we found that TREM-1 is expressed by both

BM culture-derived IL-10Ra-deficient macrophages in vitro

and intestinal macrophages that drive colitis in our mice model.

TREM-1 is responsible for amplification of chronic inflammation

in the intestine, and expressed by intestinal macrophages of

IBD patients (Schenk et al., 2007).

We recently showed that during DSS-induced gut inflamma-

tion, acutely recruited CX3CR1
int effector monocytes drive gut

inflammation (Zigmond et al., 2012). In this setting, CX3CR1
hi

resident macrophages maintained their characteristic nonin-

flammatory signature (Zigmond et al., 2012). This established

robust resistance of this profile to acute exposure to microbial

stimuli. The molecular cues that condition monocytes in the

healthy gut lamina propria to adopt this signature remained
cr1creIl10rafl/fl and Il10rafl/fl mice.

culture supernatants determined by Multiplex assay (n = 4) and sera (n = 7) of

done on sections from the distal colon of the indicated mice. Scale bar

< 0.05, **p < 0.005).



Figure 5. Gene-Expression Profiling of IL-10 Receptor Deficient Lamina Propria Macrophages

(A) Hierarchical clustering of the samples of the microarray data obtained from sorted colonic lamina propria macrophages of Cx3cr1creIl10rafl/fl and Cx3cr1gfp/+

mice. Each sorting was done from a pool of 4–6 mice. The clustering was performed on the log 2 intensities, with Pearson dissimilarity as a distance measure.

(legend continued on next page)

Immunity

IL-10 Sensing by Macrophages Prevents Colitis

Immunity 40, 720–733, May 15, 2014 ª2014 Elsevier Inc. 729



Immunity

IL-10 Sensing by Macrophages Prevents Colitis
unknown. The present study defines IL-10 as a critical homeo-

static conditioning factor in this process. Future experimentation

should address whether exposure of the cells to this cytokine

results in lasting epigenetic modifications or whether IL-10 is

continuously required to maintain the noninflammatory state of

CX3CR1
hi macrophages.

The gene signature of IL-10Ra-deficient macrophages could

include potential targets for future therapeutic IBD intervention.

A lead to theseapproachescouldbe theprominent impacton lipid

and eicosanoid metabolism we observe in macrophages that are

blind to IL-10. Of note, a link between IL-10 and PGE2 has been

previously noted in studies involving cultured human macro-

phages (Antoniv et al., 2005).Moreover, also the IL-10-dependent

bacterial clearance in a meningitis model is associated with the

potential of this cytokine to suppress PGE2 (Mittal et al., 2010)

and inflammatory monocytes were shown to directly inhibit

neutrophil activation in a PGE2-dependent manner (Grainger

et al., 2013). However, prostaglandins have pleiotropic functions

and can exert both pro- and anti-inflammatory functions (Dey

et al., 2006). Successful therapeutic manipulation of the PGE2

system for IBDmanagement will hence require additional insights

into eicosanoid activities in the healthy and diseased gut context.

Collectively, our results establish intestinal CX3CR1
hi macro-

phages as key drivers of IL-10 deficiency-based gut inflammation.

The gene-expression profiles of IL-10Ra-deficient macrophages

reportedhereand futureepigeneticprofilingshouldprovidecandi-

datemolecules taking part in the early events of the pathology that

might open new avenues for the research of the pathogenesis of

the disease and could serve as potential targets for therapeutic

manipulations aiming at restoration of gut homeostasis.

EXPERIMENTAL PROCEDURES

Mice

Il10�/� mice (Kühn et al., 1993) were crossed to cx3cr1gfp mice (Jung et al.,

2000) to obtain Il10�/�cx3cr1gfp/+ mice. Cx3cr1cre mice (Yona et al., 2013)

were crossed to Il10fl and Il10rafl mice (Roers et al., 2004; Pils et al., 2011b)

to obtain cx3cr1creIl10fl/fl and cx3cr1creIl10rafl/fl mice. All animals were on

C57Bl/6 background. Animals were maintained under specific pathogen-free

conditions and handled according to protocols approved by the Weizmann

Institute Animal Care Committee as per international guidelines.

Cell Isolation, Flow Cytometry Analysis, and Sorting of Intestinal

Macrophages

Isolation of colonic lamina propria cells was performed following a method

established previously (Zigmond et al., 2012). Antibodies used for colonic
(B) Volcano plot of the statistical significance (-log 10 p value) against the log 2 ra

the microarray data. Hallmark genes are indicated. Genes with fold change below

dashed horizontal line, which corresponds to a p value of 0.05.

(C) Graphical summary of qPCR analysis showing the mRNA ratios of ind

Cx3cr1creIl10rafl/fl and Cx3cr1gfp/+ mice. Result represent mean of three indepen

(D) List of 156 upregulated and 176 downregulated genes in CX3CR1
creIl10rafl/fl

gories. Genes that were upregulated in GWASs of IBD andUC patients (Jostins et

overlap between the upregulated genes of IBD or UC associated genes are 0.00

(E) Schematic of arachidonate acid (AA) pathway indicating enzymes controlling

indicate genes whose expression was altered in IL-10Ra-deficient macrophages

(F) Graphical summary of Log2 intensity of the indicated genes (top graph), base

dots) and WT colonic macrophages (black dots), and qPCR analysis showing

macrophages sorted from the colonic lamina propria (bottom graph).

(G) Graphical summary for PGE2 ELISA analysis of colon explant supernatants

experiments of (n = 3–4). Statistical comparisons were performed with the Stude
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lamina propria staining included: CD45 (30-F11), CD45.2 (104), Ly6C

(HK1.4), CD11c (N418), CD11b (M1/70), IAb (AF6-120.1), CD64 (54-5/7.1),

CD24 (M1/69), CD40 (3/23), CD3 (145-2C11), TCRb (H57-597), CD4 (GK1.5),

CD25 (PC61), and CD8 (53-6.7) all from BioLegend; CD103 (M290) and

CCR7 (4B12) BD Bioscience; F4/80 (CI:A3-1) Serotec and Trem1 (174031)

R&D; and FoxP3 (FJK-165) eBioscience. For intracellular staining of FoxP3,

fixation and permeabilization was done with BD Cytofix/Cytoperm kit accord-

ing to manufacturer’s protocol. Cells were analyzed with a LSRFortessa flow

cytometer (BD) or sorted with a FACSAria machine (BD). Flow cytometry anal-

ysis was done with the FlowJo software.

Bone-Marrow-Derived Macrophages

BM cells were harvested from the femora and tibiae and enriched for mononu-

clear cells on a Ficoll density gradient. Cells were isolated by MACS cell sep-

aration with CD115-biotin (AFS98 Biolegend) and streptavidin-conjugated

magnetic beads (Miltenyi). CD115 positive fractions were cultured in FCS

(10%), L-glutamine (1%), Sodium-pyrovate (1%) and pen-strep (1%), in the

presence of 10 ng/ml recombinant CSF-1 (Peprotech). At day 3, half the

medium was replaced and on day 7 cells were either stimulated with

100 ng/ml LPS (Sigma) or 100 ng/ml LPS and 10 ng/ml recombinant IL-10

(Peprotech) or left as control.

DSS-Induced Colitis Model and Murine Colonoscopy

Mice received one cycle (7 days) of dextran sulfate sodium salt (DSS) (MP

Biomedicals, C-160110) treatment 2% in drinking water. To score colitis

severity, we used a high-resolution murine video endoscopic system, con-

sisting of a miniature probe (1.9 mm outer diameter), a xenon light

source, a triple chip HD camera, and an air pump (‘‘Coloview,’’ Karl Storz)

to achieve regulated inflation of the mouse colon. Digitally recorded video

files were processed with Windows Movie Maker software (Microsoft).

Endoscopic quantification was graded as previously described (Becker

et al., 2005).

Statistical Analysis

Data were analyzed by ANOVA followed by Bonferroni’s multiple comparison

test or by unpaired, two-tailed t test with GraphPad Prism 4. Data are pre-

sented as mean ± SEM; values of p < 0.05 were considered statistically

significant.

ACCESSION NUMBERS

The microarray data are available in the Gene Expression Omnibus (GEO)

database (http://www.ncbi.nlm.nih.gov/gds) under the accession number

GSE56444.
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tio between colonic macrophages of IL-10Ra deficient and WT mice, based on

or above 2 are in blue. Statistically significant genes are observed above the

icated genes between colonic lamina propria macrophages sorted from

dent experiments. Results are shown as mean ± SEM.

colonic resident macrophages segregated into biological and functional cate-

al., 2012) aremarked in red and green, respectively. Enrichment p values for the

5 and 0.045 respectively (calculated with the hypergeometric distribution).

leukotriene versus prostaglandine synthesis; diacylglycerol (DAG). Red arrows

(see also D).

d on the microarray data comparing gene expression in IL-10Ra deficient (red

the mRNA ratio of indicated molecules between Il10ra�/� and WT resident

from Cx3cr1creIl10rafl/fl and Il10rafl/fl mice. Data are pool of two independent

nt’s t test.
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Perro, M., Diestelhorst, J., Allroth, A., Murugan, D., et al. (2009). Inflammatory

bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J.

Med. 361, 2033–2045.

Grainger, J.R., Wohlfert, E.A., Fuss, I.J., Bouladoux, N., Askenase, M.H.,

Legrand, F., Koo, L.Y., Brenchley, J.M., Fraser, I.D.C., and Belkaid, Y.

(2013). Inflammatory monocytes regulate pathologic responses to commen-

sals during acute gastrointestinal infection. Nat. Med. 19, 713–721.

Hadis, U., Wahl, B., Schulz, O., Hardtke-Wolenski, M., Schippers, A., Wagner,

N., Müller, W., Sparwasser, T., Förster, R., and Pabst, O. (2011). Intestinal

tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in

the lamina propria. Immunity 34, 237–246.

Hapfelmeier, S., Lawson, M.A.E., Slack, E., Kirundi, J.K., Stoel, M.,

Heikenwalder, M., Cahenzli, J., Velykoredko, Y., Balmer, M.L., Endt, K.,

et al. (2010). Reversible microbial colonization of germ-free mice reveals the

dynamics of IgA immune responses. Science 328, 1705–1709.

Hoshi, N., Schenten, D., Nish, S.A., Walther, Z., Gagliani, N., Flavell, R.A.,

Reizis, B., Shen, Z., Fox, J.G., Iwasaki, A., and Medzhitov, R. (2012). MyD88

signalling in colonic mononuclear phagocytes drives colitis in IL-10-deficient

mice. Nat Commun 3, 1120.

Huber, S., Gagliani, N., Esplugues, E., O’Connor, W., Jr., Huber, F.J.,

Chaudhry, A., Kamanaka, M., Kobayashi, Y., Booth, C.J., Rudensky, A.Y.,

et al. (2011). Th17 cells express interleukin-10 receptor and are controlled

by Foxp3� and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent

manner. Immunity 34, 554–565.

Ina, K., Kusugami, K., Kawano, Y., Nishiwaki, T., Wen, Z., Musso, A., West,

G.A., Ohta, M., Goto, H., and Fiocchi, C. (2005). Intestinal fibroblast-derived

IL-10 increases survival of mucosal T cells by inhibiting growth factor depriva-

tion- and Fas-mediated apoptosis. J. Immunol. 175, 2000–2009.

Jaensson, E., Uronen-Hansson, H., Pabst, O., Eksteen, B., Tian, J., Coombes,

J.L., Berg, P.-L., Davidsson, T., Powrie, F., Johansson-Lindbom, B., and

Agace, W.W. (2008). Small intestinal CD103+ dendritic cells display unique

functional properties that are conserved between mice and humans. J. Exp.

Med. 205, 2139–2149.

Jang, M.H., Sougawa, N., Tanaka, T., Hirata, T., Hiroi, T., Tohya, K., Guo, Z.,

Umemoto, E., Ebisuno, Y., Yang, B.G., et al. (2006). CCR7 is critically impor-

tant for migration of dendritic cells in intestinal lamina propria to mesenteric

lymph nodes. J. Immunol. 176, 803–810.

Jostins, L., Ripke, S., Weersma, R.K., Duerr, R.H., McGovern, D.P., Hui, K.Y.,

Lee, J.C., Schumm, L.P., Sharma, Y., Anderson, C.A., et al.; International

IBD Genetics Consortium (IIBDGC) (2012). Host-microbe interactions have

shaped the genetic architecture of inflammatory bowel disease. Nature 491,

119–124.

Jung, S., Aliberti, J., Graemmel, P., Sunshine, M.J., Kreutzberg, G.W., Sher, A.,

and Littman, D.R. (2000). Analysis of fractalkine receptor CX(3)CR1 function by

targeted deletion and green fluorescent protein reporter gene insertion. Mol.

Cell. Biol. 20, 4106–4114.

Kucuk, C., Sozuer, E., Gursoy, S., Canoz, O., Artıs, T., Akcan, A., Akyildiz, H.,
and Muhtaroglu, S. (2006). Treatment with Met-RANTES decreases bacterial

translocation in experimental colitis. Am. J. Surg. 191, 77–83.
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Murphy, K.M., Håkansson, U.K., Moita, L.F., Agace, W.W., Bonnet, D., and

Reis e Sousa, C. (2012). DNGR-1 is a specific and universal marker of mouse

and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tis-

sues. Blood 119, 6052–6062.

Rakoff-Nahoum, S., Hao, L., and Medzhitov, R. (2006). Role of toll-like recep-

tors in spontaneous commensal-dependent colitis. Immunity 25, 319–329.

Rivollier, A., He, J., Kole, A., Valatas, V., and Kelsall, B.L. (2012). Inflammation

switches the differentiation program of Ly6Chi monocytes from antiinflamma-
732 Immunity 40, 720–733, May 15, 2014 ª2014 Elsevier Inc.
tory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med.

209, 139–155.

Roers, A., Siewe, L., Strittmatter, E., Deckert, M., Schlüter, D., Stenzel, W.,
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